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Abstract: This study deals with a method for anomaly detection in seawater temperature data using
machine learning methods with oversampling techniques. Data were acquired from 2017 to 2023
using a Conductivity–Temperature–Depth (CTD) system in the Pacific Ocean, Indian Ocean, and
Sea of Korea. The seawater temperature data consist of 1414 profiles including 1218 normal and
196 abnormal profiles. This dataset has an imbalance problem in which the amount of abnormal
data is insufficient compared to that of normal data. Therefore, we generated abnormal data with
oversampling techniques using duplication, uniform random variable, Synthetic Minority Oversam-
pling Technique (SMOTE), and autoencoder (AE) techniques for the balance of data class, and trained
Interquartile Range (IQR)-based, one-class support vector machine (OCSVM), and Multi-Layer Per-
ceptron (MLP) models with a balanced dataset for anomaly detection. In the experimental results,
the F1 score of the MLP showed the best performance at 0.882 in the combination of learning data,
consisting of 30% of the minor data generated by SMOTE. This result is a 71.4%-point improvement
over the F1 score of the IQR-based model, which is the baseline of this study, and is 1.3%-point better
than the best-performing model among the models without oversampling data.

Keywords: machine learning; anomaly detection; class imbalance problem; oversampling; data
augmentation; ocean observation

1. Introduction

Climate change causes a fundamental restructuring of ecosystems and affects human
societies and economies. Among the several factors that induce climate change, oceans
play an important role in global climate dynamics [1]. Oceans absorb 93% of the heat
accumulated in the atmosphere and ocean warming affects most ecosystems [2]. Accurate
ocean physical data observations are required to understand the changes in physical
properties due to climate change or changes in the marine environment due to natural
variability. Ocean physics observations are used for ocean-related climate variability,
multilevel climate change, initialization of a coupled climate model of the ocean and
atmosphere, and development of ocean analysis or forecasting systems [2].

Representative instruments for observing ocean physics data include the conductivity–
temperature–depth (CTD) system, Underway CTD (UCTD), Argo, and mooring buoys [3–7].
Abnormal data may be observed in marine observation equipment due to aging of the
equipment, mechanical defects, user errors, and unpredictable problems. It is also ob-
served in rapid changes in the environment corresponding to environmental issues such
as hydrothermal diffusion and the inflow of ocean currents [8,9]. Abnormal observational
data have negative impacts on marine system modeling and positive impacts on the scien-
tific discovery of environmental and climate change; thus, it is very important to detect
anomalies in observational data.
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Anomaly detection techniques have been used in a wide range of fields for decades
to identify, extract, detect, and remove anomalous components from data. Anomaly
detection refers to “the problem of finding patterns in data that do not match expected
behavior” [10]. Anomalies can be classified according to the pattern type: global anomalies
(point anomalies), contextual anomalies (conditional anomalies), and collective anomalies
(group anomalies). Alternatively, they can be classified into local and global anomalies
according to the comparison range, and vector anomalies and graph anomalies according
to the input data type [11–14]. Anomalies can be identified using an anomaly detection
technique, and the data can be purified by removing the contaminating effect on the dataset.

Anomaly detection methods were performed arbitrarily and passively in the past;
however, in modern times, they are performed consistently and automatically using princi-
pled and systematic techniques derived from the entire domain of computer science and
statistics. Anomaly detection has traditionally been performed using statistical techniques.
Statistical anomaly detection techniques detect anomalies in a dataset by assuming that
errors or defects are separable from normal data [15–17]. Recently, with the advancement in
computer system hardware performance, anomaly detection studies have been conducted
using data-driven machine learning methods [10,12–14]. The machine learning-based
anomaly detection method can be performed using a dataset that contains normal and
abnormal data with labels or by learning a machine learning model using only the normal
dataset. In general, a large amount of training data is required for machine learning-based
abnormal data detection methods. However, if the training data are insufficient or the
model is trained using excessively high model complexity, the model is likely to be over-
fitted. Therefore, it is necessary to secure as much training data as possible in terms of
modeling; however, there are limitations in securing data for reasons such as cost and
inability to reproduce the acquisition environment. To overcome the limitations on the lim-
ited resources of these datasets, various studies have been conducted, including techniques
to apply weights to a minority class [18,19].

In this study, oversampling-based anomaly detection methods were proposed to
overcome the weaknesses caused by the lack of learning data that frequently occurs in
existing machine learning-based anomaly detection studies. Oversampling is a technique
that creates additional minority class data such that the amount of minority class data is
similar to that of the majority class data when the amount of data per class is imbalanced in
a dataset [20]. Anomaly detection in seawater temperature data was performed by applying
oversampling techniques to seawater temperature data from the CTD system observation
data obtained using the research vessel Isabu operated by the Korea Institute of Ocean
Science and Technology in the international waters of the Pacific Ocean, the Indian Ocean,
and the Sea of the Republic of Korea from 2017 to 2023. The CTD observation system is
one of the main instruments for acquiring marine physics data such as pressure, water
temperature, and conductivity, which are required for marine science research.

In the CTD seawater temperature observation data, which are vertical profiles by sea-
water layer, the information of interest was minority anomaly data, which were augmented
and used through oversampling to learn the CTD anomaly detection models. As over-
sampling methods, simple duplication, addition of uniform random variables, Synthetic
Minority Oversampling Technique (SMOTE), and autoencoder (AE) techniques have been
applied [21,22]. As anomaly detection models, interquartile range (IQR)-based anomaly
detection model, one-class support vector machine (OCSVM), and multi-layer perceptron
(MLP) models have been used [23–25]. The precision, recall, F1 score, and Area Under
the Receiver Operating Characteristic Curve (AUROC) were compared as performance
evaluation indicators to determine the appropriate ratio of oversampling data and optimal
combination of anomaly detection models [26]. CTD observations have been conducted in
waters around the world for decades. Actual field observation work that is being carried
out is labor-intensive. For this reason, we started the study of data-driven anomaly detec-
tion using CTD datasets and machine learning models for automation of observation sites.
We hope that the results of this study can be applied to all real sea observation sites. The
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ultimate goal of this study is to create a universal machine learning model for detecting
anomalies in CTD systems. Therefore, the time of acquisition of the observation data, sea
area, location, regional characteristics, and relationships were not considered.

2. Related Work
2.1. CTD Error Detection

Studies related to errors in early CTD systems were conducted to minimize the errors
that occurred during sensor measurements. Horne and Toole [27] and Gregg and Hess [28]
found discrepancies in temperature and conductivity measurements owing to the physical
separation of the thermistor and conductive cells and the discrepancy in the response time
of the two sensors. Through numerical analysis and experiments, Larson and Pedersen [29]
revealed that measuring the temperature of flowing water using thermistors can cause
errors because of the heating of the sensor itself owing to viscous effects. Lueck and
Picklo [30] developed a method for predicting and correcting the thermal mass effect error,
which depends on the speed of passing through a conductivity cell to significantly reduce
the salinity error. Ullman and Hebert [31] presented evidence of speed-dependent salinity
errors due to thermistor viscosity heating errors when measuring UCTD, and suggested
ways to optimize the conductive thermal mass correction required to accurately calculate
salinity. Garau et al. [32] proposed a methodology to find correction parameter values
that minimize the area between the temperature and salinity curves given by two CTD
profiles to correct thermal delay errors in the data, in which CTD sensors without pumps
are installed on the glider. Similar to the aforementioned studies, studies related to errors
in early CTD were conducted using methods for finding and correcting the causes of errors
occurring in the sensor itself.

