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Abstract: To reveal the characteristics and environmental indications for the combination of the
grain size and magnetic susceptibility of coastal sediments, we provided a necessary basis for further
study on their genetic mechanisms. Based on the data of grain size and magnetic susceptibility of
the 36.10 m long core 07SR01 sediments in the Xiyang tidal channel of western South Yellow Sea,
we analyzed their variations and correlations and further revealed their environmental indications
and corresponding regional sedimentary evolution via the combination of the aforementioned
analysis results, the reinterpretation results of the sedimentary sequence and the age of core 07SR01
and shallow seismic profiles, and the findings of climate and glacial–eustatic cycles during Late
Quaternary. The three stages of the sedimentary evolution of the Xiyang tidal channel between
marine isotope stage (MIS) 7 and MIS 5 were summarized as follows: First is the stage of marginal
bank and riverbed developments in the tidal estuary under a relatively high sea level and strong
hydrodynamic conditions during MIS 7 (core section: 36.10–26.65 m). The sediments deposited in
this stage were mainly affected by the paleo-Changjiang River and characterized by a coarse grain
size (mean: 4.02 Φ) and relatively high magnetic susceptibilities (mean: 27.06 × 10−8 m3·kg−1), with
small fluctuations which were strongly and positively correlated with the sand component. Second is
the stage dominated by fluviolacustrine and littoral environments with the weak hydrodynamics
during MIS 6–5, in which the climate changed from cold and dry to warm and humid as the sea
level rose after a drop (core section: 26.65–15.77 m). The sediments deposited in this stage were
characterized by a fine grain size (mean: 5.27 Φ) and low magnetic susceptibilities with minor
variations (mean: 10.83 × 10−8 m3·kg−1) which were weakly and positively correlated with the
coarse silt component. Third is the stage of delta front in the tidal estuary with a relatively high sea
level and strong hydrodynamics during MIS 5 (core section: 15.77–0 m). The sediments deposited
in this stage were strongly influenced by the paleo-Yellow River and characterized by a relatively
coarse grain size (mean: 4.86 Φ), and high magnetic susceptibilities (mean: 37.15 × 10−8 m3·kg−1)
with large fluctuations which were weakly and positively correlated with the sand and coarse silt
components.

Keywords: grain size; magnetic susceptibility; environmental indication; Late Quaternary; South
Yellow Sea; Jiangsu coast

1. Introduction

As the most basic and main physical characteristics of sediments, grain size is mainly
affected by factors such as the transport medium, sediment dynamics, and provenance
and is very sensitive to changes in sedimentary environments. Therefore, the grain size
characteristics of sediments can be used as an important physical indicator and an effective
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proxy for discriminating the sedimentary environments [1–4]. The environments in which
the sediments were formed can be well revealed on the basis of their grain size composition,
parameters and illustrations [5,6]. In estuarine coastal areas, grain size has been widely used
as an important parameter indicative of dynamic sedimentary environments. For example,
Zhou et al. and Li et al. [7,8] analyzed and compared the sediment grain sizes of multiple
column samples from the mouths of the Changjiang River and Yalujiang River, respectively,
showing that variations in sediment grain size parameters are directly related to sediment
dynamics, and larger changes in grain size parameters (sorting coefficient, skewness, and
kurtosis) reflect more turbulent sedimentary environments, whereas smaller changes reflect
more stable sedimentary environments. Deng et al. [4] studied the relationship between
the grain size characteristics of core sediments and hydrodynamics in the Changjiang River
estuary since the Last Glacial Period, showing that sedimentary environments with strong
hydrodynamic conditions and large disturbances tend to have coarser sediment grain sizes,
greater variability in sorting, unstable concentration degree of particulate components, and
sharp peak shapes. Similarly, Pan et al. [9] conducted an elaborate analysis and comparison
using the grain size data of core sediments since Late Quaternary in the Qiantangjiang
River, showing that the grain size parameters under stronger hydrodynamic conditions are
more variable with coarser grain sizes, poorer sorting, and narrower peaks in the frequency
distribution curves.

The magnetic susceptibility of sediments can reflect the magnetic characteristics of
materials in nature and can be used to analyze the spatial–temporal variations in magnetic
minerals and their indications to provide information regarding environmental changes.
Moreover, the measurement of magnetic susceptibility has the advantages of being fast
and easy, economical, highly repeatable, non-destructive, and portable for the instru-
ment [10,11]. Therefore, magnetic susceptibility rapidly became an important proxy for
environmental changes, and it has received wide attention and been applied in the envi-
ronmental studies of loess, lakes, and deep seas [11], while it has been applied later in the
studies of estuaries, coasts, and deltas, where the sea–land interactions and sedimentary
environments are complex and varied, but good research results have also been achieved.
For example, Jia et al. and Zhang et al. [12,13] found that the magnetic susceptibility of
estuarine core sediments can indicate the strength of hydrodynamics to a certain extent,
indirectly reflecting the evolution of sedimentary environments, and a high value of mag-
netic susceptibility indicates stronger hydrodynamics, while a low value indicates weaker
hydrodynamics. Ge [14] studied the magnetic susceptibility of core QC2 sediments in the
South Yellow Sea, showing that the variation characteristics of magnetic susceptibility basi-
cally reflect the variation pattern of climatic environments, i.e., the magnetic susceptibility
increased relatively in the warm and humid period and decreased relatively in the cold
and dry period. Based on the magnetic susceptibility study of four cores from the inner
continental shelf of the Hong Kong Special Administrative Region, Yim et al. [15] argued
that the magnetic susceptibility can provide the means of distinguishing between seabed
sediments affected by shipping contamination and identifying the palaeosols formed by
the subaerial exposure of marine isotope stage (MIS) 5 marine deposits during MIS 4–2.
Meanwhile, the increase in magnetic susceptibility was explained by the development of
acid–sulphate soils through the oxidation of pyrite into iron oxides and hydroxides [15].
Through a correlation analysis of the magnetic susceptibility of core LZ908 sediments and
Quaternary sea level changes in the south coast of the Bohai Sea, Yao [16] found that the
high magnetic susceptibilities correspond to the period of high sea levels, while the low
magnetic susceptibilities correspond to the period of low sea levels.

