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Abstract: The visual signal object detection technology of deep learning, as a high-precision per-
ception technology, can be adopted in various image analysis applications, and it has important
application prospects in the utilization and protection of marine biological resources. While the
marine environment is generally far from cities where the rich computing power in cities cannot
be utilized, deploying models on mobile edge devices is an efficient solution. However, because of
computing resource limitations on edge devices, the workload of performing deep learning-based
computationally intensive object detection on mobile edge devices is often insufficient in meeting
high-precision and low-latency requirements. To address the problem of insufficient computing
resources, this paper proposes a lightweight process based on a neural structure search and knowl-
edge distillation using deep learning YOLOv8 as the baseline model. Firstly, the neural structure
search algorithm was used to compress the YOLOv8 model and reduce its computational complexity.
Secondly, a new knowledge distillation architecture was designed, which distills the detection head
output layer and NECK feature layer to compensate for the accuracy loss caused by model reduction.
When compared to YOLOv8n, the computational complexity of the lightweight model optimized in
this study (in terms of floating point operations (FLOPs)) was 7.4 Gflops, which indicated a reduction
of 1.3 Gflops. The multiply–accumulate operations (MACs) stood at 2.72 G, thereby illustrating a de-
crease of 32%; this saw an increase in the AP50, AP75, and mAP by 2.0%, 3.0%, and 1.9%, respectively.
Finally, this paper designed an edge computing service architecture, and it deployed the model on
the Jetson Xavier NX platform through TensorRT.

Keywords: edge computing; underwater object detection; knowledge distillation; network architecture
search; YOLOv8n

1. Introduction

Oceans contain abundant biological resources, and the utilization of these biological
resources has strategic significance for economic development. Harnessing modern science
and technology to enhance the rational upgrading of marine resource processing, as well as
improving production efficiency, is a shared objective among numerous researchers. In re-
cent years, owing to the proliferation of deep learning visual technology, object detection
algorithms based on deep learning have superseded traditional approaches due to their
exceptionally high accuracy [1]. In the past, underwater image data needed to be processed
at a land center. However, processing large amounts of data on ground computing entities
results in a high latency in the data transmission. In addition, communication conditions
for such architectures are often not met in marine environments, and the information
transmission rate of wireless communication systems at sea is relatively low—only short
messages and low-speed message services can be transmitted. Although ocean satellite
communication has a high speed, its cost is high, and the disadvantage of shore-based
marine communication applications is that they cover a small coastal area [2]. To avoid the
above two problems, an effective approach is to use a mobile edge computing platform to
process the underwater data at the edge using edge nodes and edge servers.
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As shown in Figure 1, mobile edge computing is a computing paradigm that uses
mobile edge devices to provide relevant computing services at the network edge nodes in-
stead of using the Elastic Compute Service (ECS) [3]. Edge computing nodes can be seen as
the extension of the Internet of Things in the ocean. Edge computing has broad application
prospects in water quality monitoring, pollution observation, marine resource exploration,
etc. [4]. The advantage of an edge computing platform for underwater biological object
detection is that it can achieve real-time processing and analysis, as well as reduce the cost
of data transmission and storage. Additionally, edge computing platforms can process
and analyze data in an underwater environment, thus avoiding the delay latency and
instability of data transmission. In addition, for promotion of the accuracy and efficiency of
detection, edge computing platforms can use machine learning algorithms to classify and
identify underwater biological objects. This technology can be used for marine ecological
environment monitoring, marine resource investigation, and marine scientific research, as
well as in other fields.

Figure 1. Edge computing architecture for underwater object detection.

Although edge platforms have natural advantages in performing marine organism
detection tasks, due to hardware limitations, performing deep learning inference on mobile
edge devices can easily lead to excessive load, thus resulting in an insufficient object
detection capability so that the detection requirements cannot be met. In order to enable
edge nodes to execute deep learning-based detection algorithms more efficiently, mature
deep neural network models can be compressed to obtain lightweight models to better
perform edge node computing tasks.

In this paper, the YOLOv8 [5] model was selected as the baseline model, and a new
lightweight method based on neural network structure search and distillation is proposed
to solve the problems of limited computing power, low recognition accuracy, high model
complexity, and the high latency of edge nodes in an edge computing environment. Specifi-
cally, there are two steps: (1) Use the once for all neural architecture search algorithm and
compress the YOLOv8 model backbone network to obtain a backbone network with low
model complexity and high accuracy; (2) To compensate for the loss of accuracy, a mixed
distillation method is designed, which integrates Channel-wise Distillation (CWD) [6] and
KD [7] algorithms to achieve a synchronous distillation of the intermediate knowledge
layers and to label knowledge in order to improve accuracy. Also, a service framework
for the edge platform is designed to implement the model application of the edge comput-
ing platform.