2.2. Statistics-Based Anomaly Detection

In statistical-based anomaly detection analysis, anomaly data are defined as “an obser-
vation considered to be partially or completely out of line with the probability distribution
of most data” [15,33,34]. Statistical techniques fit a model to the given data, determine
whether new data follow the model through statistical inference, and classify data that
are unlikely to have been generated from the model as abnormal based on test statistics.
Statistical-based anomaly detection can be divided into (i) parametric, (ii) nonparametric,
and (iii) information theory-based methods [35–39].

The parametric technique is based on the null hypothesis, assuming that the data to
be tested are generated from the estimated distribution of normal values [40]. The statistics
used for the hypothesis test can be considered as abnormal scores [10]. Parametric tech-
niques can be further divided into normal-, regression-, and mixed-model-based methods
according to the type of distribution [41,42]. The normal model base assumes that the data
are generated from the normal model and uses a Maximum Likelihood Estimator [35]. The
distance between each data point and the estimated average value became an abnormal
score, and the boundary of the abnormal score was used to determine whether the score
was an anomaly. Various methods have been proposed for determining the definition
and boundaries of distance, such as the Grubbs’ test, Student’s t-test, Hotelling’s test, and
Chi-square test. The regression model basis was applied to the time-series data, and after
fitting the regression model of the data, the abnormal score was obtained as the residual
between the test data and the regression model. Methods based on regression models
include robust regression and Autoregressive Integrated Moving Average models [41,43]. A
mixed model base was used by mixing the distribution to be applied to the data. There are
methods of applying different distributions to normal and abnormal values and methods
of applying mixed distributions only to normal values.

Nonparametric techniques do not assume that the data follow a particular model [44].
Nonparametric techniques have the advantage of being easy to approach realistically
because the assumption that data follow a specific distribution is often not established in
practice. The observed values of data often use signs or ranks rather than the actual values
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of random variables. In other words, it is often used when data are more meaningful than
observation figures such as signs or ranks. Nonparametric techniques include histogram-
and kernel function-based methods. After generating a histogram from the learning
data, the histogram-based method determines whether the test observation is normal
if it is included in a meaningful section of the histogram; otherwise, it determines that
it is abnormal. An abnormal score is calculated based on the frequency of the interval,
including the observed value. If the data are multivariate, an anomaly score is obtained
from the histogram of each variable and summed to obtain the total anomaly score. Kernel
density estimation is a method for estimating a continuous probability density function
based on a kernel function and data under the assumption that the data do not follow a
specific distribution. Parzen window density estimation is a representative technique [45].
Unlike the Gaussian density estimation method, the kernel density estimation method
does not require the average and variance of the data, and the most significant difference
is that it determines an appropriate distribution through the given data. De et al. [46]
used a histogram-based technique to describe and analyze oceanic magnetic anomaly data.
Wei et al. [47] developed a self-adapting vessel traffic behavior recognition algorithm based
on multi-attribute trajectory characteristics using Parzen window density estimation.

Information theory-based anomaly detection techniques analyze the amount of infor-
mation in data using measures such as entropy and relative entropy [48]. Entropy is a term
originally used in classical thermodynamics. Entropy is a function of the temperature and
refers to the probability that a given amount of heat can be converted into equivalent work.
In general, entropy refers to uncertainty. In information theory, the concept of information
entropy was introduced to express the possibility of obtaining information by applying the
concept of entropy. The central idea of information theory is that unlikely events are more
informative than frequently occurring events. Information entropy is a criterion used to
classify whether the obtained information is meaningful. Chen et al. [49] used information
entropy to extract useful information from the residuals of a predictive model to detect
fault conditions in wind turbines. Tang et al. [46] described the minimum differential signal
acquired by a pair of magnetic sensors to detect changes in magnetic noise patterns that can
detect or locate objects, such as surface ships and submarines. A magnetic anomaly target
was detected using an entropy detector. Scully et al. [50] utilized AIS data and information
entropy to cluster vessel traffic characteristics.

2.3. Machine Learning-Based Anomaly Detection

Recently, anomaly detection tasks have been performed based on machine learning
methods in a wide range of fields. Anomaly detection techniques that use machine learning
can be divided into supervised and unsupervised techniques [51]. Research on unsuper-
vised anomaly detection techniques has been actively conducted using various approaches.
In the early days of the study, distribution-based anomaly detection techniques [40,52],
depth-based anomaly detection techniques [53], and clustering-based anomaly detection
techniques [51] have been mainly studied, but recent research trends largely utilize distance-
and density-based anomaly detection techniques [54].

Supervised anomaly detection methods require a labeled training set containing both
normal and abnormal samples to construct a predictive model. Theoretically, supervised
methods have access to more information and provide better detection rates than semi-
supervised and unsupervised methods. However, owing to technical problems, supervised
anomaly detection methods may not be as accurate as expected. A representative problem
is overfitting, owing to the lack of datasets for the machine learning model. In addition,
obtaining correct labels for the dataset is challenging, and the training dataset usually
contains noise that increases the false alarm rate. Common supervised anomaly detection
algorithms include supervised neural networks, support vector machines (SVM), k-nearest
neighbors, Bayesian networks, and decision trees [55].

In recent years, along with the explosive interest in artificial intelligence technol-
ogy, machine learning-based anomaly detection techniques are being studied in vari-
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ous approaches [56–60]. Various industries are studying by applying anomaly detection
techniques [61–70]. In marine engineering, several studies have been conducted to detect
anomalies related to ship path movements. Soleimani et al. [71] showed that it is possi-
ble to detect a ship moving in an abnormal path using the difference between the actual
movement path of the ship recorded by the AIS [72] and the optimal path generated by the
A* algorithm [73,74]. Rong et al. [75] simplified a ship’s trajectory using the Douglas and
Peucker algorithm [76], extracted turning points, and grouped them using Density-Based
Spatial Clustering of Applications with Noise algorithm [77]. Wang et al. [78] presented a
new method combining wavelet neural networks and threshold values and combining the
two detection strategies to detect anomalies in ocean fixed-point observation time series.

2.4. Class Imbalanced Problem of Anomaly Detection

Class imbalanced data, in which the number of data points per dataset class is imbal-
anced, can influence that the model may be biased towards predicting the majority class,
leading to decreased performance on the minority class [79]. To overcome this problem,
undersampling and oversampling techniques have been studied [80]. Undersampling
removes majority class samples to balance the data obtained from each class. This method
can reduce the training cost of the predictive model; however, the distribution of the major-
ity class may be corrupted, or important data of the majority class can be removed from the
dataset. Undersampling methods include random sampling, Tomek links, easy ensembles,
balanced cascades, one-sided selection, and MLP-based techniques [81–84].