Meanwhile, a very close correlation between sediment grain size and magnetic sus-
ceptibility has also been found and explored a lot in depth in previous studies [17–21].
Magnetic susceptibility is influenced by a variety of factors (sediment dynamics, early
diagenesis, organic matter content, etc.), and these factors are also directly or indirectly
influenced by climatic and environmental conditions [22–25]. Therefore, the correlation
between grain size and magnetic susceptibility varies in different spatial and temporal
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environments, and further exploration of the two proxies’ correlation will, to a certain
extent, help to identify the physical significance and variation process of magnetic suscep-
tibility, as well as the paleo-environmental information embedded in the grain size and
magnetic susceptibility, which is of great significance for revealing regional environmental
changes. Since Late Quaternary, the middle Jiangsu coast has been under the long-term
and continuous subsidence. Meanwhile, both the Changjiang River and the Yellow River
have affected this area in different spatial and temporal combinations, so this area is very
sensitive to sea level changes and sea–land environmental evolutions, and it is an ideal
area for the study of deposits originated by the Late Quaternary river–sea interaction
(Figure 1). Based on the data of the grain size and magnetic susceptibility of the 36.10 m
long core 07SR01 sediments of the Xiyang tidal channel in the middle Jiangsu coast, western
South Yellow Sea, we analyzed their variations and correlations and then further revealed
their environmental indications and corresponding regional sedimentary evolution via
the combination of the aforementioned analysis results, the reinterpretation results of
the sedimentary sequence and age of core 07SR01 and shallow seismic profiles, and the
findings of the climate and glacial–eustatic cycles of the Northern Hemisphere during Late
Quaternary. This study could deepen the understanding of sedimentary evolution of the
middle Jiangsu coast since Late Quaternary and also provide a necessary basis for further
study on the genetic mechanisms of environmental indications for the combination of the
grain size and magnetic susceptibility of coastal sediments.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 3 of 19 
 

 

fluenced by climatic and environmental conditions [22–25]. Therefore, the correlation be-
tween grain size and magnetic susceptibility varies in different spatial and temporal envi-
ronments, and further exploration of the two proxies’ correlation will, to a certain extent, 
help to identify the physical significance and variation process of magnetic susceptibility, 
as well as the paleo-environmental information embedded in the grain size and magnetic 
susceptibility, which is of great significance for revealing regional environmental changes. 
Since Late Quaternary, the middle Jiangsu coast has been under the long-term and con-
tinuous subsidence. Meanwhile, both the Changjiang River and the Yellow River have 
affected this area in different spatial and temporal combinations, so this area is very sen-
sitive to sea level changes and sea–land environmental evolutions, and it is an ideal area 
for the study of deposits originated by the Late Quaternary river–sea interaction (Figure 
1). Based on the data of the grain size and magnetic susceptibility of the 36.10 m long core 
07SR01 sediments of the Xiyang tidal channel in the middle Jiangsu coast, western South 
Yellow Sea, we analyzed their variations and correlations and then further revealed their 
environmental indications and corresponding regional sedimentary evolution via the 
combination of the aforementioned analysis results, the reinterpretation results of the sed-
imentary sequence and age of core 07SR01 and shallow seismic profiles, and the findings 
of the climate and glacial–eustatic cycles of the Northern Hemisphere during Late Qua-
ternary. This study could deepen the understanding of sedimentary evolution of the mid-
dle Jiangsu coast since Late Quaternary and also provide a necessary basis for further 
study on the genetic mechanisms of environmental indications for the combination of the 
grain size and magnetic susceptibility of coastal sediments. 

 
Figure 1. Remote sensing imageries of the Xiyang tidal channel in the middle Jiangsu coast, western 
South Yellow Sea and its adjacent regions, and locations of sedimentary cores and track lines of 
shallow seismic profiles mainly studied in this paper; the blue line segments show the track lines of 
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Figure 1. Remote sensing imageries of the Xiyang tidal channel in the middle Jiangsu coast, western
South Yellow Sea and its adjacent regions, and locations of sedimentary cores and track lines of
shallow seismic profiles mainly studied in this paper; the blue line segments show the track lines of
shallow seismic profiles; the cyan round dots show the locations of sedimentary cores.