2. Related Works

Currently, the primary lightweight methods for relevant models include neural archi-
tecture search, pruning, quantization, and knowledge distillation.



J. Mar. Sci. Eng. 2024, 12, 697 3 of 19

1. Neural architecture search (NAS) is a method that involves an automated design of
neural network structures. It mainly includes two key steps: search space design
and search strategy selection. Search space design refers to defining the structural
space of a neural network, such as the number of layers and convolutional kernels.
The selection of a search strategy is to determine the search method and objective
function, such as a genetic algorithm.

2. Pruning is a technique used to reduce the number of parameters and computational
complexity of neural networks. Pruning reduces the size and computational complex-
ity of a model while maintaining its accuracy by removing unnecessary weights and
connections from the neural network.

3. Quantization is another method of optimizing neural networks. It mainly reduces
the size and computational complexity of a model by reducing the accuracy of the
model parameters and activation values, which usually leads to a certain degree of
accuracy loss. Quantitative techniques can effectively reduce model storage space and
computational requirements.

4. Knowledge distillation is a model compression technique that utilizes large, high-
performance teacher models to guide the training of small, compact student models.
The core idea is to enable the student model to learn the output or intermediate
representation of the teacher model so that the student model can approach the
performance of the teacher model as closely as possible while maintaining a smaller
model size.

The compression algorithm utilized in this article involves the neural structure search
and knowledge extraction methods. The following are related research areas of these methods.

(1) Neural architecture search

At present, the model of neural network structures is relatively complex and lacks theo-
retical guidance, which is not conducive for the use of deep learning. Therefore, researchers
have begun to seek an automated way to independently design neural network structures,
that is, through neural architecture search [8]. In the initial stage, Zoph et al. [9] sampled
substructures (child networks) in the search space with a certain probability distribution
through a controller by using reinforcement learning. Subsequently, the obtained structure
is trained and its performance was tested on a validation set. Real et al. [10] first proposed
a method similar to biological evolution, which mutates models with superior performance
in randomly generated models and gradually eliminates network structures with poor
performance to finally obtain the best performing model. However, such methods require
a very large amount of computation, which greatly hinders research progress. Therefore,
Pham et al. [11] proposed a parameter-sharing-based neural structure search, i.e., the effi-
cientNet neural architecture via parameter sharing (ENAS) method. This method is a fast
and low-cost automatic model design method. In ENAS, the controller searches for the
best subgraph in a large computational graph while greatly reducing the computational
overhead through a weight sharing among submodels, thus initiating the second stage
of NAS. The above two stages have excessive overhead and are not suitable for practi-
cal model deployment. Researchers have begun to consider introducing relevant prior
knowledge to reduce the cost of neural structure search algorithms, especially with limited
computing resources available on mobile edge devices. Designing a resource-constrained
mobile model is challenging. Based on the MobileNet search space, Stamoulis et al. [12]
proposed the concept of a super kernel with a unified convolution kernel of 3 × 3 and
5 × 5. The two convolutions of five make the network a single-path structure. The practical
deployment of deep learning models needs to adapt to different hardware platforms as the
time spent on re-training is long. To address the practical deployment problem of the NAS
model, Cai et al. [13] proposed a once for all (OFA) structure search algorithm to handle
multiple deployment scenarios. This method separates the model training and structure
search processes and trains an OFA network that supports multiple different structural
settings such as depth, width, convolutional kernel size, and spatial resolution. Based
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on the actual deployment scenario, it simply selects the appropriate substructure in OFA
without the need for an additional training process.

(2) Knowledge distillation.

Knowledge distillation is like the teacher–student structure of human beings, provid-
ing knowledge through the pre-trained teacher models while the student models acquire
teacher knowledge through distillation training. It can transfer complex teacher model
knowledge to simple student models at a slight performance loss. Label knowledge is the
potential information contained in a neural network’s final prediction output of sample
data. Hinton et al. [7] first proposed knowledge distillation, which falls within this category.
Due to the many uncertainties in the soft labels after adjusting the distillation temperature,
Yang et al. [14] proposed using the label knowledge generated by the intermediate model
updated by the teacher model in each training cycle to guide the student model. In order
to fully explore the label information and remove interference, Muller et al. [15] used a
subcategory distillation method to group the original labels and participate in soft label dis-
tillation learning. Owing to the output layer’s label knowledge’s incomplete information,
some researchers hope to obtain more representative feature knowledge in the middle layer
and transfer it to student models [16]. Differentiating between foreground and background
regions in distillation is essential for object detection according to numerous techniques.
By using L2 loss to force the feature maps within the student network RPN to resemble
those of the teacher network, MIMIC [17] discovered that utilizing direct pixel level loss
may negatively impact object detection performance. A proposal to extract fine-grained
features near object anchor points was made by Wang et al. [18]. Zhang [19] achieved
some outcomes by using the attention function to construct masks that distinguishes the
foreground from the background. Recent research results [20] have also focused on the
information found in every channel. Zhou and colleagues computed the mean activation
value for every channel and matched the weighted discrepancies for every channel in the
categorization. CSC [21] calculates the pairwise relationships between all spatial positions
and all knowledge transfer channels. According to channel exchange [22], the data on each
channel are universal and transferable between various models.

