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Abstract: The three-degree-of-freedom (3-DOF) stabilized control system for ship propulsion-assisted
sails is used to control the 3-DOF motion of sails to obtain offshore wind energy. The attitude of the
sail is adjusted to ensure optimal thrust along the target course. An adaptive finite-time backstepping
integral sliding mode control based on the inverse system method (ABISMC-ISM) is presented for
attitude tracking of the sail. Considering the nonlinear dynamics and strong coupling of the system,
a decoupling strategy is established using the inverse system method (ISM). Constructing inverse
dynamics to eliminate internal coupling, the system is transformed into independent pseudolinear
subsystems. For the decoupled open-loop subsystems, an adaptive finite-time backstepping integral
sliding mode control is designed to achieve closed-loop control. A backstepping-based integral
sliding surface is proposed to eliminate the phase-reaching stage of the sliding surface. Considering
the unmodelled dynamics and external disturbances, an adaptive extreme learning machine (AELM)
was designed to estimate the disturbances. Furthermore, a sliding mode reaching law based on
finite-time theory was employed to ensure that the system returns to the sliding surface in a finite
time under chattering conditions. Experiments on a principle prototype demonstrate the effectiveness
and energy-saving performance of the proposed method.

Keywords: ship propulsion-assisted sail; inverse system; 3-DOF stabilized system; decoupling
control; adaptive sliding mode control; backstepping; finite-time control; energy saving

1. Introduction

Recently, wind propulsion-assisted technology has been widely explored and applied
to promote the sustainable development of the shipping industry [1]. Under different wind
directions, a ship propulsion-assisted sail could be driven to different azimuths to obtain
the optimal thrust. By providing thrust for ship navigation through the sail, the power of
the ship’s main engine could be effectively reduced, which achieves energy conservation for
the ship. Dynamic characteristics of wind propulsion ships and sails have been extensively
studied to improve the utilization rate of wind energy. The parametric section airfoil
parametrization method is combined with the particle swarm optimization algorithm to
improve the energy efficiency of sail-assisted vessels [2]. The stability analysis method is
presented to investigate the feasibility of the sail models [3]. Based on computational fluid
dynamics (CFD) examination and optimization algorithms, the structural analysis of the
hull and sail has been fully developed.

However, external environmental disturbances inevitably affect the energy-saving
performance of sails [4]. The 3-DOF attitude swaying of the ship will cause the sail to
deviate from the optimal angle and reduce the thrust along the heading. Therefore, the
3-DOF stabilized control system is designed to maintain the sail isolated from external
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disturbances [5]. The proposed system compensates for the 3-DOF ship attitude deviation
through sequentially connected servo systems for azimuth, roll, and pitch, through which
the energy-saving effect is guaranteed, and the stability can be enhanced.

Nevertheless, considering the mechanical structure between various subsystems, the
system exhibits complex internal coupling and nonlinear characteristics during operation.
The inverse system method, as a decoupling method, is widely used to eliminate nonlinear
coupling in multi-input multioutput (MIMO) systems [6,7]. This method has been com-
bined with various intelligent methods [8]. The generalized regression neural network
(GRNN) is used to identify the vehicle model, which eliminates multivariable coupling
characteristics [9]. Within a certain range, the adaptability of data-driven inverse models to
uncertainty has been confirmed [10,11]. However, disturbances in complex environments
are difficult to predict, which poses challenges to the robustness of the system. To address
the above issues, the method based on inverse dynamics and a compensation strategy is
used for the control of complex mechanical structures [12,13]. The ISM has been widely
used for system decoupling and has achieved obvious results in model linearization [14].
In view of the influence of system coupling on control performance, an inverse dynamic
model using ISM is constructed to eliminate nonlinear coupling. The constructed inverse
dynamic is established to address the internal coupling. Therefore, the MIMO system can
be converted into three independent subsystems.

However, the established pseudolinear subsystem is an unstable open-loop system.
The robustness and stability of closed-loop control strategies are indispensable, considering
the presence of unmodelled dynamics and external disturbances in subsystems. As a
robust control method, sliding mode control (SMC) has been widely used in the field of
nonlinear systems and disturbance suppression [15,16]. Numerous high-level research
studies on SMC have been conducted and extensively applied across various industrial
control applications [17,18]. Many optimization algorithms have also been explored [19,20],
such as the Super-Twisting Algorithm and the Linear Extended State Observer, which
greatly promoted the development of SMC. The Higher-Order Sliding Mode control has
been explored to suppress chattering characteristics, and the Terminal Sliding Mode control
has been studied for finite-time convergence control [21,22]. A series of derived SMC
methods have been used to solve different engineering problems. Compared to PID
control and optimal control, SMC offers better anti-interference ability [23,24]. Under
the framework of SMC, the tracking process of the system can be divided into a sliding
surface reaching stage and a sliding stage [18,25,26]. To fully improve the response speed,
an integral sliding surface was constructed so that the system is located on the sliding
surface in the initial stage [27–29]. Based on the backstepping method [30–32], the sliding
surface was designed hierarchically to ensure the sequential convergence of the system
state variables. By eliminating the reaching stage of the sliding surface, the response time
of the system was effectively shortened. Moreover, considering the external disturbances
that still exist in the system, adaptive extreme learning machines (AELMs) were introduced
for dynamic compensation [33–35]. By adjusting the output weight of the ELM through an
adaptive law, the disturbances of the system were compensated in real time. The reaching
law was designed based on a finite-time lemma to ensure the finite-time return of the
system to the sliding surface in response to the presence of chattering in the system. Under
the designed method, the internal coupling and external disturbances were suppressed,
and the stability and energy-saving performance were ensured. The contributions of this
work are as follows:

1. A decoupling control strategy is designed to eliminate the internal nonlinear coupling
of the 3-DOF stabilized control system, through which the original system is simplified
into three pseudolinear subsystems.

2. An integral sliding surface is designed to eliminate the reaching stage of the sliding
surface and shorten the system’s response time. Using the backstepping method to
construct the sliding surface layer by layer, the system achieves finite-time conver-
gence along the integral sliding surface.
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3. A reaching control law is designed based on a finite-time lemma to guarantee that the
system state can return to the sliding surface under chattering. AELMs are introduced
to suppress unmodelled dynamics and external disturbances in the system.

4. The energy-saving performance of the sail is improved by the optimization of the
transient and steady-state characteristics.

In addition, experiments on a preliminary prototype illustrate the effectiveness of the
proposed method. Comparisons with different methods were conducted to demonstrate
the superiority of the designed method.

The remainder of this paper is structured as follows: Section 2 introduces some
preliminary concepts. In Section 3, the structure of the system is introduced, and the
dynamic model of the system is derived. In Section 4, the reversibility of the origin system
is verified, and the inverse dynamics are constructed for decoupling. In Section 5, the
backstepping integral sliding mode control strategy is presented to ensure closed-loop
control and disturbance suppression. The stability of the proposed control approach is
proven by Lyapunov analysis. In Section 6, experiments on a principle prototype are
provided to verify the effectiveness. Finally, some conclusions are offered in Section 7.

2. Preliminaries

In this section, some lemmas are introduced, which play an important role in subse-
quent control strategy design.

Definition 1. Consider the following dynamic system:

.
x(t) = f (x, t), x(0) = x0, x(t) ∈ Rn (1)

where f : U → Rn is continuous, U0 is an open neighborhood of the origin, and x(t) ∈ Rn

is the state variable of the system.