In contrast, oversampling generates additional minority class data to generate equal
sample frequencies for both classes. Oversampling provides the advantage of properly
preserving the distribution of the majority and minority classes but increases the training
cost of the predictive model [20]. A typical oversampling technique is the SMOTE technique,
which augments minority data. The SMOTE-based method is a key concept in prime
number oversampling, a technique for synthesizing new artificial data by interpolating
the data of prime numbers instead of duplicating existing data [21]. This technique first
uses the k-nearest neighbor algorithm to find the data closest to the data in the minority
category and then creates newly synthesized data. In addition, the borderline SMOTE,
SMOTEBoost, SMOTE-Tomek, SMOTE-RSB, and adaptive synthetic sampling approach for
imbalanced learning (ADASYN) have been developed using the SMOTE technique [85–90].
Recently, AE and Generative Adversarial Network (GAN)-based oversampling methods
implemented based on natural networks have been studied [91,92].

3. Methodology
3.1. CTD System

The target system of this study was a CTD system, which is a marine instrument
that can acquire essential physical data of the ocean for ocean science research, such as
conductivity, water temperature, and pressure. In addition, various data, such as dissolved
oxygen, pH, turbidity, fluorescence, oil, photosynthetically active radiation, nitrate, and
altitude, can be acquired by attaching sensors to the CTD system. CTD systems are used in
almost all ocean research vessels owing to their data accuracy, sampling speed, and ease of
use. As shown in Figure 1, the CTD system schematic consists of an underwater unit, deck
unit, water sampler, winch, winch cable, and operating PC. In this study, a 911plus CTD
system was used [93]. The SBE 911plus CTD system can measure sensor data at 24 Hz using
eight sensors up to a depth of 10,500 m in marine and freshwater environments. The main
housing consists of a communication circuit, pressure sensor, and electronic circuit that
collects data. The measurement range of temperature and conductivity is −5 ◦C to 35 ◦C
and 0 to 7 S/m, the accuracy is ±0.001 ◦C and ±0.0003 S/m, and the resolution is 0.0002 ◦C
and 0.00004 S/m, respectively. The main causes of errors in the CTD system are poor contact
with the underwater connector, watertightness failure, disconnection and shorting of the
winch cable, defects in the slip ring, physical damage due to collision with the seafloor,
penetration of marine life or foreign matter in the sensor, and user errors. Owing to these
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unpredictable causes of errors, the CTD system stops running or some observation data
are erroneous. In our study, when operating the CTD system, the winch speed was set to
60 m/min according to sea conditions after launch, and data were acquired by descending
or ascending to the depth section desired by the user. Owing to the long operation time
according to the water depth and fast sampling cycle, the number of acquired data samples
was very large, making it difficult to process with the current computer system. Therefore,
in this study, the acquired CTD raw observation data were averaged at 1 m depth using the
bin average module with SBE data processing software (version 7.26.1.8) and used for CTD
anomaly detection.
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Figure 1. Overview of CTD system on the research vessel Isabu. (a) CTD system diagram; (b) an
observation using a CTD system on the Isabu.

3.2. Dataset

For the machine learning-based anomaly detection study of the CTD system, observa-
tional data were created as a dataset. The CTD dataset was acquired through 54 research
voyages from June 2017 to April 2023 in the Indian Ocean, Northwest Pacific Ocean, and
Korean waters. The location of the CTD data acquisition is shown in Figure 2, where it is
marked as areas instead of coordinates, owing to data security issues related to resource
exploration. Figure 3 shows the composition ratio of the dataset used in the study by
observation area and by normal and abnormal data. The total number of profiles was 1414,
consisting of 838 (59.3%) in the Pacific Ocean, 351 (24.8%) in the Indian Ocean, and 225
(15.9%) in the Korean territorial waters. In this study, anomaly detection was performed
using only seawater temperature data among the entire CTD dataset. The seawater temper-
ature data create a temperature profile of seawater by seawater layer as part of the CTD
dataset. The normal profile and abnormal profile data labeling method involved direct
inspection of each individual profile data point by referring to the descriptions in the field
notes recorded at the observation site. The criteria for determining normal and abnormal
profiles were based on the effective range of the values, the instantaneous rate of change,
and empirical knowledge gained from actual field observations. Figure 4 shows the type of
anomaly pattern for the CTD seawater temperature profile. Of the total 1414 profiles, 1218
(86.1%) normal and 196 (13.9%) abnormal individual profiles were individually identified
and annotated for use as training data in the supervised learning model. Figure 5 shows
the obtained CTD observation profile, where the y-axis shows the water depth and the
x-axis shows the water temperature, conductivity, and dissolved oxygen.
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The CTD acquires data while moving down and up. Therefore, as shown in Figure 5,
the observation data were continuously obtained in the upcast and downcast, which is
actually one profile, but it looks like two profiles, such as the dissolved oxygen value. When
a CTD system is launched, physical damage may occur due to waves and swells on the
surface layer. Therefore, instead of raising the CTD sensor parts installed at the bottom of
the CTD frame (refer to Figure 1a) to the surface layer, it operates only at the top of the
CTD frame at sea level, depending on sea conditions. Therefore, the data acquisition start
depth of each profile may be recorded differently depending on the weather conditions at
the time of measurement. In addition, the maximum observed depth varied depending on
the maximum depth of each sea area and the research purpose.
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Figure 4. Types of CTD anomaly patterns in seawater temperature data. (a) The spike in the red box
shows missing values. For visualization with missing values, it was shown as zero values. Missing
values appear over the entire measurable range. (b) It is an anomaly pattern that exceeds the effective
temperature range. The observed seawater temperature in the sea area cannot be below 0 degrees. It
mainly appears when an electrical fault occurs in the system. (c) It is an anomaly pattern that exceeds
the measured effective measurement range of the temperature sensor. The seawater temperature
value that the temperature sensor can measure is up to 35 degrees. It appears mainly in the sea surface
section. (d) A pattern of point anomalies in the observed temperature profile; it mainly appears
when an electrical fault occurs in the system. (e) It is a collective anomaly pattern of the observed
temperature profile. It mainly appears in the mixed layer.

The dataset structure was created as a three-dimensional arrangement structure with
6000 m (maximum depth) × number of sensor types × acquisition profiles. The dimen-
sion of the CTD dataset is 6000 × 8 × 1414. In this study, the dataset structure used is
6000 × 1 × 1414, as only the seawater temperature profile is targeted. The missing values
of the section where the actual data did not exist were replaced with a value of zero to
represent the unobserved data caused by system failures in the thermocline layer where the
seawater temperature changed rapidly. In addition, there are missing sections depending
on the purpose of observation and the maximum depth of the sea. Seventy percent of the
total dataset was used for CTD anomaly detection model training, and the remaining 30%
was used for model testing. Training and testing datasets were used to learn and test the
anomaly detection models for the CTD seawater temperature data by dividing the normal
and abnormal data into 7:3 ratios.
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3.3. Oversampling Methods

Most of the CTD seawater temperature data were normal profiles (1218, 86.1%), and
the abnormal profiles (196, 13.9%) with anomalies were a minority. It has imbalanced data
problems that can cause performance degradation during machine learning model training.
When training a machine learning model with such an imbalanced dataset, it is important to
retain the properties of the raw data. The CTD-observed seawater temperature data used in
this study have different data acquisition times and locations, so it is necessary to preserve
them to learn a machine learning model. Crucially, the number of samples in the dataset
is not sufficient compared to the wide range of observed waters. One goal of this study
is to minimize type 2 error in statistical hypothesis testing to detect anomalies without
omission [94]. In addition, the computational cost may not be considered significant during
the initial research stage of model learning. Therefore, we augmented the minority data of
the dataset by adopting oversampling methods that can preserve the characteristics of the
raw data among the undersampling and oversampling methods that can be applied to the
imbalanced data problem.