Object detection accuracy is significantly increased by using a deep learning-based
approach. The two primary categories of CNN-based algorithms are two-stage object
detection and single-stage object detection [23]. The detection problem is divided into
two phases by the two-stage object detection technique. The algorithm in the first step
creates candidate regions, which are then further refined and classified by the second stage
algorithm. These algorithms include R-CNN [24], Fast R-CNN [25], Faster R-CNN [26],
and Cascade R-CNN [27]. The one-stage object detection algorithm simultaneously detects
and classifies objects, thus directly outputting the classification values of the objects’ lo-
cation and probability coordinates. The common algorithm models range from examples
such as the YOLO series [28–32], SSD [33], RetinaNet [34], FreeAnchor [35], FSAF [36],
and FCOS [37]. Currently, there are also some lightweight studies on deep learning mod-
els. Fan [38] proposed a lightweight object detection algorithm, CM-YOLOv8, for coal
mining working faces. They introduced an adaptive predefined anchor box tailored for
the dataset and an L1-norm-based pruning method, which compresses the computational
and parameter complexity of a model without affecting accuracy. Yang [39] proposed
an automatic detection method based on an enhanced YOLOv8s model, which utilizes
depthwise separable convolution (DSConv) to generate a substantial number of feature
maps, thereby reducing computational complexity. Guo [40] proposed an underwater
object detection method that optimized YOLOv8s by incorporating FasterNet as the back-
bone network. They modified the feature pyramid network to a fast feature pyramid
network and introduced a lightweight C2f structure. The aforementioned methods have all
introduced impressive solutions, with a particular emphasis on lightweight enhancements
for YOLOv8s. However, deploying YOLOv8s on a Jetson Xavier NX proves challenging
due to its size and complexity. Hence, this article adopted YOLOv8n as the baseline model.
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3. Underwater Object Detection Based on Deep Learning
3.1. Underwater Image Enhancement Algorithm

Due to the complex underwater imaging environment, the quality of underwater
images is usually low. The quality of the image has a significant impact on the results of
object detection and recognition. High-quality images can easily lead to good features.
Therefore, before conducting underwater object recognition, it is essential to first study
underwater image and processing technology. As is well known, most underwater images
suffer from blurring and color distortion problems. This is caused by the scattering and
absorption of light, and particles in the water can also cause scattering phenomena during
light propagation, thus resulting in a decrease in the contrast and blurring of the image,
which is mainly caused by scattering phenomena.

This paper uses the Contrast Limited Adaptive Histogram Equalization (CLAHE) [41]
algorithm to enhance underwater images. CLAHE is a image enhancement algorithm
derived from Adaptive Histogram Equalization (AHE). The AHE algorithm changes the
contrast of an image by calculating the local histogram of the image and redistributing
brightness. This algorithm is more suitable for improving the local contrast of the image
and obtaining more image details. Figure 2 shows the enhanced image result, which can
be observed with the naked eye, where the processed image has a significant increase in
contrast and brightness. Figure 3 shows a histogram that corresponds to the image in
Figure 2. It can be seen from Figure 3 that the histogram of the CLAHE-processed image
becomes smoother, thus making its texture details richer.

Original

Processed

Figure 2. Comparison of underwater images before and after CLAHE processing.

Figure 3. Comparison of the RGB histograms of underwater images before and after CLAHE processing.

3.2. The Baseline Detection Model: YOLOv8

YOLOv8 is a SOTA (state-of-the-art) model based on the YOLO series that introduces
new features and improvements to further increase adaptability and performance. It designs
a new backbone network, uses a Anchor Free detection head to replace the previous Anchor
base detection head, and designs a new loss function to train the new architecture. Figure 4
depicts the model’s precise structure.
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Figure 4. Basic structure of the YOLOv8 model.

(1) The backbone network and NECK layer.

The largest modification to the NECK layer and YOLOv8 backbone network was
the replacement of the C3 module with the C2f module. From Figure 5, it can be seen
that C2f has more hop layer connections and additional split operations compared to C3.
This approach enriches the gradient flow, which is conducive to feature fusion within the
module and enhances feature information.

Figure 5. Basic structure of the Cf2 module.

(2) Anchor Free detection head.