Lemma 1. Assume that there is a differentiable positive definite radially unbounded
function V(x) that satisfies [17]:

.
V(x) ≤ −a1V(x)γ1 − a2V(x)γ2 + δ0, ∀s ̸= 0 (2)

where x is an n-dimensional vector, a1, a2 > 0, δ0 > 0, and 0 < γ2 < 1 < γ1. The finite-time
stable equilibrium point is x(0), and the time satisfies the following inequality:

T ≤ Tmax = 1/[a1κ(γ1 − 1)] + 1/[a2κ(γ2 − 1)] (3)

where constant κ satisfies 0 < κ < 1. The x will converge to the domain:

Q =
{

x
∣∣V(x) ≤ min

{{
[δ0/[γ1(1 − κ)]}γ1 ,

{
[δ0/[γ2(1 − κ)]}γ2

}}
(4)

3. Dynamic Model of the 3-DOF Stabilized System

This section provides an overview of the mechanical structure and operational princi-
ples of the system. Then, the coordinate system and the dynamic model are established.
The 3-DOF stabilized system is used for angle tracking of the optimal sail azimuth and
suppression of the ship attitude sway.

Considering the azimuth tracking target of the sail, the azimuth, roll, and pitch
subsystems of the system are designed as the inner loop, middle loop, and outer loop,
respectively. When the ship swing is measured, the system controls the sail to move in
reverse to maintain a stable attitude. As shown in Figure 1, Each subsystem controls the
motor through a controller and achieves closed-loop control of the angle.
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Figure 1. Schematic diagram of the system.

However, the performance of the system is degraded by internal coupling and external
disturbances during the tracking process, and the thrust of the sail is affected by the optimal
attitude deviation. The dynamic coupling between various motion frames increases the
nonlinearity of the system. Moreover, external disturbances affect the uncertainty and
stability of the system. The influence of angular velocity and moment of inertia between
various subsystems leads to the inapplicability of linear control methods. Therefore,
decoupling methods and robust methods for nonlinear models are considered to improve
system performance. To construct the control strategy, the system model is preliminarily
analyzed.

In the modelling of the system, the system moves with the ship and requires isolation
of the 3-DOF attitude deviation of the ship. In the process of establishing coordinate
systems, it is necessary to consider the impact of ship sway on the system model. The
heading coordinate system is defined as the base coordinate system, and the outer ring,
middle ring, and hull coordinate systems are defined to describe the yaw, roll, and pitch
of the 3-DOF sway motion. The outer loop, middle loop, and inner loop of the system are
designed as pitch, roll, and azimuth servo systems, respectively. All three subsystems are
used for ship disturbance suppression. In addition, the azimuth subsystem needs to ensure
the optimal sail azimuth.

The coordinate system definition of the system and the hull is shown in Figure 2. For
the basic coordinate system (target course coordinate system), the x-axis points in the heave
direction of the hull, which is opposite to the geocentric direction. The y-axis points in
the direction of the target course of the ship, and the z-axis forms a right-hand coordinate
system with the x-axis and y-axis. The basic coordinate system is defined as obxbybzb. For
the hull coordinate system, the origin of the hull coordinate system coincides with the basic
coordinate system, and the hull coordinate system is defined as osxsyszs. Considering the
ship swing, the hull coordinate system relative to the heading coordinate system can be
defined with roll angle θsx, pitch angle θsy, and azimuth angle θsz. Then, the pitch, roll, and
yaw of the system move around the x-, y-, and z-axes, respectively.
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During rotation of the three motion frames, both the angular velocity and the moment
of inertia are coupled [36,37]. The moment of inertia of each ring is iteratively calculated
layer-by-layer from the inside to the outside, and the angular velocity of each ring is
iteratively calculated layer-by-layer.

Define the angular velocity vector of each coordinate system, where
.
θs = [

.
θsx

.
θsy

.
θsz]

T

is the angular velocity vector of the hull coordinate system,
.
θψ = [

.
θψx

.
θψy

.
θψz]

T
is the

angular velocity vector of the pitch ring coordinate system,
.
θϕ = [

.
θϕx

.
θϕy

.
θϕz]

T
is the

angular velocity vector of the roll ring coordinate system, and
.
θφ = [

.
θφx

.
θφy

.
θφz]

T
is the

angular velocity vector of the azimuth ring coordinate system. The rotation matrix between
the coordinate systems from inside to outside can be defined as Tφϕ, Tϕψ, Tψs. Then, the
transfer relationship of each coordinate system under the calculation of the rotation matrix is
as follows:

The angle of rotation of the pitch ring coordinate system oψxψyψzψ around the x-axis
in the hull coordinate system osxsyszs is defined as ψ. The angular velocity projected onto
the pitch ring coordinate system is expressed as:

.
θψx.
θψy.
θψz

 =

1 0 0
0 cos ψ sin ψ
0 − sin ψ cos ψ




.
θsx.
θsy.
θsz

 ⇔
.
θψ = Tψs

.
θs (5)

The angle of rotation of the roll ring coordinate system oϕxϕyϕzϕ around the y-axis in
the pitch ring coordinate system oψxψyψzψ is defined as ϕ. The angular velocity projected
onto the roll ring coordinate system is expressed as:

.
θϕx.
θϕy.
θϕz

 =

cos ϕ 0 − sin ϕ
0 1 0

sin ϕ 0 cos ϕ




.
θψx.
θψy.
θψz

 ⇔
.
θϕ = Tϕψ

.
θψ (6)

The angle of rotation of the azimuth ring coordinate system oφxφyφzφ around the
z-axis in the roll ring coordinate system oϕxϕyϕzϕ is defined as φ. The angular velocity
projected onto the azimuth ring coordinate system is expressed as:

.
θφx.
θφy.
θφz

 =

 cos φ sin φ 0
− sin φ cos φ 0

0 0 1




.
θϕx.
θϕy.
θϕz

 ⇔
.
θφ = Tφϕ

.
θϕ (7)

where the rotation matrices Tφϕ, Tϕψ, Tψs are orthogonal.
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Considering the coupling effect between frames, the angular velocity of each frame is
projected from the outside to the inside. The angular velocity of the azimuth ring, the roll
ring, and the pitch ring under their own coordinate system satisfy the following equations:

ωφ = ωφs + ωφψ + ωφϕ + ωφφ = TφϕTϕψTψsωss + TφϕTϕψωψψ + Tφϕωϕϕ + ωφφ

ωϕ = ωϕs + ωϕψ + ωϕϕ = TϕψTψsωss + Tϕψωψψ + ωϕϕ

ωψ = ωψs + ωψψ = Tψsωss + ωψψ

(8)

where ωφφ = [
.
φ 0 0]T , ωϕϕ = [

.
ϕ 0 0]

T
, and ωψψ = [

.
ψ 0 0]

T
are the angular

velocities of each frame drive motor shaft rotating around itself. Considering the coupling
effect between frames, the angular velocity of each frame is projected from the inside to the
outside, and the moment of inertia matrix under the coordinate system of the azimuth ring,
roll ring, and pitch ring is expressed as:

Jφ = Jφφ

Jϕ = Jϕφ + Jϕϕ = Tϕφ Jφ

(
Tϕφ

)T
+ Jϕϕ =

(
Tφϕ

)T JφφTφϕ + Jϕϕ

Jψ = Jψϕ + Jψψ = Tψϕ Jϕ

(
Tψϕ

)T
+ Jψψ =

(
Tϕψ

)T
((

Tφϕ

)T JφφTφϕ + Jϕϕ

)
Tϕψ + Jψψ

(9)

where the influence of the ship propulsion-assisted sail on the rotational inertia of the inner
ring is considered, and the axisymmetric relationship of each frame is considered. The
inertia product matrices of frames are defined as:

Jφφ =

 Jφxx −Jφxy 0
−Jφxy Jφxx 0

0 0 Jφzz

, Jϕϕ =

Jϕxx 0 0
0 Jϕyy 0
0 0 Jϕzz

, Jψψ =

Jψxx 0 0
0 Jψyy 0
0 0 Jψzz

 (10)

where Jφxx, Jφyy, Jφzz, Jϕxx, Jϕyy, Jϕzz, Jψxx, Jψyy, Jψzz on the main diagonal of Equation (11)
represents the moment of inertia of each frame of the turntable when rotating around
a fixed axis. Caused by the asymmetric structure of the sail on the specific plane, the
element −Jφxy on the non-diagonal is the product of moments of inertia, representing the
relationship of moments of inertia between frames that are not coaxial.