In this study, the (i) simple duplication, (ii) addition of uniform random variables,
(iii) SMOTE, and (iv) AE techniques were used as oversampling methods. The simple
duplication method increases the amount of data by simply duplicating the anomalous
data, which are already collected from the minority data. The method of adding a uniform
random variable involves adding values of 30%, 50%, 75%, and 100% of the uniform random
distribution based on the observed value of the majority data to create minority data. The
SMOTE method generates data based on the distribution tendency of minority real data.
The AE-based oversampling technique generates virtual minority data using reconstruction
errors generated during the reconstruction process. In this study, the structure of the AE
layer was designed as (6000, 3000, 1000, 1000, and 6000), and minority data were created
using the collected minority observation data as input data. In the oversampling process,
only 70% of the entire CTD dataset divided into the training dataset was used.

3.4. Anomaly Detection Models

Traditional methods and machine learning-based models that have recently attracted
attention have been applied as anomaly detection models. As a traditional method, an IQR-
based anomaly detection model was applied, which was adopted as the baseline to evaluate



J. Mar. Sci. Eng. 2024, 12, 807 10 of 25

the performance of the anomaly detection methods proposed in this study. The OCSVM
and MLP models were applied as machine learning-based anomaly detection models.

The IQR model identifies anomalies statistically [23]. The OCSVM, a method training
exclusively on normal data to detect anomalies, was introduced by Schölkopf et al. [95].
Anomalies, which are data points outside the normal range, are identified by establishing
a decision boundary. This method is useful when data are not easily divided into groups
or when there are few anomalies [96]. The OCSVM methodology is employed for the
classification of N-dimensional data sets characterized by a single class, achieved through
the delineation of a hyperplane within the data space. Typically, throughout the training
phase, a majority dataset is employed. To evaluate the impact of oversampled data on the
classification process, we conducted three distinct experimental datasets: one utilizing a
solely normal dataset, another with the abnormal dataset, and a third augmented minor
dataset by oversampling into the training dataset.

The MLP model is a type of artificial neural network comprising multiple layers
of interconnected nodes, structured in a feedforward configuration [97]. Each neuron
within the network applies a linear transformation followed by a non-linear activation
function to its inputs, enabling the model to capture intricate data patterns. Training of
MLPs typically involves backpropagation, where iterative optimization techniques such as
gradient descent are utilized to minimize the error between predicted and actual outputs.
Due to their capacity to learn complex mappings and flexibility, MLP models are widely
employed across various machine learning tasks, including classification, regression, and
pattern recognition [98]. The MLP models were created using three models. The first model
was designed with 1 hidden layer and 10 hidden units. The second model was designed
to have the three hidden layers (10, 15, and 10) of neuronal structures. The third model
was designed to have three hidden layers (500, 100, and 10) of neuronal structures. MLP
models are designed such that the output value operates as a binary classifier with normal
(0) or abnormal (1). For the MLP models and oversampling learning data combination
experiments, 20 experiments were conducted for each experimental case to extract the
average value of the top 10 model experiments with excellent F1 scores, and the average
value was used as an evaluation index for the model.

The training dataset consists of an independent variable, represented by the observed
seawater temperature data for each depth, and a dependent variable consisting of a classi-
fication value that labels whether or not an anomaly is present. For training and testing
the anomaly detection model, 1414 CTD data were divided into 70% (989) model training
data and 30% (425) model test data. The training and test data were equal to the ratio of
normal-to-abnormal data for the entire dataset. Consistent division into training and test
datasets was employed across all experimental cases. The training and test data comprised
852 and 137 normal and 366 and 59 abnormal profiles, respectively. We augmented the
training dataset using the proposed oversampling techniques with 366 abnormal profiles
included in the training dataset, classified as anomalies.

When modeling the IQR-based anomaly classifier, the entire water depth interval
(6000 m) for 989 training data profiles was used, and the lower quartile (Q1: first quartile)
and upper quartile (Q3: third quartile) were calculated for each water depth per meter. In
the model test experiment, the anomaly detection performance was evaluated up to the
maximum observed water depth for 425 test data points. If the seawater temperature data
crossed the boundary of Q1 at more than five points, they were classified as anomalies.
The OCSVM model was trained using a normal profile, which comprised the majority
data, and an abnormal profile, which comprised the minority data, among the measured
training data. In addition, when training a model with oversampled data, the minority
data were used at 30%, 50%, 75%, and 100% ratios compared to the majority data. The
MLP models were trained by applying the actual measured learning data and minority
data generated by oversampling at rates of 30%, 50%, 75%, and 100% compared to the
majority data. The MLPs were designed to perform binary classification by labeling the
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anomalous information of the CTD observation profile with binary values, such as normal
(0) or abnormal (1), for supervised learning.

4. Experiments and Evaluation
4.1. Performance Metrics

Evaluation of the results is an important process in machine learning procedures.
Various approaches can be used, ranging from qualitative assessments based on expertise to
quantitative accuracy assessments based on sampling strategies. Because the environmental
settings and datasets used in practice are different, no algorithm can satisfy all requirements
and cannot be applied to all studies [99]. For example, classification accuracy is limited
when evaluating classifiers in applications with class-imbalance problems. Therefore,
depending the purpose, the sensitivity (recall), specificity, F1 score, precision, and accuracy
can be used as indicators for evaluating the performance of binary classifiers. These
evaluation indicators were calculated using true positives, false positives, true negatives,
and false negatives, as shown in Equations (1)–(5), based on the confusion matrix in Table 1.
Generally, sensitivity, specificity, and the receiver operating curve (ROC) are used together
when the number of true and false sets is similar and true negatives can be accurately
identified. Sensitivity, precision, and accuracy were combined and used together, and false
sets are used for ambiguous cases. Depending on the situation, all evaluation indicators
can be used in full.

Sensitivity =
TP

TP + FN
(1)

Speci f icity =
TN

TN + FP
(2)

Precision =
TP

TP + FP
(3)

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

F1 score = 2 × Precision × Sensitivity
Precision + Sensitivity

(5)

Table 1. Confusion matrix.