The Anchor Free detection head was changed from the original coupling head to the
current decoupling head. As shown in Figure 6, the position information and category
information of the detection box awerere decoupled and extracted by two convolutional
modules, respectively. Moreover, the Anchor base that has been used since YOLOv2 is
abandoned here as the position information is directly obtained without relying on Anchors.
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ConvModule

K=3,s=1,p=1

Conv2d
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c=regmax

Bboxloss

ConvModule
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Conv2d
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c=nc

Clsloss

Input

Figure 6. Basic structure of the detection head.

(3) Loss function.

The loss function of YOLOv8 can be divided into the allocation strategy and loss
calculation. Its allocation strategy refers to TOOD’s TaskAlignedAssignor, which uses the
weighted results of regression and classification to choose positive samples. Its formula is
shown in Equation (1):

t = sα × uβ, (1)

where α and β are the hyperparameter constants. The prediction score for the anno-
tated category is denoted by s, t is the IoU of the predicted box and the Ground Truth
(GT) box, and the alignment degree can be measured by multiplying them. For each GT,
for all predicted boxes and according to the GT category’s appropriate classification score,
the weighted IoU of the predicted box and GT are used to obtain the alignment score
metrics for association classification and regression. For each GT, the top K largest values
are directly selected as positive samples based on the metric alignment score.

Classification loss and position regression loss are included in the loss computation;
BCELoss is still used for the classification loss even after confidence loss is subtracted,
and the integral representation proposed in Distribution Focal Loss are bound by using
Distribution Focal Loss and CIoU Loss.

DFL(Si, Si+1) = −(yi+1 − y) log(Si)

+(y − yi) log(Si+1), (2)

where y is a regression value for the label box, and yi, yi+1 are the integers closest to y.
Si =

yi+1−y
yi+1−yi

, Si+1 = y−yi
yi+1−yi

;Si,Si+1 can be considered as the probability of the predicted
point being compared to the left and right boundaries of the regression value. DFS is similar
to performing cross entropy on the bounds of the expected value on the left and right, thus
making it focus more quickly on the regression value.

CIoU = IoU − D2
2

D2
C
− αv

α =
v

(1 − IoU) + v

v =
4

π2 (arctan
wgt

hgt − arctan
w
h
)2.

(3)

The distance between the object box and the prediction box’s center is denoted by D2,
where Dc is the diagonal distance of the minimum bounding rectangle; wgtand hgt are the
true length and width of the detection box, respectively; and w and h are the predicted
detecting box’s dimensions.

4. Neural Architecture Search Algorithm

The once for all neural architecture search algorithm trains a one-time network that
supports different architectures through separating the search from training to reduce
costs. Without further training, it may rapidly pick from the network of OFA to obtain
specific subnetworks.
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4.1. OFA Large Model Training

The OFA network provides a large model that accommodates several subnetworks of
various sizes by taking into account the four dimensions of crucial convolutional neural
network (CNN) architecture, namely depth, width, kernel size, and resolution. The fine
tuning of the depth and convolutional kernel processes are shown in Figures 7 and 8,
respectively, where the OFA network divides the CNN model into a series of units with
progressively smaller feature map sizes and an increasing number of channels. Each unit is
composed of a series of layers, and if the feature map size decreases, only the first layer
has a step size of 2. All the other layers in the unit have a step size of 1. The OFA large
network includes several subnetworks of various sizes, including tiny subnetworks nestled
inside larger subnetworks. To prevent interference between subnetworks, the OFA network
gradually executes the training sequence from large subnetworks to small subnetworks.
Then, the OFA network starts by using the greatest possible kernel size, depth, and width
to train the neural network. Smaller subnets are gradually added to the sampling space to
gradually fine tune the network to support smaller subnets. In particular, it offers elastic
kernel size, which may be chosen at each layer from 3, 5, 7 after training the largest network,
and the depth and width stay at their maximum values. Following that, the elastic width
is supported and then the depth in turn. Throughout the training process, the resolution
is elastic, which is achieved by varying the size of the picture samples for every training
data batch.

Transform 

Matrix

25 25

Transform 

Matrix

9 9

7 7

5 5

3 3

Figure 7. Fine tuning of the convolutional kernel training for OFA structure search algorithm. The
different colors in the figure represent convolution kernels of different sizes, while the dark colors
represent weights shared with small convolution kernels.

Figure 8. The OFA structure search algorithm network depth fine tuning. The different colors in the
image represent different network layers

4.2. Dedicated Model Deployment for OFA

After training the OFA network, then obtaining specific subnetworks for the speci-
fied deploying situation is the next step. The goal is to search for neural networks that
meet the efficiency constraints of the target hardware (such as latency and energy) while
maximizing precision. We do not currently require any sort of training expenditures since
the OFA network separates the process of training the models from the search for neural
architectures. In addition, in order to provide quick feedback on the quality of a model,
OFA has developed neural network twins that can forecast the delay and accuracy of a
particular neural network architecture. By substituting the anticipated accuracy/delay for
measurement accuracy/waiting time, it eliminates the expense of redundant searches.