2. Regional Settings

Regarding the regional geology, the northern part of the study area belongs to the
Yaosha Sag in the Yanfu Depression, and the southern part belongs to the Xiaohai Uplift.
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Meanwhile, both the Yanfu Depression and the Xiaohai Uplift belong to the basin of the
northern Jiangsu–southern South Yellow Sea on the northern Yangtze Paraplatform [26].
Regarding the Yangtze Paraplatform on the Jiangsu coast, a large-scale Late Cretaceous–
Cenozoic continental sedimentary basin based on the Paleozoic carbonate rocks since the
Indosinian–Yanshan Movement has been discovered, and the loose Quaternary strata with
the interbedded sediments of marine and continental facies are up to ca. 250 m thick in the
study area [26]. Regarding the regional landforms, the study area is located on the Radial
Sand Ridge Field (RSRF), which is off the Jiangsu coast, between the abandoned Yellow
River delta and the Changjiang River estuary, and on the inner shelf of the western South
Yellow Sea, with a length of ca. 200 km from north to south and a width of ca. 140 km from
east to west. The RSRF is a large-scale combination of seafloor landforms on the modern
coastal zone and inner shelf and consists of more than 70 sand ridges and corresponding
tidal channels, which are generally spread to the sea in a folded fan-like manner with
the Jianggang as the apex, and the ridges and grooves are distributed one after another,
mostly with a water depth of 0–25 m, seldom exceeding 40 m [26,27]. The Xiyang tidal
channel is located on the northwestern part of the RSRF, with the tidal flats of the middle
Jiangsu coast on the west side, the Dongsha sand ridge which is the largest sand island
of the RSRF on the east side, and the Liangyuesha sand ridge adjacent to the north side
of the Dongsha sand ridge, and it extends in the direction of NNW-SSE, with a width of
ca. 12–25 km and a length of ca. 80 km. The Xiyang tidal channel is divided into the east
and west sub-channels by the Xiaoyinsha and Piaoersha sand ridges (Figure 1). The wave
climate in the Xiyang tidal channel is dominated by wind waves and is not strong, with the
dominated wave direction being N and the strongest wave direction being NE throughout
the year. Affected by the regular semidiurnal tide, the average tide range in the Xiyang
tidal channel is ca. 3.5 m. Under the control of the rotating tidal wave system in the South
Yellow Sea, the strong reciprocating tidal current is dominant, and the speeds of the rising
and falling tidal currents are both relatively large. However, the flow rate of the falling tide
is larger than that of the rising tide, and the turnover time of the rising and falling tidal
currents is very short, so it is unfavorable for the diffusion and sedimentation of sediments
and beneficial for the maintenance of the deep channel with the maximal water depth
exceeding 40 m [26–29]. In recent years, the Xiyang tidal channel has continued to widen
and deepen by scouring, which is very conducive to the stable development of coastal port
channels [30].

3. Materials and Methods
3.1. Sample Collection

The core 07SR01 (location: 33◦15′50′′ N, 120◦53′46′′ E; in situ-measured water depth:
22 m) studied in this paper was drilled within the west sub-channel of the Xiyang tidal
channel of the RSRF by Nanjing University in December 2007. The diameter and drilling
depth of core 07SR01 is 71 mm and 36.1 m, respectively, with a total core recovery of ca.
70% (Figure 1). The core was split along the longitudinal direction, with one half used for
archival retention and the other half as a working core. The sampling for the grain size
measurement was basically carried out at 10 cm intervals, and a total of 229 samples were
obtained. The sampling for the magnetic susceptibility measurement was basically carried
out at 20 cm intervals, and a total of 104 samples were obtained. Of these, 90 samples of
grain size and magnetic susceptibility were sampled at the same depth.

3.2. Laboratory Analysis

The grain size measurement was completed in the Key Laboratory of Coast and
Island Development of the Ministry of Education, Nanjing University, and the samples
were measured using a Malvern Mastersizer 2000 laser particle size analyzer (Malvern
Instruments Ltd., Worcestershire, UK). The range of the measured grain sizes was from
0.02 to 2000 µm, and the error of repeated measurements was generally <2%. All samples
were pre-treated and tested in accordance with the methods and procedures required by
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the Technical Regulations for Marine Bottom Sediment Investigation developed by the
908 Special Project of the State Oceanic Administration of China [31]. Meanwhile, each
sample in the pre-treatment stage was the mixed and homogeneous one with a weight of
2 g. After obtaining the grain size distribution data of samples, four grain size parameters
(i.e., mean grain size, sorting coefficient, skewness, and kurtosis) were calculated using the
GRADISTAT software according to the formulas for graphic measures introduced by Folk
and Ward [32].

The magnetic susceptibility measurement was carried out in the Laboratory of Earth
Surface Process and Environment of Nanjing University. After the samples were dried
at a low temperature (37 ◦C), dispersed (without damaging natural particles), and mixed
homogeneously, they were weighed at ca. 10 g and loaded into a special test box of 10 cm3,
and then the bulk magnetic susceptibility (10−5 (SI)) at a lower frequency (470 Hz) of the
samples was measured using a Bartington MS2 magnetic susceptibility system with the
MS2B dual-frequency sensor (Bartington Instruments Ltd., Witney, UK). In order to ensure
the measurement accuracy, each sample was measured 5 times, including 3 times for the
test box containing sediments (values κ1–κ3) and 2 times for the air background (values b1,
b2), and then the mass magnetic susceptibility (χ, unit: 10−8 m3·kg−1) was calculated by
the formula “χ = 10[(κ1 + κ2 + κ3)/3 − (b1 + b2)/2]/m”, and the value “m” is the sample
mass (unit: g).

4. Results
4.1. General Characteristics and Correlations of Variations in Grain Size and Magnetic
Susceptibility of Core 07SR01 Sediments

For the core 07SR01 sediments, the average of mean grain size is 4.76 Φ, ranging
from 2.70 to 6.66 Φ. The sorting coefficients range from 0.55 to 3.03, with a mean of 1.71,
indicating the sorting from relatively good to bad, and the samples with relatively poor
sorting account for an absolute predominance. The values of skewness range from −0.20
to 0.64, with a mean of 0.26 and a relatively wide variation range. There are four skewness
classes from negative to extremely positive, and the samples with positive and extremely
positive skewness predominate. The values of kurtosis range from 0.69 to 2.52, with a mean
of 1.14. There are four kurtosis classes from broad to very narrow, but the vast majority
fall into the medium and narrow categories (Table 1). In addition, the classification of
grain size for core 07SR01 sediments was carried out according to the Φ-value criterion
(i.e., clay: >8 Φ, silt: 4–8 Φ, and sand: <4 Φ) [31]. As shown in Figure 2, the grain size
composition of the whole-core sediments is dominated by silt, with contents ranging from
2.92% to 84.31% (mean: 51.75%). The clay content is the lowest, ranging from 0% to 26.24%,
with a mean of 8.25%. The sand content lies in between, with a wide variation range and
the highest and lowest value being 97.07% and 1.73%, respectively (mean: 40.00%). It
is worth noting that the mean grain size shows a mirror-symmetric trend with the sand
content and a consistent trend with the silt content, while the peaks and valleys change
markedly and continuously, presuming that the dynamics for sand and silt transportation
vary obviously. The variations in magnetic susceptibility are not as strong as the grain size,
probably reflecting the fact that the controlled factors and environmental indications of the
magnetic susceptibility variation are significantly different from those of the grain size.