The dynamic models of the three frames are described by:
Jψx

.
ωψx +

(
Jψy − Jψz

)
ωψyωψz = Mψx

Jϕy
.

ωϕy +
(

Jϕx − Jϕz
)
ωϕxωϕz = Mϕy

Jφz
.

ωφz +
(

Jφx − Jφy
)
ωφyωφx = Mφz

(11)

The dynamic equation of each frame motor is defined as:
JA

..
ψ − KAυ1 + BA

.
ψ = Mψx

JB
..
ϕ − KBυ2 + BB

.
ϕ = Mϕy

JC
..
φ − KCυ3 + BC

.
φ = Mφz

(12)

where JA, JB, and JC are the moments of inertia of the motors, BA, BB, and BC are the motor
damping coefficients, υ1, υ2, and υ3 are the input current signals used for motor control,
and Mψx, Mϕy, and Mφz are the total load torque on the motor shaft.

Equations (8)–(11) are substituted into Equation (12), and the system model can be
expressed by Equation (54) in Appendix A. Considering that the roll angle and pitch angle
of the system are small, the influence of two or more terms, including sin ϕ or sin ψ in total,
and three or more terms, including the trigonometric function, are eliminated, and the
variables ψ, ϕ, and φ are redefined as x1, x2, and x3.

During the system’s actual operation, disturbances inevitably impact its stability,
necessitating the robustness of the controller. To achieve precise disturbance suppression
and minimize controller conservatism, disturbances are categorized into internal coupled
disturbances and external environmental changes. Decoupling control is devised to mitigate
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internal nonlinear influences. Taking into account the errors of decoupling control and
external environmental changes, SMC is employed for interference suppression, ensuring
the system achieves the desired dynamic characteristics.

4. Design of the Decoupling Control Strategy

In this section, the decoupling control strategy is designed based on ISM to eliminate
the influence between subsystems. The dynamic model is a multivariable, strongly coupled
nonlinear system. According to the derivation in Appendix A, the state space description
can be redefined as:

.
x1 = x2.
x2 = f1(x1, · · · , x6) + KAυ1 + d1(t).
x3 = x4
x4 = f2(x1, · · · , x6) + KBυ2 + d3(t).
x5 = x6.
x6 = f3(x1, · · · , x6) + KCυ3
+g1(x1, x2, · · · , x6)υ1 + d5(t)

,


y1 = x1

y2 = x3

y3 = x5

(13)

where, y1, y2, and y3 are the output of the system, representing the angles of the azimuth
motor, roll motor, and pitch motor.

Based on Equation (13), the ISM can be used to decouple the system into three inde-
pendent subsystems. First, the reversibility of Equation (13) is verified by using Interactor
theory [38]. The n-th derivative of output yi is defined as y(n)i . The derivative of yi is

calculated until all components in Yq =
[
y(n1)

1 y(n2)
2 y(n3)

3

]T
are explicit expressions of υ.

The outputs satisfying the condition are derived as:

y(2)1 = f1(x1, · · · , x6) + KAυ1

y(2)2 = f2(x1, · · · , x6) + KBυ2

y(2)3 = g1(x1, · · · , x6)υ1 + f3(x1, · · · , x6) + KCυ3

(14)

Then, Yi(i = 1, 2, 3) is expressed as follows:

Y1 = y(2)1

Y2 = [ Y1 y(2)2 ]
T
= [ y(2)1 y(2)2 ]

T

Y3 = [ Y2 y(2)3 ]
T
= [ y(2)1 y(2)2 y(2)3 ]

T
(15)

The Jacobi matrix based on Interactor theory is obtained as follows:

∂Y1/∂υT =
[

KA 0 g1(x)
]
⇒ rank(∂Y1/∂υT) = 1

∂Y2/∂υT =

[
KA 0 g1(x)
0 KB 0

]
⇒ rank(∂Y2/∂υT) = 2

∂Y3/∂υT =

 KA 0 g1(x)
0 KB 0
0 0 KC

 ⇒ rank(∂Y3/∂υT) = 3

(16)

Considering that the Jacobian matrix is non-singular, such that the system has relative
order σ =

(
σ1 σ2 σ3

)T
=

(
1 2 3

)T according to its definition, for Equation (13), the
relative order of the system satisfies that:

3

∑
i=1

σi ≤ n = 6 (17)
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Therefore, the original system is reversible. The derivative of the output variable can
be regarded as the input of the inverse dynamic, and the decoupling control strategy can
be expressed as:

υ1 = 1
KA

{y1 − f1(x1, · · · , x6)− g1(x1,··· ,x6)
KC

[y3 − f3(x1, · · · , x6)]}
υ2 = 1

KB
[y2 − f2(x1, · · · , x6)]

υ3 = 1
KC

[y3 − f3(x1, · · · , x6)]

(18)

Therefore, the decoupling control strategy is designed to eliminate internal coupling
within the system. By connecting integrators with the established inverse dynamic model,
the required items in Equation (18) can be obtained. The composite system formed can be
regarded as three independent subsystems. Therefore, the original system is transformed
into three second-order linear integral systems by the decoupling strategy. Considering the
unmodelled dynamics and external disturbances, the model of the system after decoupling
is redefined as:{ .

x1 = x2.
x2 = u1 + d1(t)

{ .
x3 = x4.
x4 = u3 + d3(t)

{ .
x5 = x6.
x6 = u5 + d5(t)

(19)

Figure 3 shows the overall framework of the system with decoupling control. Ac-
cording to the principle of ISM, the output signal of the closed-loop controller is used as a
high-order input of the pseudo linear system. More specifically, ui(i = 1, 3, 5) are defined
as the input of decoupling control

..
xi(i = 1, 3, 5). Integrators are used to restore lower-

order signals to form dynamic decoupling, which means the first-order and second-order
integrals of ui(i = 1, 3, 5) are used as

.
xi(i = 1, 3, 5) and xi(i = 1, 3, 5) in decoupling control.
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However, the three independent subsystems are still affected by the unknown decou-
pling errors and external environment changes. The decoupled subsystems are open-loop
integral systems with unknown disturbances di(t), i = 1, 3, 5. Therefore, to ensure stable
tracking of the sail, the closed-loop control strategy is designed to enhance robustness and
stability.

5. Design of the Closed-Loop Control Strategy
5.1. Design of the Backstepping Integral Sliding Mode Control Strategy

Considering that the decoupled subsystems are open-loop and affected by external
disturbances, the backstepping integral sliding mode control strategy based on the back-
stepping method is constructed to improve the stability of the system [39–41]. SMC can be
divided into sliding and reaching stages. Considering the requirement of rapid attitude
tracking of the sail, a time-varying sliding surface is designed to eliminate the reaching
stage and enhance the convergence of time. Under the framework of backstepping [22], the
sliding surface is sequentially designed in the angular velocity loop and angle loop. The
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time-varying parameters used to represent the initial position on the sliding surface are
integrated continuously, which ensures that the system satisfies the condition of the sliding
surface and directly enters the sliding stage. The principle of the backstepping method is
to design Lyapunov functions and intermediate virtual control variables for each order of
the subsystem and transfer them to the control law design of the entire system. Through
the advantage of finite-time lemmas, the backstepping method is combined with integral
sliding surface to realize the hierarchical convergence of the system in finite time on the
sliding surface.

The tracking errors of the decoupled subsystems are defined. Then, the error tends
to 0 along the integral sliding surface. Based on the sliding surface designed by the
backstepping method, the hierarchical convergence of the system error in finite time is
ensured. First, the error variables of each subsystem are defined as:

zi = xi − rid
zi+1 = xi − αi(xi)

(20)

where i = 1, 3, 5 represents three error subsystems after decoupling, and αi(xi) is the virtual
control law to be designed.