4.3. Application of the OFA Network in Object Detection

The OFA network demonstrates outstanding performance in classification tasks,
and this paper extends its application to detection tasks. This paper uses the OFA neu-
ral network search algorithm to optimize the backbone network of the object detection
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algorithm. This paper dose not retrain the OFA large model, it only uses the dedicated
model search algorithm of the OFA network. The search is constrained by the model’s
computational complexity (in terms of FLOPs) and accuracy, where the large OFA model
is already trained on the ImageNet dataset. With consideration of the target hardware
and latency limitations, an evolutionary search is performed based on neural network
twins to obtain specialized subnetworks. As the cost of using neural network twins for
search can be negligible, this paper does not spend too much time obtaining subnetworks.
After obtaining the subnetworks, the subnetworks are then transplanted into existing object
detection algorithms, and the NECK layer of the object detection algorithm is fine tuned.
A new object detection model is retrained to test its effectiveness. The process is shown as
Figure 9.

OFA

Modify the backbone 

network to 

MobileNetV3

OFA hypernetwork

Training

Self distillation

Training

Configure elastic 

depth;width;kernel size,expand 

ratio;

OFA 

Pretrained

Big model

Set accuracy predictors(mAP) 

and efficiency 

predictors(FLOPs);

Configure evolutionary 

algorithm hyperparameters;

Evolutionary search

Accuracy and 

effiency predict

Record 

structural

informatio

n

Save sub network

weight

Meet end 

conditions

Not meet 

end 

conditions

Figure 9. The OFA algorithm training process. The light yellow section represents the steps of training
a large model using the OFA approach, while the light blue section represents the process of searching
for sub networks in OFA. This article uses the light blue section.

The OFA sub network used in this paper is based on MobileNetV3, with a width
multiplier of 1.2 (this supports an elastic depth of (2, 3, 4), an elastic scaling ratio of (3,
4, 6), and an elastic kernel size of (3, 5, 7) for each stage). This paper uses a subset of
ImageNet for testing, which includes 2000 images (~250 M). Then, for constructing the
accuracy prediction and complexity prediction functions, the searching is started with
a neural architecture that is constrained by FLOPs. The search algorithm employed is
an evolutionary algorithm. In each generation, the population size is set to 10, and the
total number of generations to be searched is 500. The probability of mutation in the
evolutionary search is 0.1, with a mutation ratio of 0.5 for the networks generated in
each generation through mutation. Evolutionary algorithms explore the structural space,
and their adaptability is gauged by accuracy and complexity functions. Upon reaching the
specified number of iterations, the optimal subnet information and weights are preserved.



J. Mar. Sci. Eng. 2024, 12, 697 10 of 19

The backbone network resulting from the NAS search fulfills the anticipated require-
ments of this paper in terms of FLOPs. However, the network derived from the search process
differs from the original YOLOv8n network, thereby exhibiting inadequate adaptability. A
direct migration to this network may lead to a reduction in detection accuracy. Consequently,
this paper opted to employ the knowledge distillation algorithm to enhance accuracy.

5. Knowledge Distillation Algorithm

In this paper, a neural network distillation architecture that objectifies both the label
knowledge and the intermediate knowledge layer simultaneously was designed by utilizing
the detection ability of the large model as a prior basis. When changing the object detection
model of the backbone network for training, the intermediate layer features of the large
model are added, and the output layer features correct the intermediate and output layers
of the small model to obtain a more accurate model.

5.1. Basic Principles of Knowledge Distillation

A model can be seen as a “black box” by knowledge distillation because knowledge
is a relationship that maps from inputs to outputs. Its basic process is shown in Figure 8.
Therefore, a teacher network can be trained first; afterward, the student network’s aim,
Q, can serve as the output result of the teacher network in order to instruct the student
network so that P, the student network’s result, approaches Q. Therefore, its loss function
can be designated as

Loss = CE(y, p) + β · CE(q, p). (4)

where y is the single-hot transformation of the real label, q is the teacher network’s output
result, p is the student network’s output result, and CE is the cross entropy. The loss
function here is to add the cross entropy with the teacher network output as the label on
the basis of the original cross entropy.