Predictive Values
Positive (1) Negative (0)

Actual values
Positive (1) TP

(True positive)
FN

(False negative)

Negative (0) FP
(False positive)

TN
(True negative)

Sensitivity is the rate of true prediction when entering the true set. Specificity measures
the ability of a model to identify true negatives among all actual negatives correctly.
Precision is the percentage of correct answers among those predicted by a classifier. The
accuracy is calculated using sensitivity and specificity. Also, accuracy represents the
classification rate for the entire dataset. Accuracy cannot be used as a performance indicator
when the detection of the minority dataset in the classification problem is important.
Therefore, performance evaluation indicators must be appropriately determined according
to the purpose.

Sensitivity refers to the correct classification rate of positive data among all actual
positive data. It tends to increase as the positive prediction rate increases; however, other
metrics, such as precision and specificity, may decrease. Therefore, other evaluation
indicators are needed to compensate for these limitations. The F1 score is a harmonized
average of precision and sensitivity, which evaluates how well the model predicts the



J. Mar. Sci. Eng. 2024, 12, 807 12 of 25

positive class in terms of precision and sensitivity. It can be used as a balanced evaluation
indicator without any drawbacks to anomaly detection with class imbalanced data.

The ROC plots the relationship between sensitivity and specificity at all possible
thresholds for a binary classification model. This describes the performance of a binary
classifier system with a change in the classification threshold. In other words, the ROC is a
graph representing the ratio of true positives to false negatives when the decision threshold
is changed. The AUROC numerically computes the model’s identification performance
using the area under curve (AUC) of the ROC, providing quantified evaluation scores on
how successfully and accurately the model separated the positive and negative observations.
A classifier model with an AUROC value of 0.5 or less is classified as a random classifier,
indicating that the classification result is meaningless [26].

The most important performance in the anomaly detection of CTD seawater tempera-
ture data with class-imbalanced data problems is to increase sensitivity so that anomalies
in the observation data are not missed. However, the disadvantage of largely emphasizing
only the sensitivity, which is a performance evaluation index, is that the model can focus
only on accurately identifying the positive class, ignoring information related to accuracy.
Therefore, it is difficult to accurately evaluate the overall performance of the model, and it
is important to consider the performance in various aspects in practical applications. The
F1 score is calculated as the value of precision and sensitivity as a performance evaluation
index to overcome the aforementioned problems. For this reason, in this study, we adopted
the F1 score as the main indicator for evaluating the proposed experimental case based on
our problems.

4.2. Experimental Setting

The specifications of the computer system we used in this study consist of CPU: In-
tel(R) Core(TM) i7-6700K CPU @ 4.00GHz, RAM: 64 GB, GUP: NVIDIA GeForce GTX
1070, SSD: Samsung 850 PRO 1 TB. The programming code was implemented with the
Python, and the main libraries used were imblearn.over_sampling.SMOTE. The Dense
and Activation modules of tensorflow.keras were used to implement AE oversampling.
sklearn.sm.OneClassSVM and sklearn.neural_network.MLPClassifier modules were used
for the anomaly detection model. For the performance evaluation of the model, the
rock_curve, rock_auc_score, and confusion_matrix of sklearn.metrics were used. In ad-
dition, sklearn.preprocessing.MinMaxScaler and sklearn.model_selection.train_test_split
modules were used to handle the dataset. Models and functions not mentioned were
directly implemented.

The SVM model was implemented with default hyperparameters in the library. The
hidden layers (hidden_layer_sizes) of the MLP models were set to MLP-1 (10), MLP-2 (10,
15, 10), and MLP-3 (500, 100, 10). The maximum number of iterations (max_iter) was set
to 500. The activity function relu was used for the hidden layers of MLP models. The
remaining unmentioned hyperparameters used default values provided by the library.

4.3. Experimental Results

In this study, the F1 score was adopted as the representative indicator to evaluate
the anomaly detection model. The results of the seven models with the best F1 score
performance among the performance experiments on anomaly detection of CTD seawater
temperature observation data are summarized in Table 2, along with the IQR model results
adopted by the baseline of this study, and the comparative performance can be confirmed
in Figure 6. The results of the entire combination experiment, including these seven
models, are presented in the tables and figures in the Appendix. Each model was named in
the following order [anomaly detection model-oversampling method-oversampling data
ratio]. Here, the oversampling data ratio is the ratio of the primary data, including the
oversampling data, to the majority data of the training data set. This experiment used the
oversampling data ratio of 30%, 50%, 75%, and 100% compared to the majority data. In the
case of the random uniform variable addition method, a random uniform distribution rate
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was added to the observed value instead of the oversampling data ratio. Additionally, the
last character “S” in the model name string is a scale flag. If there is a character S, it is using
the scaled dataset.

Table 2. Performance evaluation index values of baseline IQR models and F1 score top 7 proposed
experimental cases; in the dataset column, scale represents the normalization of the dataset (range of
0–1). The scale and oversampling columns indicate whether the technique is applied, “x” means that
the technique is not applied, and “o” means that the technique is applied. The oversampling column
describes the name of the technique applied to the dataset and the ratio of the minority dataset to the
majority dataset.

Classification Model Dataset Score

Model Type Model Name Scale
(0–1)

Oversampling
(Augmentation)

Sensitivity
(Recall) Precision F1 Score

(Std.)
AUROC

(Std.)

Traditional method
(baseline) IQR x x 0.153 0.188 0.168 0.523

(Hidden layer sizes)
MLP-1: (10)

MLP-2: (10,15,10)
MLP-3: (500,100,10)

MLP-2-S-30 x SMOTE 30% 0.832 0.937 0.882 (0.013) 0.912 (0.013)
MLP-2-A-50 x AE 50% 0.841 0.914 0.875 (0.020) 0.914 (0.009)

MLP-1 x x 0.812 0.936 0.869 (0.021) 0.901 (0.015)
MLP-2 x x 0.805 0.94 0.867 (0.019) 0.899 (0.017)

MLP-2-S-50 x SMOTE 50% 0.846 0.89 0.866 (0.011) 0.914 (0.015)
MLP-2-A-75 x AE 75% 0.814 0.925 0.863 (0.019) 0.901 (0.023)
MLP-3-A-75 x AE 75% 0.821 0.908 0.861 (0.018) 0.903 (0.016)
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Figure 6. Comparison graph of performance for anomaly detection experiments in the seawater
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score performance than the IQR model. (b) This graph shows the results of the comparison between
the seven models with the highest performance F1 score among our proposed models.

First, Figure 6a shows the graph of the F1 score values of the IQR model and the
top-7 machine learning model. In the result, machine learning-based anomaly detection
models outperformed a traditional statistical method IQR. The performance of MLP-2-S-30
(0.882) resulted in a 71.4%-point improvement in the F1 score compared to the IQR model
(0.168) as the baseline for performance evaluation in this study. This result shows that
our approach is appropriate for anomaly detection of CTD seawater temperature profiles
applying machine learning models.
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Figure 6b shows a comparison of F1 score values of the top seven machine learning
models. As shown in Table 2, the model with the best F1 score among all the experimental
results was MLP-2-S-30 (0.882). In addition, the MLP-2-S-30 model improved the F1
score by 1.3%-point compared with MLP-1 (0.869), which was the best model among the
experimental results without applying oversampling data. Furthermore, the MLP-2-S-30
experimental case has a lower standard deviation and higher AUROC than the MLP-1
experimental case in Table 2. This result can be one piece of evidence that the performance
improvement of the MLP-2-S-30 experimental case is valid. In terms of AUROC, the MLP-2-
A-50 experimental case (0.914) and MLP-2-S-50 experimental case (0.914) showed maximum
performance. However, we aim to minimize type 2 error in our problem. Therefore, the
MLP-2-S-30 experimental case with the highest F1 score value is evaluated as the optimal
case. Based on the results of this experiment, the possibility of an anomaly detection
method for CTD observation data using a machine learning model was confirmed, and the
performance of the CTD anomaly detection machine learning model could be improved
through the oversampling of minority data using limited observation data.