The magnetic susceptibilities of core 07SR01 sediments vary from 5.8 × 10−8 to
57.3 × 10−8 m3·kg−1 (mean: 27.0 × 10−8 m3·kg−1) with obvious peaks and valleys, which
correspond well with the content curves of the related grain size component (Figure 2). The
variation curve of magnetic susceptibility shows that there is a fluctuating upward and then
downward trend with several relatively small fluctuations in the drilling depth between
36.10 m and 26.65 m, ranging from 5.8 × 10−8 to 42.2 × 10−8 m3·kg−1 and with a mean of
27.3 × 10−8 m3·kg−1, which is similar to the whole-core average. A sudden decrease in
and corresponding minimum (5.8 × 10−8 m3·kg−1) of magnetic susceptibilities appears in
the drilling depth of 27.07 m. The core section in the drilling depth between 26.65 m and
15.77 m is the section with the lowest magnetic susceptibilities of the whole core (variation
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range: (6.4–22.1) × 10−8 m3·kg−1, mean: 10.6 × 10−8 m3·kg−1). The variations in magnetic
susceptibilities in this section are very small, except that a small peak and a sudden increase
and corresponding maximum (22.1 × 10−8 m3·kg−1) appear in the drilling depth of 21.61 m
and 15.92 m, respectively. The core section in the drilling depth between 15.77 m and 0 m is
the section with the highest magnetic susceptibilities of the whole core (variation range:
(10.2–57.3) × 10−8 m3·kg−1, mean: 37.4 × 10−8 m3·kg−1). The fluctuations in magnetic
susceptibilities in this section are very significant, with the largest one in the drilling depth
between 3.79 m and 0.9 m.

Table 1. Grain size parameters of core 07SR01 sediments in different sections.

Depth (m) Mean Grain
Size (Φ)

Sorting
Coefficient Skewness Kurtosis Sample

Quantity

0–36.10
(Whole core)

Minimum 2.70 0.55 −0.20 0.69
229Maximum 6.66 3.03 0.64 2.52

Mean 4.76 1.71 0.26 1.14

26.65–36.10
(Tidal estuarine marginal bank and

riverbed facies)

Minimum 2.70 0.55 0.02 0.71
65Maximum 5.81 2.35 0.64 2.53

Mean 4.02 1.56 0.35 1.32

21.67–26.65
(Freshwater lacustrine swamp facies)

Minimum 2.83 1.51 −0.12 0.75
22Maximum 6.50 2.69 0.50 1.59

Mean 4.66 1.95 0.23 1.08

20.50–21.67
(River floodplain facies)

Minimum 4.78 1.54 0.11 0.88
11Maximum 6.24 1.94 0.48 1.42

Mean 5.48 1.71 0.32 1.09

15.77–20.50
(Coastal marsh facies)

Minimum 4.14 1.65 −0.15 0.70
36Maximum 6.55 3.03 0.53 1.24

Mean 5.66 1.98 0.12 0.87

0–15.77
(Tidal estuarine delta front facies)

Minimum 2.88 0.94 −0.20 0.69
95Maximum 6.66 2.82 0.45 1.68

Mean 4.86 1.65 0.25 1.14

In order to analyze the relationships between the magnetic susceptibilities and con-
tents of different grain size components of core 07SR01 sediments, we divided sediment
grain size into five components, i.e., clay (>8 Φ), fine silt (6–8 Φ), medium silt (5–6 Φ),
coarse silt (4–5 Φ), and sand (<4 Φ). And then, the correlation coefficients of the mag-
netic susceptibilities and contents of these five grain size components were calculated
and listed in Table 2. For the core in general, the magnetic susceptibilities are positively
correlated with the coarse grained components (coarse silt and sand), with a significantly
better positive correlation with the sand component, suggesting that the magnetic minerals
mainly occur in the coarse-grained sediments. Core 07SR01 can be divided into three
sections based on the variation characteristics of magnetic susceptibilities (Figure 2), in
which the lower section (26.65–36.10 m) is obviously positively correlated with the sand
component, the middle section (15.77–26.65 m) is positively correlated with the coarse
silt component, and the upper section (0–15.77 m) is similar to the whole section, i.e., the
magnetic susceptibilities are positively correlated with the coarse-grained components
(coarse silt and sand).
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Table 2. Correlation coefficients between grain size and magnetic susceptibility of core 07SR01
sediments in different sections.

Core Section
(Depth or Sedimentary Facies)

Grain Size (Φ)

>8 6–8 5–6 4–5 <4

0–36.10 m −0.544 ** −0.407 ** −0.207 * 0.126 0.280 **

26.65–36.10 m −0.600 ** −0.514 ** −0.633 ** −0.817 ** 0.712 **

15.77–26.65 m 0.018 −0.024 −0.025 0.145 * −0.030

0–15.77 m −0.500 ** −0.304 * −0.087 0.118 0.254 *

Tidal estuarine marginal bank and
riverbed facies −0.600 ** −0.514 ** −0.633 ** −0.817 ** 0.712 **

Freshwater lacustrine swamp facies 0.084 0.141 * 0.187 * 0.164 * −0.163 *

River floodplain facies −0.935 ** −0.690 ** −0.028 0.620 ** 0.581 **

Coastal marsh facies −0.058 −0.112 * −0.177 * 0.066 0.109

Tidal estuarine delta front facies −0.500 ** −0.304 * −0.087 0.118 0.254 *

Notes: The correlation coefficients marked “*” and “**” have passed the significance test on the level of p < 0.05
and p < 0.01, respectively.