The class probability is generated by using the so f tmax output layer of transformation
zi. Then, zi is compared with the other logistic regressions and the probability qi for each
class is calculated. The formula is as follows:

qi =
exp(zi/T)

∑j exp(zj
/

T)
. (5)

This formula, called softmax, yields the probability of every class based on a logit if
T is around 0. It is identical to one-hot encoding, where other values will be nearer to 0
and the maximum value will be nearer to 1 if T is near to 0. The overall distribution of the
final outcomes will be smoother if T is greater, where it acts as a smoothing function to
retain similar information. Formula (5) states that if T equals infinity, it approximates a
uniform distribution.

5.2. Channel-Wise Distillation

Channel-wise distillation (CWD) is a knowledge distillation method for knowledge
across channels. In order to better utilize the knowledge in each channel, the CWD al-
gorithm proposes to gently adjust the activation function of the corresponding channel
between the networks of teachers and students. In Figure 10, the fundamental procedure
is displayed. To achieve this, CWD was used to first convert the activation of the channel
into a probability distribution, which can be measured using probability distance measures
(such as KL divergence). Figure 11 illustrates how the activation of several channels tends
to encode the scene category’s salience in the input image. CWD, as a revolutionary channel
refinement paradigm, can let student networks learn from teacher networks with higher
model capabilities.
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Figure 10. A basic knowledge distillation structure diagram.

Figure 11. A CWD knowledge distillation structure diagram.

Let T and S denote the teacher and student networks, and let yT and yS denote the
activation mappings from T and S, respectively. The following is the channel distillation loss:

φ(ϕ(yT), ϕ(yS)) = φ(ϕ(yT
c ), ϕ(yS

c )). (6)

In the CWD algorithm, the activation values are transformed into probability distribu-
tions using ϕ(.), as shown below:

ϕ(yc) =
exp( yc,i

T )

∑W·H
i=1 exp( yc,i

T )
, (7)

where i indicates the channel’s spatial location, c = 1, 2, . . . , C indicates the channel, and T is
a hyperparameter (temperature). The probability softens with increasing T, thus indicating
the need to concentrate on a greater geographical region for each channel. By applying
softmax normalization, the influence of the magnitude between large and compact networks
is eliminated. This normalization is helpful for KD. If the number of channels between
teachers and students does not match, the student network’s channel count is upsampled
using the 1 × 1 convolutional layer. Then, φ(.) evaluates the differences in the channel
distribution of teacher networks and student networks by using KL divergence as follows:

φ(yT , yS) =
T2

C

C

∑
c=1

W·H
∑
i=1

ϕ(yT
c,i) · log

[
ϕ(yT

c,i)
/

ϕ(yS
c,i)

]
. (8)

KL divergence is a kind of asymmetric metric. It is evident from the above equation
that in order to reduce KL divergence, ϕ(yT

c,i) should be as large as ϕ(yS
c,i) if ϕ(yT

c,i) is large.
Additionally, KL divergence is only somewhat minimized if ϕ(yT

c,i) is small. Therefore,
student networks tend to focus on foreground salience by generating a similar activation
distribution. The activation associated with the teacher network’s background area has a
relatively small impact on learning.

5.3. The Distillation Structure Design of This Paper

To achieve a comprehensive understanding of teacher characteristics, this paper inte-
grates the channel-wise distillation and knowledge distillation algorithms to devise a novel
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knowledge distillation architecture, as depicted in Figure 12. Initially, the paper utilizes
CWD to extract the feature pyramid network (FPN) by distilling the regions with the most
abundant feature information. This enables the feature layer of the student network to
assimilate prior learning outcomes, thereby enhancing the salience of the feature pyramid
generated by the student network. Moreover, KL divergence is incorporated into the HEAD
section to expedite the convergence of the student network and to offer guidance during the
training process. Weighting the loss of the HEAD segment of YOLOv8n serves to stabilize
the outcomes.

Figure 12. The distillation structure design of this paper.

CWD is used at the NECK module to distill the feature pyramid, and KL divergence
is used at the beginning of the output head to achieve soft label distillation. Finally, the two
are added with a certain weight to obtain the total distillation loss and to participate in
backpropagation together with the conventional loss.

6. Experimental Analysis
6.1. Dataset and Experimental Environment Settings

The 2020 China Underwater Vehicle (Zhanjiang) Competition officially donated the
underwater biological picture dataset used in this paper. There are 5534 photos of starfish,
scallops, sea cucumbers, and sea urchins in the collection. Some low-quality photographs
were chosen for augmentation since many of the images in the original dataset had low
contrast and color distortion. The dataset was improved using the CLAHE underwater
image enhancement technique. The dataset for this paper consists of 7930 photos altogether,
which are created by combining the enhanced and original photographs.

The experimental platform processor is E5-2660v4 CPU, the GPU is GTX2080, and the
computing environment is PyTorch 1.1.4.