The derivation of the first-order system is as follows:

.
zi =

.
xi −

.
rid

= xi+1 −
.
rid

= zi+1 + αi(xi)−
.
rid

(21)

SMC can be divided into reaching stage and sliding stage. To enable the system to have
the desired sliding surface dynamic characteristics faster, a time-varying sliding surface
with state integration was designed. Since the system satisfies the sliding surface in any
state, the sliding stage is eliminated, and the system directly enters the sliding state. Based
on the principle of the terminal principle, the errors of variables on the sliding surface
can achieve the convergence of the system in finite time. The integral sliding surface is
defined as:

si(t) = λ−1
i z

pi
qi
i +

∫ t
0− zidτ i = 1, 3, 5 (22)

where λi > 0 and pi, qi are odd numbers and 1 < pi, qi < 2.
The time-varying parameter of the sliding surface is defined as:

ωi(t) =
∫ t

0−
zidτ (23)

By setting its initial value ωi(0) = [−λ−1
i zi(0)]

pi/qi , the reaching stage can be elimi-
nated, and the convergence time is given by:

ti = ωi(0)
(pi−qi)/qi pi/[λi(pi − qi)] (24)

Then, the virtual control strategy based on the backstepping method is defined as:

αi(xi) = −qiλiz
2−pi/qi
i /pi +

.
zid (25)

To control the convergence of zi, the relationship between zi and zi+1 is established as:

zi+1 = λ−1
i zpi/qi

i +
∫ t

0−
zidτ (26)

where zi is given as:
.
zi = −qiλiz

2−pi/qi
i /pi (27)
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The sliding surface satisfies the finite-time convergence. Considering the relationship
between ωi and zi, zi converges to 0 with ωi in finite time. Since zi+1 ̸= 0, the control
law ui is designed for the subsystem to make zi+1 converge to 0 in finite time to ensure
that the system is located on the sliding surface at the initial stage and that the finite-time
hierarchical convergence of the system on the sliding surface is guaranteed.

The sliding mode approach law
.
si+1 = −ksi+1 − εisign(si+1) is selected. For the dis-

turbances di(t), let k > 0, and the preliminary system control strategy ui−pre is derived as:

ui−pre = −λi+1
qi+1

pi+1
z

2qi+1−pi+1
qi+1

i+1 +
∂αi
∂xi

.
xi − ksi+1 − di(t)− εisign(si+1zi+1) (28)

Under the control of this scheme, the reaching stage of the sliding surface is eliminated,
and the finite-time convergence along the sliding surface is guaranteed. However, the
system is still subject to unknown disturbances di(t) from external environments and
decoupling errors, which leads to deviations from the expected performance of the system.
Therefore, it is necessary to further compensate for the unknown disturbances and improve
the robustness.

5.2. Disturbance Compensation Based on AELM

Considering that the decoupling error and the external disturbances di(t) of the
system are unknown, compensation strategy needs to be designed. The neural network
has desirable fitting ability for unknown functions, so an adaptive ELM is designed to
approximate the disturbances, and the Lyapunov function is constructed to verify its
stability.

The ELM neural network is a single hidden-layer neural network (SHLNN) based on
the least square algorithm. For the SHLNN model, the training samples {(xi, ti)}N

i=1 are
composed of N different samples. The input vector xi = [xi1, xi2, · · · , xin]

T ∈ R corresponds
to the expected output vector ti = [ti1, ti2, · · · , tim]

T ∈ Rm. An SHLNN is provided with n
input neurons, L hidden-layer neurons, and m output neurons. The activation function of
the hidden layer is G(ai, bi, x) = g(aix + bi); then, the output of the neural network can be
obtained as:

y = fL(x) =
L

∑
i=1

βiG(ai, bi, x) (29)

where ai = [ai1, ai2, · · · , ain]
T ∈ Rn is the input weight, and bi ∈ R is the bias of the

hidden-layer neuron.
Notably, in the process of adjustment based on the gradient-based learning algorithm,

ai, bi, and βi need to be adjusted at the same time, such that the calculation is complicated.
The SHLNN based on the ELM algorithm offers the advantages of not relying on ai and bi
in the adjustment process, and the structure is simple. Its basic principles are as follows:

Equation (29) is rewritten as:
Hβ = T (30)

where the hidden-layer output matrix is regarded as a random feature mapping matrix,
which is written as:

H =
[
h(x1) · · · h(xN)

]T
=

G(a1, b1, x1) · · · G(aL, bL, x1)
...

. . .
...

G(a1, b1, xN) · · · G(aL, bL, xN)


N×L

(31)

Then, β = [βT
1 · · · βT

L ]
T
L×m is the weight, and T = [tT

1 · · · tT
L ]

T
N×m is the sample

expected output.
In the training process based on the ELM algorithm, the input weight ai and offset bi

of the hidden-layer neurons can be randomly assigned, and the hidden-layer output matrix
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H can be calculated and kept unchanged in the training process. Therefore, only the weight
matrix β from the output layer to the hidden layer needs to be calculated so the train can
be converted into the least-squares solution of Equation (31), which is rewritten as:

min
β

∥Hβ − T∥ (32)

In addition, the minimum norm least-squares solution is unique and yields:

β̂ = H†T (33)

where H† is the Moore–Penrose generalized inverse of H.
While training the neural network based on ELM to estimate the external disturbances

of the system, the adjustment of the input weight matrix ai and the bias matrix bi of the
system is avoided. When ai and bi are randomly generated, the system has the least-squares
solution β∗ under the neural network model.

During the navigation, the wind resistance experienced by the sail and the frictional
force of the motor can have an impact on the system. Meanwhile, the dynamic characteris-
tics of the motor itself can affect the accuracy of decoupling control. In order to suppress
the aforementioned disturbances, AELMs are used to estimate the disturbances, and the
output weights are adjusted based on the motor tracking errors of each subsystem.

Assumption 1. Adaptive extreme learning machines (AELMs) are employed for estimating
disturbances caused by decoupling errors and external environmental changes. When the
model incorporating real disturbances is denoted as di(t), the estimation of the disturbances
by the AELMs is defined as d̂i(t) = Hi β̂i. As the output weight β̂i is adaptively adjusted,
the optimal estimation of disturbances can be defined as di

∗(t) = Hiβi
∗. Assuming that the

optimal estimation AELMs for disturbances satisfies:

di(t) = di
∗(t) + ∆id = Hiβi

∗ + ∆id (34)

where ∆id is the estimation error of the AELMs, and the maximum value of approximation
error |∆id| is a bounded positive constant εi.

Based on the adaptive law, the approximation of the least-squares solution βi
∗ can be

obtained in the process of adjustment. The adaptive law is designed as:

.
β̂i

T
= −λ−1

i+1η
pi+1

qi+1
z(pi+1−qi+1)/pi+1

i+1 si+1Hi (35)

where
.
β̂i

T
is adjusted based on the system state error and the sliding surface.