4.2. Characteristics and Correlations of Variations in Grain Size and Magnetic Susceptibility of
Core 07SR01 Sediments in Different Sedimentary Facies

Xia et al. [28,29,33,34] conducted some detailed analyses and delineations of sedimen-
tary facies of core 07SR01 based on the results of sediment component, color, sedimentary
texture and structure, macro- and micro-fossils, and other indicators. Based on the previous
understanding, this paper revisited the identification and delineation of the sedimentary
facies of core 07SR01 and revised and improved them, combining them with the character-
istics of vertical variations of magnetic susceptibility and grain size and the interpretation
results of cores and shallow seismic profiles for the estuarine delta facies [35–38]. With the
exception of core Section 1, this paper’s understanding of the sedimentary facies of the rest
of the core sections (Sections 2–5) is consistent with that of the previous authors [33,34]. The
sedimentary and seismic characteristics of Section 1 (abundant tidal beddings; a complex
alternation of clinoforms; and chaotic to hummocky reflections with cut-and-fill geometries;
see reference [33,34] for details) are consistent with those of the typical tidal estuarine delta
front identified in the cores and shallow seismic profiles of other regions (Figures 3–5, see
Figure 1 for the locations of track lines). Meanwhile, the analysis results show that varia-
tions in the magnetic susceptibility and grain size of sediments in this section correspond
well with the sediment dynamics of the estuarine area (see Section 5.2 below for details).
Therefore, the revised sedimentary facies sequence of core 07SR01 (Figure 2) is as follows:
tidal estuarine delta front facies (0–15.77 m), coastal marsh facies (15.77–20.50 m), river
floodplain facies (20.50–21.67 m), freshwater lacustrine swamp facies (21.67–26.65 m), and
tidal estuarine marginal bank and riverbed facies (26.65–36.10 m).

The variation characteristics of grain size parameters and magnetic susceptibilities
and grain size frequency distribution curves in different sedimentary facies are shown in
Figures 2 and 6 and Table 1, and it can be found that there are variations in each parameter
and grain size frequency distribution curve for different sedimentary facies with obvious
differences. In addition, the magnetic susceptibility has different variation mechanisms
and various correlations with sediment grain size in different regions and sedimentary
environments [39]. Therefore, the correlation coefficients of magnetic susceptibility and
grain size in the different sedimentary facies of core 07SR01 are calculated and listed in
Table 2. The variation characteristics of each parameter and the frequency distribution
curves of grain size and the correlations between magnetic susceptibility and grain size in
different sedimentary facies are specified as follows.
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4.2.1. Tidal Estuarine Marginal Bank and Riverbed Facies (Section 5, 26.65–36.10 m)

The sediments are relatively coarse and mainly composed of sands, with the mean
grain size ranging from 2.70 to 5.81 Φ (mean: 4.02 Φ), which are the smallest Φ-values in the
whole core. The sorting ranges from relatively good to poor (sorting coefficients ranging
from 0.55 to 2.35, with a mean of 1.56). The skewness ranges from nearly symmetric to
extremely positive skewness (the values of skewness ranging from 0.02 to 0.64, with a mean
of 0.35), and most of the samples exhibit extremely positive skewness. The kurtosis is from
broad to very narrow (the values of kurtosis range from 0.71 to 2.53, with a mean of 1.32
which belongs to a narrow peak). The frequency distribution curves show that the main
peak with extremely positive skewness is prominent and located near 3 Φ, with a secondary
peak or thin tail appearing near 6 Φ. The magnetic susceptibilities are relatively high,
ranging from 5.81 × 10−8 to 42.16 × 10−8 m3·kg−1 (mean: 27.06 × 10−8 m3·kg−1), which
are strongly and positively correlated with the grain size component of <4 Φ (correlation
coefficient: 0.712).

4.2.2. Freshwater Lacustrine Swamp Facies (Section 4, 21.67–26.65 m)

The sediment grain sizes vary widely and show a decrease in sand content and an
increase in silt and clay content, with the mean grain size ranging from 2.83 to 6.50 Φ
(mean: 4.66 Φ). The sorting ranges from relatively poor to poor (the sorting coefficients
range from 1.51 to 2.69, with a mean of 1.95). The skewness varies in a wide range, from
negative to extremely positive (the values of skewness ranging from −0.12 to 0.50, with a
mean of 0.23), and the vast majority of samples exhibited positive skewness. The kurtosis
ranges from wide to very narrow (the values of kurtosis range from 0.75 to 1.59, with a
mean of 1.08 which belongs to a medium peak). The frequency distribution curves show
that a single main peak with positive skewness is located near 4.25 Φ. The magnetic
susceptibilities are weakly and positively correlated with the grain size component of
>4 Φ (correlation coefficient: 0–0.2), which is related to the reduction in coarse-grained
components in sedimentary environments. The magnetic susceptibilities of this section are
the lowest among all sedimentary facies and have the smoothest variation trend, ranging
from 8.79 × 10−8 to 11.08 × 10−8 m3·kg−1 (mean: 9.65 × 10−8 m3·kg−1).