Table 3 compares the generalization performance of each CTD anomaly detection
model. Rows #1 to #9 are models using plain training data without oversampling data, and
rows #10 to #19 are the results of calculating the average value for each model according to
the scale and oversampling methods. In terms of the generalization performance evaluation,
results that satisfied expectations were not derived. In the case of the MLP-1 model (#4,
0.869), the F1 score showed at least 9.9%-point better performance than the average value
of the MLP model (#14, 0.77) with oversampling. The oversampling-based CTD anomaly
detection methods proposed in this study did not show superior performance in terms of
generalization performance compared with the experimental case (#4) using plain learning
data. In addition, in the case of OCSVMs, the maximum value of AUROC performance was
0.504 (refer to Table A1); in most oversampling combination experiments, it was confirmed
that the model was not suitable for detecting CTD seawater temperature data anomalies,
as it was less than 0.5. In rows #4–#9, #14, and #15, the experimental cases without scale
performed better than the experimental cases with scale. Therefore, we concluded in our
problem that it is better to utilize the training dataset without scale. In the results of rows
#11–#14 of Table 3, the MLP-2 model is evaluated as a model suitable for our problem with
the best F1 score performance among all MLP models. In the results of rows #16–#19 of
Table 3, it was confirmed that the duplication oversampling technique showed the best F1
score in the overall oversampling technique; however, the standard deviation has increased
significantly compared to other techniques. For this reason, we evaluate that SMOTE or AE-
based oversampling techniques are appropriate. Based on the generalization performance
evaluation, we reached one conclusion that it is appropriate to perform anomaly detection
of the CTD seawater temperature profile by applying the MLP-2 model, scale not applied,
SMOTE, or AE-based oversampling. Through the results of this study, we confirmed the
need for ablation research through a generalization performance comparison of the results
of several machine learning models and oversampling data combination experiments.

Table 3. Comparison of generalization performance; # is the row number of the table. OCSVM-ND
is a model trained using a normal class. OCSVM-ND is a model trained using an abnormal class.
“Average” represents the average of all experimental cases. “All cases” means the entire combination
of all oversampling technique datasets used in this study.

Classification Model Dataset Score

# Model Scale
(0–1)

Oversampling
(Augmentation)

Sensitivity
(Recall) Precision F1 Score

(Std.)
AUROC

(Std.)

1 IQR x x 0.153 0.188 0.168 0.523

2 OCSVM-ND
(normal data) x x 0.475 0.139 0.215 0.501
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Table 3. Cont.

Classification Model Dataset Score

# Model Scale
(0–1)

Oversampling
(Augmentation)

Sensitivity
(Recall) Precision F1 Score

(Std.)
AUROC

(Std.)

3 OCSVM-AD
(abnormal data) x x 0.508 0.128 0.205 0.476

4 MLP-1 x x 0.812 0.936 0.869 (0.021) 0.901 (0.015)
5 MLP-1-S o x 0.647 0.844 0.729 (0.029) 0.813 (0.025)
6 MLP-2 x x 0.805 0.94 0.867 (0.019) 0.899 (0.017)
7 MLP-2-S o x 0.676 0.806 0.728 (0.02) 0.823 (0.02)
8 MLP-3 x x 0.809 0.915 0.856 (0.017) 0.898 (0.018)
9 MLP-3-S o x 0.636 0.799 0.7 (0.047) 0.803 (0.031)
10 OCSVM-Average x All cases 0.503 0.132 0.209 (0.007) 0.484 (0.014)
11 MLP-1-Average x & o All cases 0.757 0.76 0.735 (0.106) 0.844 (0.055)
12 MLP-2-Average x & o All cases 0.755 0.774 0.751 (0.104) 0.853 (0.051)
13 MLP-3-Average x & o All cases 0.738 0.753 0.719 (0.099) 0.836 (0.051)
14 MLP-ALL-Average x All cases 0.805 0.789 0.77 (0.127) 0.867 (0.062)
15 MLP-ALL-Average o All cases 0.695 0.735 0.701 (0.053) 0.822 (0.025)

16 ALL-D-Average x & o All cases of
duplication 0.733 0.698 0.694 (0.248) 0.812 (0.164)

17 ALL-R-Average x & o All cases of
uniform random 0.713 0.535 0.562 (0.183) 0.756 (0.118)

18 ALL-S-Average x & o All cases of
SMOTE 0.723 0.698 0.687 (0.203) 0.807 (0.135)

19 ALL-A-Average x & o All cases of
AE 0.694 0.734 0.685 (0.209) 0.795 (0.139)

5. Conclusions

We performed an anomaly detection study on a seawater temperature dataset of CTD
observation profiles. The main contribution of this study was to discover a model in which
the proposed machine learning model can detect abnormal profiles better than a traditional
statistical technique in the seawater temperature dataset. Furthermore, we showed that the
anomaly detection performance of machine learning models can be improved by increasing
the training dataset with the oversampling technique. Extensive experiments were con-
ducted to show that our proposed approach was available and excellent in performance. In
addition, the proposed experimental case was analyzed using performance evaluation indi-
cators suitable for the anomaly detection problem of the seawater temperature dataset. Our
research methods and results can be applied to automation studies of ocean observations
to acquire of essential marine physical data.

As subsequent studies, we plan to continue to secure CTD observation data for
verifying generalization performance by using independent datasets and use various
machine learning models, oversampling methods, and dimensionality reduction methods
to expand or ablate research, and anomaly detection studies of all available sensor data
will be performed. In addition, we plan to expand the real-time anomaly detection research
of CTD systems when exploring real sea areas and ultimately conduct a series of studies on
the development of unmanned technology for marine research vessel observations.
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Appendix A

Table A1 shows the overall results of 121 combination experiments on anomaly detec-
tion of CTD seawater temperature observation data performed in this study. OCSVM-ND
is an experimental result learned using only normal data, and OCSVM-AD is a result
learned using only abnormal data. Figures A1–A4 shows sensitivity, precision, F1 score,
and AUROC listed in the order of model names in Table A1, and Figures A5–A8 shows the
indicators of sensitivity, precision, F1 score, and AUROC in order of highest.

Table A1. Performance evaluation of all cases for anomaly detection of the CTD seawater
temperature data.

Classification Model Dataset Score

Model
Type Model Name Scale

(0–1)
Oversampling

(Augmentation)
Sensitivity
(Recall) Precision F1 Score

(Std.)
AUROC

(Std.)