6.2. Baseline Model Detection Experiment

This paper first conducted pre-experiments on underwater biological objects, selecting
several typical models for experimental comparison to demonstrate the superiority of
choosing YOLOv8n. To select the lightweight versions of various models, the ResNet
minimum network ResNet18 was selected as the backbone network for non YOLO series
models, while, for the YOLO series models, the minimum network for each version (v3
and v4 are not proposed as lightweight models) was selected.

From Table 1, it can be seen that the classic two-stage and one-stage object detec-
tion algorithms, even if their backbone network is replaced with the smallest version of
ResNet (i.e., ResNet18), still have a much higher computational complexity FLOPs than
the lightweight version models proposed by the YOLO series. In the lightweight version
models of the YOLO series, YOLOv8n has a computational complexity and model size
second only to YOLOv5n, but its detection accuracy (mAP) is much higher than YOLOv5n.
Therefore, this paper chose YOLOv8n as the baseline model for the experiment.
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Table 1. Model detection accuracy and complexity results.

Model mAP Size (MB) FLOPs (G)

Faster R-CNN 48.8 24.7 155.6
Cascade R-CNN 50.9 51.9 183.9

FreeAchor 50.1 19.6 155.1
RetinaNet 45.1 19.6 155.1

FSAF 47.6 23.4 146.5
FCOS 48.0 15.3 146.2

YOLOv3 63.1 61.9 151.5
YOLOv4 59.2 52.3 124.4

YOLOv5n 38.1 1.7 4.5
YOLOv5s 53.7 7.0 16.5
YOLOv6n 55.4 4.3 11.1
YOLOv7t 56.5 6.0 13.2
YOLOv8n 56.3 3.1 8.7

6.3. Experimental Results after Compression Optimization

This paper first used pre-trained large-scale models in an OFA network to conduct a
structural search in the experimental environment of this paper. The model accuracy (mAP)
and model complexity (FLOPs) metrics were used as search objectives for 300 iterations
to obtain the model parameters and model structure files. The OFA algorithm uses Mo-
lileNetv3 as its basic large model, and, after 500 iterations, its accuracy mAP value and
model complexity (FLOPs) were 72.3% and 2.4 GFlops, respectively.

The YOLOv8n’s backbone network was swapped out for one that the OFA method
repeatedly searches for in training; then, the model results are obtained. To increase the
model’s accuracy and enhance the training procedure, the training procedure incorporates
the distillation architecture suggested in this research. The teacher network used in this
paper is the YOLOv8s model.

From Tables 2 and 3, as well as Figure 13, it can be concluded that the performance
of the YOLOv8n network model has made much progress compared to before adopting
the OFA algorithm and the distillation algorithm. In terms of model complexity, the com-
pressed model exhibited a computational complexity of 7.4 Gflops and a MAC value of
2.7 G, which aligns closely with the smallest YOLOv5n model within the YOLO series.
In comparison to its performance prior to compression, there has been a reduction in com-
plexity by 1.3 Gflops and a decrease in the MAC value by approximately 32%. Due to the
compensatory effect of the distillation algorithm, the compressed YOLOv8 also achieved
the best precision of the YOLO series small models. From Figure 13, it can be seen that
the confidence level of each object increased by nearly 10 points. In actual deployment,
the confidence threshold can be increased to filter similar objects and improve generaliza-
tion. Compared with YOLOv8n, the compressed YOLOv8 increased AP50, AP75, and mAP
by 2.0%, 3.0%, and 1.9%, respectively. From the comprehensive calculation complexity
and model precision, in summary, the YOLOv8n model, which was compressed for this
paper, is currently the better tiny model in the YOLO family, and it is also the most suitable
network for being deployed on an edge computing platform.

Table 2. Comparison of the compressed YOLOv8n with other lightweight models.

Model AP50 AP75 mAP FlOPs (G) MACs

YOLOv5s 90.9 63.2 53.7 16.5 7.93 G
YOLOv6n 89.2 63.3 55.4 11.1 5.49 G
YOLOv7t 92.1 63.0 56.5 13.2 6.56 G
YOLOv8n 88.7 64.5 56.3 8.7 4.07 G

YOLOv8n_razed 90.7 67.5 58.1 7.4 2.72 G
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Table 3. The experimental data of YOLOv8n after various optimization algorithms.

OFA KD CWD AP50 AP75 mAP FLOPs (G) MACs

88.7 64.5 56.3 8.7 4.07
✓ 88.4 64.3 56.4 7.4 2.72
✓ ✓ 90.1 65.2 57.0 7.4 2.72
✓ ✓ ✓ 90.7 67.5 58.1 7.4 2.72

Before improved

After improved

After improved

Figure 13. Model detection effect before and after improvement. The numbers of the boxes represent
the AP50 value.