4.2.3. River Floodplain Facies (Section 3, 20.50–21.67 m)

The sediments become finer and are dominated by silt, showing a decrease in sand
content and an increase in clay and silt content, with the mean grain size ranging from 4.78
to 6.24 Φ (mean: 5.48 Φ). The sorting ranges relatively poor (sorting coefficients ranging
from 1.54 to 1.94, with a mean of 1.71). The skewness ranges from nearly symmetric to
extremely positive (the values of skewness ranging from 0.11 to 0.48, with a mean of 0.32),
with positive skewness predominating. The kurtosis ranges from wide to very narrow
(the values of kurtosis range from 0.88 to 1.42, with a mean of 1.09 which belongs to a
medium peak). The frequency distribution curves show that a single main peak with
positive skewness is located near 4.75 Φ. The magnetic susceptibilities are relatively low,
ranging from 6.46 × 10−8 to 19.39 × 10−8 m3·kg−1 (mean: 12.04 × 10−8 m3·kg−1), which
are strongly and positively correlated with the grain size component of <5 Φ (correlation
coefficient: ~0.6).

4.2.4. Coastal Marsh Facies (Section 2, 15.77–20.50 m)

The sediments are still dominated by silt, showing a decrease in sand content and
an increase in clay and silt content, with the mean grain size ranging from 4.14 to 6.55 Φ
(mean: 5.66 Φ). The sorting is from relatively poor to poor (sorting coefficients ranging from
1.65 to 3.03, with a mean of 1.98). The skewness varies in a wide range, from negative to
extremely positive (the values of skewness ranging from −0.15 to 0.53, with a mean of 0.12),
with positive skewness predominating. The kurtosis is from wide to narrow (the values
of kurtosis ranging from 0.70 to 1.24, with a mean of 0.87 which belongs to a broad peak).
The frequency distribution curves show that a single main peak with positive skewness
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is located near 4.75 Φ, and there is an obvious inflection point near 8 Φ. The magnetic
susceptibilities are relatively low, ranging from 7.46 × 10−8 to 20.04 × 10−8 m3·kg−1 (mean:
10.79 × 10−8 m3·kg−1), which are weakly and positively correlated with the grain size
component of <5 Φ (correlation coefficient: ~0.1).

4.2.5. Tidal Estuarine Delta Front Facies (Section 1, 0–15.77 m)

The sediments become coarser, showing an increase in sand content and a decrease in
clay and silt content, with the mean grain size ranging from 2.88 to 6.66 Φ (mean: 4.86 Φ).
The sorting is from moderate to poor (sorting coefficients ranging from 0.94 to 2.82, with a
mean of 1.65). The skewness varies in a wide range, from negative to extremely positive
(the values of skewness ranging from −0.20 to 0.45, with a mean of 0.25). The kurtosis is
from broad to very narrow (the values of kurtosis ranging from 0.69 to 1.68, with a mean
of 1.14 which belongs to a narrow peak). The frequency distribution curves are similar to
those of Section 5, with a prominent main peak located near 3.75 Φ and a secondary peak or
thin tail appearing near 6.5 Φ. The magnetic susceptibilities of this section are the highest
among all sedimentary facies and have the most volatile variation trend, ranging from
10.21 × 10−8 to 57.25 × 10−8 m3·kg−1 (mean: 37.15 × 10−8 m3·kg−1), which are weakly
and positively correlated with the grain size component of <5 Φ (correlation coefficient:
0.1–0.3).

5. Discussion
5.1. Chronological Framework of Core 07SR01 Sediments

More than a decade ago, Xia et al. [28,29,33] put forward a chronological framework
of core 07SR01 sediments based on four selected “reliable” AMS 14C dates and the curve
of global sea level changes. The results show that from top to bottom, the first stiff mud
layer of continental facies (Sections 3 and 4) should be formed in MIS 2, and the coastal
marsh deposits (Section 2) which overlay on the first stiff mud layer correspond to the
transgression boundary layer of MIS 1 [28,29,33]. Accordingly, Sections 1 and 5 (original
interpretation: tidal sand ridge and channel, coastal barrier island, respectively) should be
formed in MIS 1 and MIS 3, respectively [28,29,33]. In recent years, Xia et al. [34] rethought
the shallow sedimentary sequence and its evolution of the Xiyang tidal channel in the RSRF.
The results show that the chronological framework of core 07SR01 sediments established by
previous studies is erroneous, and the second stiff mud layer (Sections 3 and 4, which may
be formed in MIS 4 or earlier) was mistakenly treated as the first stiff mud layer (which
should be formed in MIS 2). Furthermore, the main body of core 07SR01 should be the Late
Pleistocene deposits, and the first stiff mud layer is mostly missing because of the strong
tidal current erosion [34]. Accordingly, Sections 1, 2, and 5 should be formed in MIS 3, MIS
3, and MIS 5, respectively [34].