Traditional
method IQR x x 0.153 0.188 0.168 0.523

OCSVM

OCSVM-ND
(normal data) x x 0.475 0.139 0.215 0.501

OCSVM-AD
(abnormal data) x x 0.508 0.128 0.205 0.476

OCSVM-D-30 x Duplication 30% 0.508 0.133 0.211 0.486
OCSVM-D-50 x Duplication 50% 0.508 0.128 0.205 0.476
OCSVM-D-75 x Duplication 75% 0.508 0.129 0.206 0.478

OCSVM-D-100 x Duplication 100% 0.508 0.128 0.205 0.476
OCSVM-R-30 x Uniform random 30% 0.492 0.139 0.216 0.5
OCSVM-R-50 x Uniform random 50% 0.492 0.141 0.219 0.504
OCSVM-R-75 x Uniform random 75% 0.492 0.14 0.218 0.503
OCSVM-R-100 x Uniform random 100% 0.492 0.141 0.219 0.504
OCSVM-S-30 x SMOTE 30% 0.508 0.129 0.205 0.477
OCSVM-S-50 x SMOTE 50% 0.508 0.126 0.202 0.47
OCSVM-S-75 x SMOTE 75% 0.508 0.135 0.214 0.492
OCSVM-S-100 x SMOTE 100% 0.508 0.135 0.214 0.492
OCSVM-A-30 x AE 30% 0.508 0.125 0.201 0.467
OCSVM-A-50 x AE 50% 0.508 0.126 0.202 0.47
OCSVM-A-75 x AE 75% 0.508 0.126 0.201 0.469
OCSVM-A-100 x AE 100% 0.508 0.126 0.202 0.47
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Table A1. Cont.

Classification Model Dataset Score

Model
Type Model Name Scale

(0–1)
Oversampling

(Augmentation)
Sensitivity
(Recall) Precision F1 Score

(Std.)
AUROC

(Std.)

MLP-1
hidden

layer sizes
(10)

MLP-1 x x 0.812 0.936 0.869 (0.021) 0.901 (0.015)
MLP-1-D-30 x Duplication 30% 0.8 0.915 0.852 (0.023) 0.894 (0.023)
MLP-1-D-50 x Duplication 50% 0.819 0.819 0.807 (0.062) 0.891 (0.022)
MLP-1-D-75 x Duplication 75% 0.82 0.781 0.796 (0.041) 0.891 (0.03)
MLP-1-D-100 x Duplication 100% 0.817 0.81 0.811 (0.035) 0.892 (0.014)
MLP-1-R-30 x Uniform random 30% 0.888 0.312 0.392 (0.172) 0.654 (0.145)
MLP-1-R-50 x Uniform random 50% 0.826 0.433 0.519 (0.197) 0.751 (0.116)
MLP-1-R-75 x Uniform random 75% 0.797 0.672 0.713 (0.081) 0.862 (0.052)

MLP-1-R-100 x Uniform random 100% 0.693 0.718 0.671 (0.115) 0.816 (0.073)
MLP-1-S-30 x SMOTE 30% 0.814 0.914 0.858 (0.021) 0.9 (0.025)
MLP-1-S-50 x SMOTE 50% 0.81 0.885 0.842 (0.02) 0.896 (0.023)
MLP-1-S-75 x SMOTE 75% 0.846 0.793 0.816 (0.023) 0.904 (0.013)

MLP-1-S-100 x SMOTE 100% 0.856 0.644 0.717 (0.147) 0.873 (0.071)
MLP-1-A-30 x AE 30% 0.79 0.931 0.852 (0.032) 0.89 (0.032)
MLP-1-A-50 x AE 50% 0.78 0.907 0.833 (0.047) 0.882 (0.036)
MLP-1-A-75 x AE 75% 0.793 0.907 0.845 (0.022) 0.89 (0.019)

MLP-1-A-100 x AE 100% 0.773 0.793 0.769 (0.034) 0.867 (0.042)
MLP-1-S o x 0.647 0.844 0.729 (0.029) 0.813 (0.025)

MLP-1-D-30-S o Duplication 30% 0.687 0.839 0.754 (0.016) 0.832 (0.01)
MLP-1-D-50-S o Duplication 50% 0.715 0.795 0.752 (0.021) 0.842 (0.01)
MLP-1-D-75-S o Duplication 75% 0.76 0.725 0.739 (0.018) 0.856 (0.016)

MLP-1-D-100-S o Duplication 100% 0.765 0.698 0.727 (0.031) 0.855 (0.011)
MLP-1-R-30-S o Uniform random 30% 0.792 0.361 0.481 (0.103) 0.759 (0.07)
MLP-1-R-50-S o Uniform random 50% 0.724 0.66 0.687 (0.025) 0.831 (0.021)
MLP-1-R-75-S o Uniform random 75% 0.758 0.732 0.742 (0.024) 0.856 (0.022)

MLP-1-R-100-S o Uniform random 100% 0.775 0.744 0.756 (0.027) 0.865 (0.025)
MLP-1-S-30-S o SMOTE 30% 0.688 0.853 0.76 (0.014) 0.834 (0.011)
MLP-1-S-50-S o SMOTE 50% 0.688 0.823 0.747 (0.028) 0.832 (0.017)
MLP-1-S-75-S o SMOTE 75% 0.726 0.753 0.735 (0.021) 0.843 (0.014)
MLP-1-S-100-S o SMOTE 100% 0.739 0.664 0.697 (0.031) 0.838 (0.02)
MLP-1-A-30-S o AE 30% 0.546 0.868 0.658 (0.069) 0.765 (0.054)
MLP-1-A-50-S o AE 50% 0.553 0.795 0.637 (0.093) 0.761 (0.051)
MLP-1-A-75-S o AE 75% 0.687 0.808 0.731 (0.029) 0.827 (0.024)

MLP-1-A-100-S o AE 100% 0.746 0.694 0.713 (0.026) 0.845 (0.017)

MLP-2
hidden

layer sizes
(10,15,10)

MLP-2 x x 0.805 0.94 0.867 (0.019) 0.899 (0.017)
MLP-2-D-30 x Duplication 30% 0.797 0.907 0.845 (0.03) 0.891 (0.029)
MLP-2-D-50 x Duplication 50% 0.832 0.888 0.857 (0.021) 0.907 (0.017)
MLP-2-D-75 x Duplication 75% 0.846 0.846 0.845 (0.017) 0.91 (0.01)
MLP-2-D-100 x Duplication 100% 0.849 0.812 0.828 (0.032) 0.908 (0.007)
MLP-2-R-30 x Uniform random 30% 0.681 0.324 0.406 (0.134) 0.686 (0.084)
MLP-2-R-50 x Uniform random 50% 0.798 0.466 0.559 (0.129) 0.798 (0.065)
MLP-2-R-75 x Uniform random 75% 0.776 0.617 0.661 (0.11) 0.834 (0.041)

MLP-2-R-100 x Uniform random 100% 0.821 0.825 0.82 (0.027) 0.896 (0.018)
MLP-2-S-30 x SMOTE 30% 0.832 0.937 0.882 (0.013) 0.912 (0.013)
MLP-2-S-50 x SMOTE 50% 0.846 0.89 0.866 (0.011) 0.914 (0.015)
MLP-2-S-75 x SMOTE 75% 0.815 0.82 0.816 (0.031) 0.893 (0.028)