Therefore, selecting the linear sliding mode reaching law
.
si+1 = −ksi+1 − εisign(si+1),

the control strategy ui−pre in Equation (28) is improved to:

ui = −λi+1qi+1z(2qi+1−pi+1)/qi+1
i+1 /pi+1 +

∂αi
∂xi

.
xi

−Hi β̂i − λi+1qi+1z(qi+1−pi+1)/qi+1
i+1 ksi+1/pi+1 − εisign(si+1zi+1)

(36)

where εisign(si+1) is set as the switching term of the system to ensure system robustness.
When the weights of the neural network reach the optimal state under the influence of the
adaptive law Equation (35), εisign(si+1) is used to suppress estimation errors to ensure that
the state moves back to the sliding surface direction. To analyze the convergence of the
reaching stage, the Lyapunov function is defined as:

Vi+1(t) =
1
2

s2
i+1 +

1
2ηi

β̃T
i β̃i (37)

where β̃i = β̂i − βi
∗ is the estimation error of optimal weights.
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Substituting Equations (13) and (36) into Equation of (37) yields:

.
Vi+1(t) = si+1

.
si+1 +

.
β̂i

T
β̃i/ηi

= si+1(zi+1 + λ−1
i+1

pi+1
qi+1

.
zi+1z(pi+1−qi+1)/pi+1

i+1 ) + 1
ηi

.
β̂i

T
β̃i

= si+1[zi+1 + λ−1
i+1

pi+1
qi+1

z(pi+1−qi+1)/pi+1
i+1 (ui + di(t)− ∂αi(xi)

∂xi

.
xi)] +

1
ηi

.
β̂i

T
β̃i

= si+1[λ
−1
i+1

pi+1
qi+1

z(pi+1−qi+1)/pi+1
i+1 (−Hi β̂i − λi+1qi+1z(qi+1−pi+1)/qi+1

i+1 ksi+1/pi+1

−εisign(si+1zi+1) + di(t))] + 1
ηi

.
β̂i

T
β̃i

(38)

Considering the approximation error of AELMs, Equation (38) can be rewritten as:
.

Vi+1(t) = si+1[λ
−1
i+1

pi+1
qi+1

z(pi+1−qi+1)/pi+1
i+1 (Hiβi

∗ + ∆id − λi+1qi+1z(qi+1−pi+1)/qi+1
i+1 ksi+1/pi+1

−εisign(si+1zi+1))]− λ−1
i+1

pi+1
qi+1

z(pi+1−qi+1)/pi+1
i+1 si+1Hi β̃i

≤ si+1[ksi+1 + λ−1
i+1

pi+1
qi+1

z(pi+1−qi+1)/pi+1
i+1 (∆id − εisign(si+1zi+1))]

≤ −ks2
i+1

≤ −kVi+1 + δi

(39)

where δi =
1

2ηi
β̃T

i β̃i is the convergence error of the reaching stage.
Therefore, the finite-time convergence of error variables can be achieved, and the

disturbances caused by decoupling errors and external environmental changes can be sup-
pressed. However, under the control of traditional sliding mode reaching, the convergence
time of the system is theoretically infinite. Considering the chattering characteristics of
SMC, it is inevitable that the system will deviate from the sliding surface. The traditional
sliding mode reaching law cannot guarantee that the time for the system to return to the
sliding surface is finite. Therefore, to achieve the finite time of reaching the sliding mode
when the chattering deviates from the sliding surface, it is necessary to improve the design
of the system approach law.

5.3. Design of Global Finite-Time BTSM Control Based on AELM

To ensure that the system can suppress the impact of chattering in finite time and
ensure the expected characteristics, an approach law based on Lemma 1 is designed to
make the sliding surface reach phase time finite [42]. Then, the improved reaching law of
the system is proposed:

.
si+1 = γi(

∣∣∣si+1/
√

2
∣∣∣2)mi

ni sign(si+1) + γi+1(
∣∣∣si+1/

√
2
∣∣∣2)mi+1

ni+1 sign(si+1) (40)

where considering the design target of 0 < mi+1/ni+1 < 1 < mi/ni in the expected
approach law of the system and the case that the sliding surface of the integration terminal
is at si+1(t) = 0 in the initial stage, the singularity of the control law caused by the negative
power term related to si+1 is avoided in the design process. Under the designed reaching
control law, the system will suppress chattering and return to the sliding mode surface
within a finite time, which will be proven later.

It should be noted that SMC can be divided into two stages: the reaching stage and the
sliding stage. The designed reaching control law is employed to steer the state towards the
sliding surface, aiming for si+1(t) = 0. Subsequently, the designed equivalent control law
is utilized to steer the system towards convergence of variables within finite time under the
si+1(t) = 0 state while adhering to the established dynamic characteristics.

The sliding surface is proposed as Equation (22), with the time-varying term con-
sistently ensuring satisfaction of si+1(t) = 0. Consequently, the reaching stage can be
eliminated, allowing the system to directly transition into the sliding stage. However, if
there is mi/ni < 0 and mi+1/ni+1 < 0, employing s as the denominator in Equation (40)
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would result in (
∣∣∣si+1/

√
2
∣∣∣2)mi

ni and (
∣∣∣si+1/

√
2
∣∣∣2)mi+1

ni+1 tending towards infinity, rendering
the control law meaningless at si+1(t) = 0. Furthermore, during the estimation of distur-
bances, the system may frequently enter sliding surface under the influence of the reaching
control law uire.

In servo systems, the angular position/angular velocity of the motor is driven by
the current signal generated by the controller. Considering si+1 as a bounded function
comprising system state errors, the boundary of the reaching control law uire for different
scenarios satisfies:{

−Uirel ≤ uire ≤ Uireh mi/ni > 0 and mi+1/ni+1 > 0
−∞ < uire < +∞ mi/ni < 0 or mi+1/ni+1 < 0

(41)

where Uirel and Uireh are bounded positive constants. Therefore, in order to overcome
the constraints posed by the current signal limitation of the controller, mi/ni > 0 and
mi+1/ni+1 > 0 are designed to circumvent the singularity of the control law. mi/ni > 1 is
set to satisfy the finite-time convergence property of Lemma 1.

By adding the constraint ni+1/2 < mi+1 < ni+1, the singular problem of the control
strategy of the inverse integral sliding mode in the sliding state can be avoided.

Therefore, the control strategy ui = uieq + uire + uiro is proposed as:

uieq = −λi+1
qi+1
pi+1

z(2qi+1−pi+1)/qi+1
i+1 + ∂αi

∂xi

.
xi

uire = − λi+1√
2

qi+1
pi+1

z(qi+1−pi+1)/qi+1
i+1 [γi(

∣∣∣si+1/
√

2
∣∣∣)(2mi−ni)/ni

sign(si+1)

+γi+1(
∣∣∣si+1/

√
2
∣∣∣)(2mi+1−ni+1)/ni+1

sign(si+1)]

uiro = −Hi β̂i − εisign(si+1zi+1)

(42)

where uieq is the equivalent control term, uire is the reaching law control term, uiro is the
robust control term, and ni < mi, ni+1/2 < mi+1 < ni+1.

As shown in Figure 4, decoupling control based on ISM is used to eliminate internal
coupling and thus form three pseudo linear subsystems. Considering the modelling errors
of the inverse system and external environmental disturbances, compensation control
composed of adaptive neural networks is used to suppress external disturbances and
decouple errors. Reaching control and equivalent control are used to make the system
attain the desired closed-loop characteristics. Under the influence of the above control
methods, the internal coupling and external disturbances of the system are eliminated, and
tracking of the target signal can be achieved in a finite time.