In this paper, based on the existing understandings of the shallow sedimentary se-
quence and age of the Xiyang tidal channel, we completed further correlations of the
shallow sedimentary sequences and ages of key cores in the Xiyang tidal channel and
its adjacent area on the northwest side (Figure 7, see Figure 1 for the locations of the
cores) and reconstructed again the chronological framework of core 07SR01 sediments
as follows: Section 5 (36.10–26.65 m): MIS 7, Sections 4–2 (26.65–15.77 m): MIS 6–5, and
Section 1 (15.77–0 m): MIS 5 (Figures 2 and 7). In addition, the topmost part of Section
1 (0–0.12 m) was attributed to the modern tidal channel lag deposits. This age inference
was based on four aspects as follows: (1) More recent studies show that the 14C dating
technique has an obvious limitation regarding the dating of relatively old (>30 ka BP)
samples and may significantly underestimate the ages of sediments for samples older than
30 ka BP because of the contamination of young carbons [40–45]. Consequently, the general
inversion and disorder of the AMS 14C dates of core 07SR01 sediments may be caused
by sediment erosion–redeposition and contamination under the strong tidal sediment
dynamics. Moreover, the majority of the AMS 14C dates are >30 ka BP or exceed the upper
limit of AMS 14C dating and therefore have large errors and are not suitable for direct
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adoption. (2) In the section corresponding to Section 1, all the 14C dates (sixteen) of these
cores range from ca. 30 to >43.5 ka BP, except for three dates, while all the quartz OSL
dates (six) range from ca. 60 to ca. 100 ka except for one date, and half of them have
saturated OSL signals (equivalent dose (De) >200 Gy, the same below), indicating probable
age underestimations [33,46–48]. (3) In the section corresponding to Sections 2–4, all the 14C
dates (twelve) of these cores range from ca. 34 to >43.5 ka BP, except for three dates, while
one quartz OSL date is 94.7 ± 8.5 ka with saturated OSL signals, also indicating probable
age underestimations [33,47,48]. (4) In the section corresponding to Section 5, core 07SR01
yields two AMS 14C dates which are both >34 ka BP, core JC-1202 yields three quartz OSL
dates ranging from 144 to 211 ka, and core JSWZK03 yields five dates, with the quartz OSL
dates (four) ranging from >134.2 to >170 ka and the AMS 14C date greater than 43.5 ka
BP [33,47,48]. Moreover, the quartz OSL signals in all samples of this section are saturated,
indicating that these dates are presumably underestimated. On the basis of the above four
aspects, it can be further inferred that in core 07SR01, the strata of the first continental facies
and marine facies formed in MIS 4–2 and MIS 1, respectively, are missing because of both
the strong tidal current scouring and anthropogenic activities.
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5.2. Environmental Indications for Combination of Grain Size and Magnetic Susceptibility of Core
07SR01 Sediments and Corresponding Regional Sedimentary Evolution

Variations in the grain size and magnetic susceptibility of sediments in the river–sea
interaction area could indicate environmental changes [4–9,12–16,50]. In addition, the above
analyses show that the grain size and magnetic susceptibility of core 07SR01 sediments
responded well to the changes in sedimentary environments. Therefore, combining this
with the reinterpretation results of the sedimentary sequence and age of core 07SR01 and
shallow seismic profiles, as well as the findings of the climate and glacial–eustatic cycles of
the Northern Hemisphere during Late Quaternary [49,51], the environmental indications
for the combination of the grain size and magnetic susceptibility of core 07SR01 sediments
and the corresponding sedimentary evolution of the Xiyang tidal channel between MIS 7
and MIS 5 can be divided into the following three stages.

5.2.1. Stage 1 (MIS 7, Section 5: 36.10–26.65 m)

The sediments deposited in this stage are coarse and dominated by sand with regard
to grain size composition, while the content of silt and clay is very low. The fluctuations
in sorting, skewness, and kurtosis are large, and the frequency distribution curves exhibit
a narrow peak with extremely positive skewness, dragging a thin tail, which reflects the
strong hydrodynamic conditions and tidal current influence [52]. The magnetic susceptibil-
ities are relatively high and significantly fluctuating, which is related to the fact that the
magnetic minerals are mainly enriched in the coarse-grained components and is further
indicative of the tidal estuarine marginal bank and river bed environments under the high
sea level and the influence of relatively strong hydrodynamics during the warm period of
MIS 7. The results of previous studies show that the Changjiang River-derived sediments
are relatively coarse in grain size and relatively high in magnetic susceptibility, and the
magnetic minerals are mainly enriched in the coarse-grained sediments [12,13,20]. The
characteristics of the grain size and magnetic susceptibility of core 07SR01 sediments in this
stage are similar to the above-mentioned features. Meanwhile, the contents of carbonate
minerals (i.e., dolomite, vaterite, and calcite, which could serve as a proxy of the Yellow
River’s impact) in this stage are relatively low [33]. Moreover, the study area was located
in the estuarine area of the paleo-Changjiang River at that time [53]. Consequently, it is
assumed that the study area was mainly affected by the paleo-Changjiang River-derived
sediments in this stage.

5.2.2. Stage 2 (MIS 6–5, Sections 4–2: 26.65–15.77 m)

Based on the variation characteristics of the magnetic susceptibility and grain size of
sediments and the sedimentary facies, this stage can be further subdivided into Stage 2-1
(26.65–20.50 m) and Stage 2-2 (20.50–15.77 m). In Stage 2-1, the grain size composition of
sediments was refined, and the content of sand and silt decreased and increased sharply,
respectively, while the content variations in clay were not obvious. The fluctuations in
sorting became smaller, the skewness changed from extremely positive to positive, and the
kurtosis became wider. The magnetic susceptibility stayed at a low level and its variations
were quite smooth, with the lowest values in the whole core, and this was related to
the reduction in coarse sediment input in sedimentary environments, indicating that the
hydrodynamic conditions in this stage were weakened and stabilized compared with those
in Stage 1, and both the sea level and air temperature decreased, corresponding to the
environments of freshwater lacustrine swamp and river floodplain in the context of the
cold–dry climate and sea level fall in MIS 6. The sediments in Stage 2-2 continued to become
finer, and the content of sand and silt continued to decrease and increase, respectively,
while the content of clay increased significantly. The sorting fluctuated significantly once
again, and the characteristics of double skewness predominated by positive skewness
reflect the alternate deposition of coarse and fine sediment components in the context
of enhanced hydrodynamic conditions. The inflection point at the fine-grained end of
the frequency distribution curve is obvious, which is probably due to the changes in
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sedimentary dynamic processes and the influence of seawater [4,6]. In addition, the
magnetic susceptibility, although still at a low level, began to fluctuate, which further
indicates that the hydrodynamic conditions in Stage 2-2 were enhanced compared with
those in Stage 2-1, and the sea level and air temperature increased, corresponding to the
coastal marsh environments in the context of the transition from MIS 6 to MIS 5 and
the marine transgression of MIS 5. Overall, the sediments in Stage 2 became finer, with
slightly poorer but more stable sorting, predominantly positive skewness, and broader
kurtosis. Moreover, the frequency distribution curves showed the broad peak with positive
skewness moving toward the fine-grained end, and the magnetic susceptibilities were
relatively low and stable. All of these were indicative of the low-energy, stable and low-
sea-level environments, in which both the oxidability and reducibility were once relatively
strong, dominated by the deposits of terrestrial and coastal marsh facies, corresponding to
the period of MIS 6–5 that changed from cold–dry to warm–moist climatic conditions, with
a falling sea level followed by a rising sea level. In addition, this stage was characterized
by the one-time reductive environments with long-lasting stagnant water, and Fe-Mn
nodules were found in the corresponding layers, which is one of the indicators of early
diagenesis [54]. The early diagenesis of sediments under reductive conditions leads to
the dissolution of and phase change in magnetic minerals. Moreover, this process is
closely related to the content of organic matter in sediments because the decomposition of
organic matter will consume the dissolved oxygen in the water body and form a reductive
environment, which will prompt the dissolution of iron-containing minerals and reduce the
content of magnetic minerals, resulting in lower magnetic susceptibilities [22–24]. Therefore,
it is assumed that the lower magnetic susceptibilities in this stage may be related to the
early diagenesis of sediments to a certain extent.