MLP-2-S-100 x SMOTE 100% 0.819 0.853 0.832 (0.025) 0.898 (0.029)
MLP-2-A-30 x AE 30% 0.8 0.932 0.859 (0.024) 0.895 (0.024)
MLP-2-A-50 x AE 50% 0.841 0.914 0.875 (0.02) 0.914 (0.009)
MLP-2-A-75 x AE 75% 0.814 0.925 0.863 (0.019) 0.901 (0.023)

MLP-2-A-100 x AE 100% 0.849 0.801 0.822 (0.027) 0.907 (0.016)
MLP-2-S o x 0.676 0.806 0.728 (0.02) 0.823 (0.02)

MLP-2-D-30-S o Duplication 10% 0.69 0.82 0.747 (0.025) 0.832 (0.011)
MLP-2-D-50-S o Duplication 30% 0.698 0.798 0.74 (0.025) 0.834 (0.023)
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Table A1. Cont.

Classification Model Dataset Score

Model
Type Model Name Scale

(0–1)
Oversampling

(Augmentation)
Sensitivity
(Recall) Precision F1 Score

(Std.)
AUROC

(Std.)

MLP-2
hidden

layer sizes
(10,15,10)

MLP-2-D-75-S o Duplication 50% 0.731 0.724 0.722 (0.036) 0.841 (0.015)
MLP-2-D-100-S o Duplication 100% 0.775 0.676 0.719 (0.036) 0.856 (0.011)
MLP-2-R-30-S o Uniform random 10% 0.707 0.524 0.589 (0.07) 0.794 (0.026)
MLP-2-R-50-S o Uniform random 30% 0.688 0.664 0.671 (0.051) 0.814 (0.024)
MLP-2-R-75-S o Uniform random 50% 0.755 0.709 0.726 (0.044) 0.851 (0.025)
MLP-2-R-100-S o Uniform random 100% 0.705 0.749 0.724 (0.036) 0.833 (0.02)
MLP-2-S-30-S o SMOTE 10% 0.685 0.797 0.732 (0.038) 0.827 (0.02)
MLP-2-S-50-S o SMOTE 30% 0.707 0.76 0.729 (0.037) 0.834 (0.017)
MLP-2-S-75-S o SMOTE 50% 0.714 0.718 0.712 (0.034) 0.833 (0.006)
MLP-2-S-100-S o SMOTE 100% 0.719 0.702 0.704 (0.031) 0.833 (0.012)
MLP-2-A-30-S o AE 10% 0.622 0.822 0.702 (0.063) 0.799 (0.034)
MLP-2-A-50-S o AE 30% 0.614 0.867 0.712 (0.052) 0.798 (0.038)
MLP-2-A-75-S o AE 50% 0.647 0.763 0.677 (0.036) 0.801 (0.033)

MLP-2-A-100-S o AE 100% 0.727 0.712 0.714 (0.04) 0.838 (0.015)

MLP-3
hidden

layer sizes
(500,100,10)

MLP-3 x x 0.809 0.915 0.856 (0.017) 0.898 (0.018)
MLP-3-D-30 x Duplication 30% 0.836 0.852 0.841 (0.034) 0.905 (0.014)
MLP-3-D-50 x Duplication 50% 0.763 0.874 0.806 (0.017) 0.871 (0.033)
MLP-3-D-75 x Duplication 75% 0.839 0.774 0.8 (0.053) 0.898 (0.016)
MLP-3-D-100 x Duplication 100% 0.817 0.802 0.799 (0.04) 0.89 (0.037)
MLP-3-R-30 x Uniform random 30% 0.907 0.457 0.58 (0.157) 0.835 (0.069)
MLP-3-R-50 x Uniform random 50% 0.815 0.491 0.55 (0.199) 0.765 (0.121)
MLP-3-R-75 x Uniform random 75% 0.6 0.721 0.477 (0.235) 0.688 (0.153)

MLP-3-R-100 x Uniform random 100% 0.696 0.713 0.594 (0.262) 0.76 (0.157)
MLP-3-S-30 x SMOTE 30% 0.81 0.873 0.835 (0.028) 0.895 (0.027)
MLP-3-S-50 x SMOTE 50% 0.787 0.895 0.834 (0.028) 0.885 (0.03)
MLP-3-S-75 x SMOTE 75% 0.719 0.824 0.719 (0.176) 0.838 (0.098)

MLP-3-S-100 x SMOTE 100% 0.851 0.672 0.746 (0.049) 0.89 (0.008)
MLP-3-A-30 x AE 30% 0.81 0.912 0.856 (0.019) 0.898 (0.021)
MLP-3-A-50 x AE 50% 0.778 0.912 0.833 (0.069) 0.882 (0.054)
MLP-3-A-75 x AE 75% 0.821 0.908 0.861 (0.018) 0.903 (0.016)

MLP-3-A-100 x AE 100% 0.822 0.8 0.801 (0.043) 0.892 (0.023)
MLP-3-S o x 0.636 0.799 0.7 (0.047) 0.803 (0.031)

MLP-3-D-30-S o Duplication 30% 0.67 0.782 0.718 (0.032) 0.819 (0.018)
MLP-3-D-50-S o Duplication 50% 0.704 0.758 0.724 (0.029) 0.832 (0.015)
MLP-3-D-75-S o Duplication 75% 0.717 0.666 0.686 (0.051) 0.828 (0.024)

MLP-3-D-100-S o Duplication 100% 0.751 0.662 0.698 (0.038) 0.843 (0.016)
MLP-3-R-30-S o Uniform random 30% 0.702 0.507 0.566 (0.108) 0.785 (0.068)
MLP-3-R-50-S o Uniform random 50% 0.71 0.486 0.564 (0.112) 0.781 (0.058)
MLP-3-R-75-S o Uniform random 75% 0.671 0.787 0.717 (0.032) 0.819 (0.03)

MLP-3-R-100-S o Uniform random 100% 0.714 0.744 0.711 (0.063) 0.831 (0.031)
MLP-3-S-30-S o SMOTE 30% 0.656 0.832 0.731 (0.04) 0.816 (0.017)
MLP-3-S-50-S o SMOTE 50% 0.704 0.671 0.681 (0.03) 0.822 (0.021)
MLP-3-S-75-S o SMOTE 75% 0.697 0.752 0.719 (0.032) 0.829 (0.019)
MLP-3-S-100-S o SMOTE 100% 0.697 0.685 0.689 (0.039) 0.822 (0.021)
MLP-3-A-30-S o AE 30% 0.582 0.777 0.654 (0.054) 0.776 (0.044)
MLP-3-A-50-S o AE 50% 0.663 0.737 0.681 (0.073) 0.805 (0.012)
MLP-3-A-75-S o AE 75% 0.63 0.876 0.73 (0.052) 0.808 (0.034)

MLP-3-A-100-S o AE 100% 0.709 0.702 0.697 (0.028) 0.828 (0.017)
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