Decoupling control is employed to eliminate internal coupling, SMC is utilized to
achieve finite-time convergence, and AELMs are applied to mitigate the conservatism
of robust terms. Since decoupling control relies on an established idealized model, the
decoupled system may still be affected by unknown disturbances, primarily stemming from
decoupling deviations and external environmental changes. The objective of decoupling
control is to initially weaken internal coupling. On this basis, SMC is used to make the
system have closed-loop characteristics due to the difficulty in accurately establishing a
decoupled disturbance model. Under normal circumstances, the upper bound of the robust
term is the disturbances upper bound. On the basis of AELMs, the upper bound of robust
terms can be converted into the upper bound of the approximation error of the neural
network. The approximation of unknown models by neural networks is used to estimate
disturbances and reduce controller conservatism.
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5.4. System Stability Analysis

With the proposed control strategy, a Lyapunov analysis of finite-time convergence is
conducted. The system automatically converges hierarchically along the sliding surface
when reaching the sliding surface, and Vi(t) = s2

i /2 is clearly a finite-time stable expression.
Therefore, the characteristic of the system returning to the sliding surface in a finite time is
verified, and the Lyapunov function Vi+1(t) is defined as follows:

Vi+1(t) = s2
i+1/2 + β̃T

i β̃i/2ηi (43)

The first-order derivative of Vi+1(t) with respect to t yields:

.
Vi+1(t) =

.
si+1si+1 +

.
β̂i

T
β̃i/ηi

= si+1(zi+1 + λ−1
i+1

pi+1
qi+1

.
zi+1z(pi+1−qi+1)/pi+1

i+1 ) + 1
ηi

.
β̂i

T
β̃i

= si+1[zi+1 + λ−1
i+1

pi+1
qi+1

z(pi+1−qi+1)/pi+1
i+1 (ui + di(t)− ∂αi(xi)

∂xi

.
xi)] +

1
ηi

.
β̂i

T
β̃i

(44)

where di(t)− d̂i(t) = Hiβi
∗ − Hiβi + ∆id = −Hi β̂i + ∆id, and ∆id is the estimation error of

the AELM and satisfies |∆id| < εi.
By substituting Equation (35) and Equation (42), the following stability analysis is

derived:
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.
Vi+1(t) = si+1

{
λ−1

i+1
pi+1
qi+1

z(pi+1−qi+1)/qi+1
i+1 (Hiβi

∗ − Hi β̂i + ∆id)

−λ−1
i+1

pi+1
qi+1

z(pi+1−qi+1)/qi+1
i+1 εisign(si+1zi+1)− [γi

∣∣∣si+1/
√

2
∣∣∣(2mi−ni)/ni

sign(si+1)

+γi+1

∣∣∣si+1/
√

2
∣∣∣(2mi+1−ni+1)/ni+1

sign(si+1)]/
√

2
}
+

.
β̂i

T
β̃i/ηi

(45)

Considering that the error of the AELM is defined, the deviation from the AELM
estimation can be obtained. Meanwhile, the terms used for reaching control and those used
for equivalent control are separated to prove different characteristics, which is expressed as:

.
Vi+1(t) = si+1[λ

−1
i+1

pi+1
qi+1

z(pi+1−qi+1)/qi+1
i+1 (Hi β̃i + ∆id)− λ−1

i+1
pi+1
qi+1

z(pi+1−qi+1)/qi+1
i+1 εisign(si+1zi+1)]

−[γi(si+1/
√

2)
2mi/ni + γi+1(si+1/

√
2)

2mi+1/ni+1 ] +
.
β̂i

T
β̃i/ηi

= si+1[λ
−1
i+1

pi+1
qi+1

z(pi+1−qi+1)/qi+1
i+1 ∆id − λ−1

i+1
pi+1
qi+1

z(pi+1−qi+1)/qi+1
i+1 εisign(si+1zi+1)]

+(λ−1
i+1

pi+1
qi+1

z(pi+1−qi+1)/qi
i+1 si+1Hi +

1
ηi

.
β̂i

T
)β̃i − γi(si+1/

√
2)

2mi/ni − γi+1(si+1/
√

2)
2mi+1/ni+1

(46)

Because the amplitude of the robust term of the system is higher than the approxi-
mation error of the neural network, the direction of system state changes and deviations
can be maintained in the opposite direction by switching functions. Therefore, equation
derivation can be transformed from equations to inequalities, which is expressed as:

.
Vi+1(t) ≤ λ−1

i+1
pi+1
qi+1

z(pi+1−qi+1)/qi+1
i+1 si+1Hi β̃i +

1
ηi
(−λ−1

i+1ηi
pi+1
qi+1

z(pi+1−qi+1)/qi+1
i+1 si+1Hi)β̃i

−γi(si+1/
√

2)
2mi/ni − γi+1(si+1/

√
2)

2mi+1/ni+1

= −γi+1(s2
i+1/2)mi/ni − γi+1(s2

i+1/2)mi+1/ni+1

= −γi(Vi+1 − β̃T
i β̃i/2ηi)

mi/ni − γi+1(Vi+1 − β̃T
i β̃i/2ηi)

mi+1/ni+1

(47)

It is clear that terms with even powers have a possibility of being less than zero in
the initial stage of the system. When the error is less than zero, even power terms will
result in the control signal being unable to be solved. Therefore, the parameter values
ni/mi = 3 and mi/ni = 3/5 can be defined, which also satisfy the conditions ni < mi and
ni+1/2 < mi+1 < ni+1. In addition, the finite-time convergence characteristics can also be
satisfied. According to Equation (47), we obtain:

.
Vi+1(t) ≤ −γi(Vi+1 − β̃T

i β̃i/2ηi)
3 − γi+1(Vi+1 − β̃T

i β̃i/2ηi)
3/5

(48)

The term containing the third power is thus expanded, and the equation is scaled
down, which satisfies:

.
Vi+1(t) ≤ −γi[V3

i+1 − (β̃T
i β̃i)

3
/8ηi − V2

i+1 β̃T
i β̃i/2ηi + 3Vi+1(β̃T

i β̃i)
2
/4ηi

2]− γi+1V3/5
i+1

+γi(2ηi)
−3/5(β̃T

i β̃i)
3/5 (49)

The terms related to convergence theory are analyzed, and some terms are merged.
Then, the inequality is derived as:

.
Vi+1(t) ≤ −γiV3

i+1 − γi+1V3/5
i+1 + γi(β̃T

i β̃i)
3
/8ηi + 3γiV2

i+1 β̃T
i β̃i/2ηi + γi+1(2ηi)

−3/5(β̃T
i β̃i)

3/5

= −γiV3
i+1 − γi+1V3/5

i+1 + δi
(50)

where δi = γi(β̃T
i β̃i)

3
/8ηi + 3γiV2

i+1 β̃T
i β̃i/2ηi + γi+1(2ηi)

−3/5(β̃T
i β̃i)

3
is a bounded non-

negative number, and its value is adjusted by adjusting the parameters. According to
Lemma 1, the time of reaching stage is finite, that is, tis. As the state is maintained on si+1,
the error states zi+1 and zi converge to 0 in a finite time. Therefore, the state can return to
the sliding surface in a finite time, even under chatting, and the convergence time of the
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system is globally finite. The decoupling control strategy based on the ISM achieves the
elimination of internal coupling in the system. The stability and robustness are ensured
through the backstepping integral sliding mode control strategy. Therefore, the sail servo
system achieves a 3-DOF target attitude in a finite time, and the optimal position and
maximum thrust can be ensured.

6. Numerical Simulation and Prototype Verification

In this section, the control strategy of the system is verified through simulation and
experimentation. The 3-DOF target signals of the sail are generated through different
approaches and used for system tracking. Meanwhile, the proposed control strategy
(ABISMC-ISM) is compared to backstepping sliding mode control (BSMC) and PI control
to ensure the analysis results with minimum errors.

6.1. Design of Comparison

To conduct comparative design of the various control strategies, the dynamic model
of the system is primarily established. As shown in Table 1, the dynamics model is selected
in accordance with the actual engineering situation.

Table 1. Parameters of system dynamics model.

Symbol Value Symbol Value Symbol Value

Jφxx 0.84 kg·m2 Jφyy 0.71 kg·m2 Jφzz 0.66 kg·m2

Jφxy 0.23 kg·m2 Jϕxx 0.25 kg·m2 Jϕyy, Jϕzz 2.62 kg·m2

Jψxx, Jψyy 3.55 kg·m2 Jψzz 3.83 kg·m2 JA 0.01 kg·m2

JB, JC 0.03 kg·m2 KA 0.05 N·m/A KB, KC 0.22 N·m/A
BA 0.02 N·m/(rad/s) BB 0.1 N·m/(rad/s) BC 0.1 N·m/(rad/s)

Based on the dynamics model, the performance of the system under different strategies
is designed and compared.