7. Edge Computing Platform Applications

This chapter mainly studies the deployment and application of the edge computing
platform of the object detection algorithm that was constructed with Jetson Xavier NX
(which is shown in Figure 14) as the deployment platform used to improve YOLOv8n.
This chapter also shows how the model was accelerated through TensorRT, which further
improves the detection speed of the model, as well as how the server framework was used
to implement the streaming of video and the post-processing of detection data.



J. Mar. Sci. Eng. 2024, 12, 697 15 of 19

TensorRT is a software development suite proposed by NVIDIA (Santa Clara, CA,
USA) for optimizing trained deep learning models to achieve high-performance inference.
TensorRT includes a deep learning inference optimizer for trained deep learning models,
as well as a runtime engine for execution, which can run deep learning models with a
higher throughput and lower latency. In this paper, the model file is first converted into
an onnx intermediate format file, and the middleware is converted into an engine file
using the compiler in the TensorRT suite. Afterward, the C++/Python API interface in
the middleware can be called to implement end-to-end model applications. The specific
process is shown in Figure 15.

Figure 14. Jetson Xavier NX.

Figure 15. The model parameter file conversion process.

This paper uses an edge computing platform as an edge computing server that can
complete data collection and calculation in a production environment. In the framework
of network programming, the model compiled by TensorRT is used to provide appli-
cation services. This paper implements the video stream push based on TensorRT and
Django frameworks. Django is a Python-based network service framework (which can
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easily provide the required network services). The main process of the video streaming is
as follows:

1. Using the OpenCV and V4L2 frameworks to capture images from USB-driven cameras;
2. Processing image information using the detection model compiled by TensorRT, which

is then pushed to the FFmpeg process;
3. Using FFmpeg to implement the RTMP protocol (RTMP video stream is a real-time

video stream protocol) to push the video streams, with the proxy server being the
Nginx server.

Through the Nginx service, video stream access can be achieved on a local area network
or external network. The V4L2 framework is a video source capture driver framework that
is used in Linux systems. It is widely used in embedded devices, mobiles, and personal
computer devices for video capture. FFmpeg is a set that can be used for recording, and it
is an open-source computer program that converts digital audio and video into streams.
Nginx is a high-performance HTTP and reverse proxy server, and it is characterized by low
memory consumption and strong concurrency, and it is suitable for network IO processing
on edge computing platforms. The control of video streams is determined by the requests
sent by the client to the Django framework.

From Figure 16, it can be seen that the application architecture of this paper is divided
into four layers and the program processing order is bottom-up. The first layer is the basic
tool for edge nodes, which is the V4L2 driver program for collecting image information;
the TensorRT model is used for image processing; the UNIX network IO is used for
communication, with the second layer serving as the FFmpeg tool for recommending video
streams; the Django framework is used for providing network services; the SQLite database
is used to store the data; the third layer merely utilizes Nginx’s ability to handle high
concurrency to improve concurrency by a few points; and the fourth layer is the application
services that can play FLV videos through web pages or can directly call RTMP video
streams through other decoding tools.

Figure 16. Edge computing platform service architecture.

Figure 17 illustrates the remote access application of the edge computing platform.
The edge computing platforms can be deployed as edge servers in offshore shallow waters.
Through the deployment of an optical fiber communication network underwater, a wa-
ter–shore network covering both underwater and shore areas can be established. This setup
facilitates information sharing and collaborative work between underwater devices and
shore-based servers. The edge servers have the capability to process and analyze underwa-
ter data in real-time. They can detect and statistically analyze marine organisms near the
shore, thus enabling quick responses to the requirements of onshore clients. This integration
is suitable for intelligent marine ranching, intelligent marine ecological protection, and
other scenarios.
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Figure 17. The figure above shows a web application of an edge computing platform. In the figure,
we, respectively, show the functions of login, real-time video streaming viewing, and data statistics.

8. Conclusions

Edge platforms have natural advantages in performing marine organism detection
tasks. However, due to hardware limitations, performing deep learning inference on
mobile edge devices can easily lead to excessive load, thus resulting in insufficient object
detection capabilities and an inability to meet task detection requirements. To enable
edge nodes to execute deep learning algorithms more efficiently, this paper proposes a
compression process that reduces model computational complexity and improves accuracy.
(The technique proposed in this paper can better perform edge detection tasks.) Multiple
deep learning-based object detection baseline models were tested in this paper. YOLOv8n,
based on detection accuracy and computational complexity, was chosen as the target
model for the compression method. Then, the OFA algorithm was used for structural
searching to obtain the optimal lightweight backbone network. Simultaneously, CWD and
KD distillation were combined during the training phase, thus making use of the teacher
network’s past knowledge to increase model accuracy. The compressed YOLOv8n in this
paper surpasses the performance of the minimal lightweight models in the YOLO family in
terms of accuracy and overall computing complexity with good application prospects.
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