5.2.3. Stage 3 (MIS 5, Section 1: 15.77–0 m)

Compared with the previous stage, the mean grain size of sediments in this stage
increased, while the content of sand increased rapidly, and the content of silt and clay
decreased. The fluctuations in sorting were obvious, and its variation range became larger.
The frequency distribution curves showed a narrow peak with extremely positive skewness
moving toward the coarse grained end and dragging a thin tail, and the kurtosis became
narrower. The magnetic susceptibilities increased rapidly and fluctuated frequently with a
large range, reflecting the complexity of interactions between the rising sea level and various
strong hydrodynamics in the estuary. The sedimentary structure was also characterized
by a specific type of tidal rhythmites with the sand–mud-interlayered bedding (Figure 3),
which corresponded to the tidal estuarine delta front environments under the background
of the fluctuating sea level rise in the warm period of MIS 5. In addition, compared with
Stage 1, which was also characterized by high and fluctuating magnetic susceptibilities, the
input of coarse-grained sediments was reduced (the sand content was lower than that in
Stage 1), and the positive correlations between magnetic susceptibilities and coarse-grained
components became weaker, probably indicating that the sediment provenance in this stage
changed compared with that in Stage 1. Meanwhile, the contents of carbonate minerals in
eight samples above the drilling depth of 16.14 m showed an obvious increase, indicating
the enhanced impact of the paleo-Yellow River-derived sediments [33]. The core NTCJ1 in
the Sheyang estuary also recorded a delta front deposit in the MIS 5 tidal estuary, which
was obviously influenced by the paleo-Yellow River [55]. Accordingly, during this period,
the Changjiang River probably migrated southward and gradually moved away from the
study area. Meanwhile, the input of its sediments to the north was limited, while the Yellow
River presumably flowed into the South Yellow Sea through the northern Jiangsu, and the
study area was under the increased impact of the paleo-Yellow River-derived sediments of
MIS 5 in the case of the littoral currents carrying the Yellow River sediments to the south.



J. Mar. Sci. Eng. 2024, 12, 699 17 of 20

6. Conclusions

The grain size and magnetic susceptibility of core 07SR01 sediments responded well to
changes in sedimentary environments and were indicative of the environments to a certain
extent. Combining this with the reinterpretation results of the sedimentary sequence and
age of this core and shallow seismic profiles, as well as the findings of the climate and glacial–
eustatic cycles of the Northern Hemisphere during Late Quaternary, the characteristics and
environmental indications for the combination of grain size and magnetic susceptibility
of core 07SR01 sediments and the corresponding sedimentary evolution of the Xiyang
tidal channel between MIS 7 and MIS 5 can be revealed and summarized in three stages
as follows:

Stage 1: This stage entails marginal bank and riverbed developments in the tidal
estuary under a relatively high sea level and strong hydrodynamic conditions during MIS 7
(core section: 36.10–26.65 m). The sediments deposited in this stage were mainly affected by
the paleo-Changjiang River and were characterized by a coarse grain size (mean: 4.02 Φ),
dramatic fluctuations in relatively good sorting, extremely positive skewness with a high–
narrow peak near 3 Φ and a thin tail in the frequency distribution curve, and relatively
high magnetic susceptibilities (mean: 27.06 × 10−8 m3·kg−1) with small fluctuations which
were strongly and positively correlated with the sand component (<4 Φ).

Stage 2: This is the stage dominated by fluviolacustrine and littoral environments,
with weak hydrodynamics during MIS 6–5, in which the climate changed from cold and
dry to warm and humid as the sea level rose after a drop (core section: 26.65–15.77 m). The
sediments deposited in this stage were characterized by a fine grain size (mean: 5.27 Φ),
relatively small variations in poor sorting, except for the uppermost part, positive skewness
with a low–broad peak near 4.75 Φ in the frequency distribution curve, and low magnetic
susceptibilities with minor variations (mean: 10.83 × 10−8 m3·kg−1) which were weakly
and positively correlated with the coarse silt component (4–5 Φ).

Stage 3: This stage concerns the delta front in the tidal estuary with a relatively high
sea level and strong hydrodynamics during MIS 5 (core section: 15.77–0 m). The sediments
deposited in this stage were strongly influenced by the paleo-Yellow River and character-
ized by a relatively coarse grain size (mean: 4.86 Φ), relatively small variations in medium
to relatively poor sorting except for the uppermost part, extremely positive skewness with
a high–narrow peak near 3.75 Φ and a thin tail in the frequency distribution curve, and
high magnetic susceptibilities (mean: 37.15 × 10−8 m3·kg−1) with large fluctuations which
were weakly and positively correlated with the sand and coarse silt components (<5 Φ).
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