Firstly, the design of ABISMC-ISM is divided into two parts: decoupling control and
sliding mode control. For decoupling control, the inverse system is constructed based
on the actual measured model parameters. For SMC, the controller is established based
on the expected dynamic performance. As shown in the table, the number of nodes and
estimation error of the AELMs, as well as the parameters for sliding mode reaching control
and sliding control, are all set for the controller.

Secondly, the BSMC used for comparison is only designed based on sliding mode
control to demonstrate the effectiveness of the proposed method. Both system coupling
and external environmental changes are regarded as disturbances, and the parameters
for sliding mode reach control and approach control are determined with reference to the
ABISMC-ISM.

Thirdly, the design of the PI control utilized is configured via the parameter au-
tonomous tuning function embedded within the controller program. Under the load
conditions of the sail and motion frames, sending commands through the upper computer
can enable the controller to enter parameter adaptive mode. Within this mode, the PI
controller is selected, and the parameters slated for adjustment are the proportional gain
KP and integration time KI . Employing control signals of varying amplitudes on the motor
serves to discern the system dynamic characteristics. Through the pursuit of optimal error
minimization and response speed enhancement, the parameters of the PI controller can be
fine-tuned.

As depicted in Table 2, the parameters of ABISMC-ISM, BSMC, and PI control are
established according to the model, and the designed controllers are applied for numerical
simulation and experimental validation.
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Table 2. Parameters of the designed control strategy (ABISMC-ISM, BSMC, and PI control).

Symbol Value Symbol Value Symbol Value

ni 1 ni+1 5 ηi 5
γi, γi+1 1 λi, λi+1 1 pi, pi+1 3
qi, qi+1 5 mi, mi+1 3 Ni 30

εi 5 KiP 206 KiI 7

6.2. Numerical Simulation

In the simulation environment, the 3-DOF target signal of the sail is generated through
computer simulation. The proposed method and the other two methods are applied to the
stabilized control system for ship propulsion-assisted sail.

To demonstrate the robustness of ABISMC-ISM, external disturbances and unmodelled
dynamics are applied to each of the three subsystems. The disturbances of the system are
defined as:

d1(t) = 0.25 sin(0.25t + 0.5π)
d3(t) = 0.75 sin(0.75t + π)
d5(t) = 1.25 sin(1.25t + 1.5π)

(51)

Under the defined model parameters, the 3-DOF target signal is generated computa-
tionally. The sail azimuth tracking and disturbance suppression of the ship are regarded as
the control objectives of the system. The range of azimuth tracking requirements for the
sail is defined as [−180

◦
, 180

◦
]. The range of ship swing is defined as [−15

◦
, 15

◦
]. The

desired signal is adjusted multiple times in amplitude and input into the system. The first
stage target signal is defined as follows: azimuth 105◦, roll 7.5◦, and pitch 12.5◦. After 10 s,
the target signal is adjusted to azimuth 85◦, roll 10◦, and pitch 10◦. Subsequently, it was
defined as azimuth 65◦, roll 15◦, and pitch 15◦. As shown in Figure 5, the 3-DOF attitude
tracking of the system under different control strategies is simulated, and the resulting
angle is reported in radians.

Compared to traditional BSMC and PI control, the ABISMC-ISM has a faster response
speed and reduced overshoot in attitude tracking. In addition, the tracking accuracy for
various signals has also been improved. The details of some optimizations have been
displayed. For example, the proposed method can enable the system to reach the steady
state at least 1 s in advance. The system can achieve disturbance suppression and maintain
the desired characteristics. Moreover, the overshoot of the system during the startup phase
has been significantly improved. In summary, the designed method has better transient
and steady-state characteristics.

To better illustrate the advantages of the proposed method, a comparison of system
errors under different methods is conducted. Figure 6 presents the 3-DOF angle track-
ing errors of the numerical system under different control strategies. Through detailed
display, it can be observed that ABISMC-ISM exhibits reduced tracking errors and faster
convergence speeds compared to the alternative approaches. In practical engineering
environments, enhanced system speed and stability will contribute to improved target
angle tracking performance.

During the tracking process of the system, the angular velocity tracking of the system
is further verified. As shown in Figure 7, the 3-DOF angular velocity tracking of the system
has also achieved better results. The transition time of the system is thus reduced by at
least 1 s. Due to the fast-tracking requirement for the angle, the overshoot of the speed loop
is amenable to being sacrificed. Through faster optimal azimuth tracking, the system can
quickly obtain the maximum thrust along the heading.
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6.3. Prototype Verification

To ensure the realizability of this method, a principle prototype referencing the actual
system was constructed. As shown in Figure 8, the established principle prototype includes
a 3-DOF motion simulation system of a ship and a 3-DOF stabilized control system for ship
propulsion-assisted sail. The 3-DOF sway of a ship is represented by the yaw, roll, and
pitch motion simulation subsystems. Meanwhile, the 3-DOF attitude of the sail is simulated
by the pitch, roll, and azimuth subsystems. The wind direction and speed are generated by
the fan, and the data are measured by the sensor and transmitted to the IPC. The optimal
azimuth and roll and pitch angles needed for tracking are calculated through the controller.
The 3-DOF stabilization system suppresses ship attitude disturbances and tracks the sway
of the sail under different algorithms.

It is noteworthy that the proposed system encounters inevitable transmission delay
challenges. Based on the hardware experiments conducted, the potential transmission
delay primarily stems from the wind sensor and the designed controller. As for the wind
sensor, owing to the real-time fluctuations in wind direction and speed, transmission
delay may result in the current optimal target becoming asynchronous with the actual
environment. To address the above issues, a solution was attempted to weaken the influence
of transmission delay by tracking only the optimal target over a sufficiently long period.
The signal transmission frequency of the sensor was adjusted to 0.1 Hz, with only one target
signal generated for tracking within a 10 s interval. By setting a sufficiently long period, the
influence on real-time performance can be appropriately reduced. As for the controller, the
transmission delay may lead to a delay in the current control signal relative to the real-time
system state. To address these challenges, the Ethernet bus system was employed as the
controller’s transmission method, enabling transmission delays to be reduced to a range
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of microseconds to tens of microseconds. Additionally, to comprehensively address the
system transmission issues, the foundational framework of the method can be expanded
upon with considerations for delay. In future work, we will conduct control strategy design
based on transmission-delay models to enhance the feasibility and performance of the
control strategy.
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Additionally, this study is continuously undergoing refinement to enable more rig-
orous theoretical analysis. The stability and randomness of the wind generated by the
fan are constrained by the stability of wind simulation, and the existing hardware dimen-
sions are inadequate for replicating the real-world environment accurately. During sea
voyages, there exists a correlation between wind direction and wind speed over a broader
area. In future studies, a special tunnel equipped with wind sensors will be developed to
replicate real-world conditions. Additionally, enhancements to the hardware scale will be
contemplated to yield more precise experimental results.

The sway of the ship caused by external disturbances is defined by the user and
tracked by the 3-DOF ship motion simulation system. Then, the optimal sail azimuth angle
is 0◦ with the wind direction perpendicular to the sail. The motion of each axis is defined as
sinusoidal motion, yielding:

α = 0.349 sin(0.314t + 1.571)
β = 0.175 sin(0.628t + 0.785)
γ = 0.087 sin(1.257t + 0.393)

(52)

According to the kinematic model of the sail, the 3-DOF motion opposite to the ship
sway is tracked by the system to maintain the stable attitude of the sail. As shown in
Figure 9, the 3-DOF tracking performance is measured through sensors and transmitted to
the upper computer through the controller.



J. Mar. Sci. Eng. 2024, 12, 348 21 of 26

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 23 of 29 
 

 

α
β
γ

= +
= +
= +

t
t
t

0.349sin(0.314 1.571)
0.175sin(0.628 0.785)
0.087 sin(1.257 0.393)

 (52)

According to the kinematic model of the sail, the 3-DOF motion opposite to the ship 
sway is tracked by the system to maintain the stable attitude of the sail. As shown in Figure 
9, the 3-DOF tracking performance is measured through sensors and transmitted to the 
upper computer through the controller. 

 
Figure 9. The 3-DOF angle tracking of the hardware system under different control strategies. 

The ABISMC-ISM has better accuracy and speed improvement for fast time-varying 
signals. Considering the need for sails to rapidly adapt to complex maritime situations, 
the proposed method can reach the steady-state state approximately 0.8 s earlier than 
other methods. Moreover, the steady-state accuracy of the system can be effectively im-
proved by approximately 3.5°. Considering the corresponding relationship between sail 
thrust and direction, the proposed system offers the potential to obtain higher along-
course thrust and achieve ship energy conservation. 

To verify the accuracy and speed of the system more clearly, the system error was 
measured and plotted. In Figure 10, the 3-DOF errors of the system under different meth-
ods are shown. Compared to other methods, the accuracy of the proposed system and 
method is improved, and the error can converge to 0 faster than that of other systems. The 
proposed method has better transient and steady-state performance by suppressing dis-
turbances and eliminating the reaching stage. 

Figure 9. The 3-DOF angle tracking of the hardware system under different control strategies.

The ABISMC-ISM has better accuracy and speed improvement for fast time-varying
signals. Considering the need for sails to rapidly adapt to complex maritime situations, the
proposed method can reach the steady-state state approximately 0.8 s earlier than other
methods. Moreover, the steady-state accuracy of the system can be effectively improved by
approximately 3.5◦. Considering the corresponding relationship between sail thrust and
direction, the proposed system offers the potential to obtain higher along-course thrust and
achieve ship energy conservation.

To verify the accuracy and speed of the system more clearly, the system error was
measured and plotted. In Figure 10, the 3-DOF errors of the system under different methods
are shown. Compared to other methods, the accuracy of the proposed system and method
is improved, and the error can converge to 0 faster than that of other systems. The proposed
method has better transient and steady-state performance by suppressing disturbances and
eliminating the reaching stage.

Moreover, the energy-saving effect of ABISMC-ISM has been further verified. Based
on aerodynamics, the thrust of the sail under the simulated wind direction and 3-DOF
sail attitude can be calculated. The energy-saving performance obtained by the sail can be
derived by integrating the propulsion power on a time scale, which is expressed as:

WP =
∫ t

0
FT(α, β, γ, θ, S)vsdt (53)

where θ and S are the wind direction and the surface of the sail, respectively, and vs is the
speed of the ship.
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During a 10 s operating cycle, the wind direction is continuously adjusted at a fre-
quency of 0.01 Hz within the range of [−180

◦
, 180

◦
]. The height and chord of the sail are

defined as 12.5 m and 8.0 m, respectively, and the wind speed acting on the surface is simu-
lated to be 10 m/s. As shown in Table 3, the energy-saving effect of the system is verified by
comparing the propulsion energy obtained by the sail under different control strategies.

Table 3. Energy-saving performance of the system under different control strategies.

Method Adopted PID BSMC BISMC-ISM

Propulsion Energy (KW·H) 12.28 13.54 14.07

Compared to the other two methods, the proposed method ensures more propulsion
energy during the cycle. Considering that the demand for propulsion power from sails
is fixed, more sail propulsion energy reduces the ship’s demand for propulsion energy
from the main engine. Energy-saving of the ship is achieved by improving the control
performance of the sail. In summary, the control performance and energy-saving effect of
the system are improved through optimization of the control method. Due to the correspon-
dence between the optimal orientation of the sail and the wind direction, optimized control
performance ensures the attitude adjustment effect of the sail. With the improvement of
the accuracy and speed of the system, the energy-saving effect of the system has been
significantly improved. Based on the experiments on the principle prototype, the potential
application value has also been demonstrated.
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7. Conclusions and Future Work

In this work, an adaptive finite-time backstepping integral sliding mode control is
demonstrated for 3-DOF stabilized ship propulsion-assisted sail attitude tracking under
external disturbances. A decoupling method based on inverse systems is designed to
eliminate internal coupling and nonlinearity of the dynamic model. An integral sliding
surface with time-varying parameters is sequentially constructed in the velocity loop and
angle loop using the backstepping method. The reaching stage of sliding mode control is
eliminated through time-varying parameters, and the resulting response speed is improved.
A sliding mode approach law based on finite-time theory is designed to ensure finite-
time compensation of the system under chattering behavior. Adaptive neural networks
are designed to compensate for external disturbances. Finally, through simulation and
experimental verification, the proposed method is shown to demonstrate better transient
and steady-state characteristics than other methods. However, the present system can still
be improved upon. In the practical application of this system, the transmission delay and
disturbance suppression issues will require deeper study. With this in mind, the application
of our proposed method on practical ships will be further explored.
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Appendix A

According to Equations (8)–(12), the dynamic model can be expressed as:



.
x1.
x2.
x3.
x4.
x5.
x6

 =



x2{
−BAx2 −

( .
θsx −

.
θsy

)
Jφxxx4 sin x3 cos x5 −

.
θsz Jφxxx4 cos x3

−
( .

θsx −
.
θsy

)
Jφxxx6 cos x3 sin x5 −

[
−JφxxBCx6 sin x3 + Jφxx

(
Jϕxx + Jψzz

)
sin x3

]
/
(

JC − Jφxy sin x1 sin 2x3 − Jϕxx − Jψzz
)
− Jφxxx6 cos x3

+
( ..

θsx −
..
θsy

)
Jφxx cos x3 cos x5 −

.
θsz Jφxx sin x3

}
/
(

JA − Jφxx
)

x4[
−BBx4 −

.
θsx Jϕyyx6 cos x5 −

.
θsy Jϕyyx6 sin x5 − 1

2

.
θsz Jφxxx6 sin 2x3

− 1
2 Jφxxx2

6 sin 2x3 +
..
θsx Jϕyy sin x5 +

..
θsy Jϕyy cos x5 − 1

2

.
θ

2
sz Jφxx sin 2x3

]
/
(

JB − Jφyy cos2 x1 − Jφzz sin2 x1 − Jϕyy
)

x6[
−BCx6 +

..
θsz

(
Jφxy sin x1 sin 2x3 + Jϕxx + Jψzz

)]
/
(

JC − Jφxy sin x1 sin 2x3 − Jϕxx − Jψzz
)



(A1)



J. Mar. Sci. Eng. 2024, 12, 348 24 of 26

+



0 0
KA [

Jφxx sin x3/
(

JA − Jφxx
)]

/KC
KB 0

0
KC





0
υ1
0
υ2
0
υ3

+



0
d1(t)
0
d3(t)
0
d5(t)




y1

y2

y3

 =


x1

x3

x5


For the convenience of system description and control strategy design, Equation (A2)

is redefined as:
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) ,

f2(x1, · · · , x6) =
[
−BBx4 −

.
θsx Jϕyyx6 cos x5 −

.
θsy Jϕyyx6 sin x5 − 1

2

.
θsz Jφxxx6 sin 2x3

− 1
2 Jφxxx2

6 sin 2x3 +
..
θsx Jϕyy sin x5 +

..
θsy Jϕyy cos x5 − 1

2

.
θ

2
sz Jφxx sin 2x3

]
/
(

JB − Jφyy cos2 x1 − Jφzz sin2 x1 − Jϕyy
) ,

f3(x1, · · · , x6) =
[
−BCx6 +

..
θsz

(
Jφxy sin x1 sin 2x3 + Jϕxx + Jψzz

)]
/(

JC − Jφxy sin x1 sin 2x3 − Jϕxx − Jψzz
)
, g(x1, · · · , x6) =

[
Jφxx sin x3/

(
JA − Jφxx

)]
/KC, KA,

KB, and KC are the electromagnetic torque coefficients in Equation (12).
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