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Abstract: In order to solve the problem of the low pickup efficiency of the robotic arm when harvest-
ing safflower filaments, we established a pickup trajectory cycle and an improved velocity profile
model for the harvest of safflower filaments according to the growth characteristics of safflower.
Bezier curves were utilized to optimize the picking trajectory, mitigating the abrupt changes produced
by the delta mechanism during operation. Furthermore, to overcome the slow convergence speed and
the tendency of the ant colony algorithm to fall into local optima, a safflower harvesting trajectory
planning method based on an ant colony genetic algorithm is proposed. This method includes en-
hancements through an adaptive adjustment mechanism, pheromone limitation, and the integration
of optimized parameters from genetic algorithms. An optimization model with working time as the
objective function was established in the MATLAB environment, and simulation experiments were
conducted to optimize the trajectory using the designed ant colony genetic algorithm. The simulation
results show that, compared to the basic ant colony algorithm, the path length with the ant colony
genetic algorithm is reduced by 1.33% to 7.85%, and its convergence stability significantly surpasses
that of the basic ant colony algorithm. Field tests demonstrate that, while maintaining an S-curve
velocity, the ant colony genetic algorithm reduces the harvesting time by 28.25% to 35.18% compared
to random harvesting and by 6.34% to 6.81% compared to the basic ant colony algorithm, significantly
enhancing the picking efficiency of the safflower-harvesting robotic arm.

Keywords: safflower harvesting; ant colony algorithm; parallel robotic arms; path planning

1. Introduction

Safflower (Carthamus tinctorius L.), indigenous to the eastern Mediterranean, emerges
as a versatile cash crop, extensively cultivated for its applications as a medicinal herb,
in oil production, for dyes, and as fodder, showcasing remarkable adaptability along
with tolerance to cold and heat [1,2]. The harvesting period of safflower primarily spans
from July to August, characterized by the asynchronous maturation of safflower filaments,
necessitating the selective harvesting of safflower [3,4]. After reaching maturity, within a
timeframe of 1–3 days, the water content in safflower filaments diminishes, rendering them
dry and brittle. This transformation complicates the harvesting process and precipitates
a degradation in the quality of the harvested safflower. It is therefore imperative to
complete the safflower harvesting before the filaments become overly desiccated and
brittle. Safflower harvesting operations primarily target the collection of mature filaments
at the top of the flower heads. A single safflower plant has from four to ten flower heads,
arranged in a conical spatial pattern, mainly concentrated at the top of the plant. During
the flowering period, safflower capitula progressively blooms from the top of the main
stem toward the tops of the peripheral branches. Consequently, optimizing the efficiency
of safflower-harvesting robots becomes a critical endeavor [5,6].
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There are two commonly used trajectory planning methods to enhance the picking
efficiency of safflower-picking robotic arms [7,8]. The first method involves analyzing
the motion patterns of individual safflower picking trajectories to ensure smooth path
transitions. By maximizing the time it takes for the robotic arm to reach its maximum
movement speed, this approach aims to improve picking efficiency. The second method
focuses on global path planning for the entire picking path. It determines the optimal
sequence of paths for safflower in the region, thereby enhancing the overall efficiency of
safflower picking.

The analysis of motion laws represents a significant niche in robotic arm research,
contributing to the heightened accuracy of end-effectors and reduced energy expendi-
ture [9,10]. Fang et al. [11] focused on industrial robots used for rapid picking tasks or
obstacle avoidance, introducing an improved S-curve speed control method. This signif-
icantly enhanced the smoothness of robot operations. However, its implementation is
relatively complex, requiring substantial computational resources. Lu et al. [12] delved into
minimizing the maximum jerk in the joints of a parallel mechanism, employing various
constraints to achieve this goal. However, the complexity of their approach was amplified
by the extensive range of factors considered, rendering the process less straightforward.

In the practical context of harvesting, trajectory planning must adhere to the kinematic
and dynamic limitations of the robotic arm. This planning phase necessitates a smooth tran-
sition between adjacent path points, eliminating sharp inflections. The Bezier curve, rooted
in Bernstein polynomials and applied to the mathematical modeling of two-dimensional
graphs, is widely adopted for its simplicity and effectiveness in smoothing the appearance
of abrupt corners in line segments [13,14]. This technique’s ease of manipulation and ability
to refine path aesthetics make it a favored choice in the realm of trajectory planning.

Path planning plays a crucial role in optimizing work efficiency by establishing a more
efficient picking order [15,16]. Yao et al. [17] enhanced the state transition strategy of ant
algorithms by introducing a weighted guidance function, which provided a more directed
approach for the ant agents during their exploration process. Ren et al. [18] improved
the local search capabilities of an ant colony algorithm through the implementation of a
forbidden search operator, which was informed by a knowledge-based elite strategy and
dynamic selection probabilities, thereby enhancing the solution’s precision. This approach
emphasized diversifying the learning process to bolster the algorithm’s proficiency in iden-
tifying the optimal solution, although further advancements were necessary to improve its
convergence. Hu et al. [19] amalgamated an artificial potential field with a logarithmic ant
colony algorithm, incorporating factors influencing the potential field into the algorithm’s
state transition probabilities and heuristic functions. This integration made the algorithm
more directive in pathfinding, thereby hastening its convergence speed. However, this
method risked prematurely converging to local optima due to the excessive prioritization
of the optimal path.

In order to mitigate the impact of sudden speed changes and long picking paths on
the safflower picking process and to improve the overall efficiency of safflower picking,
this study proposes a trajectory planning algorithm for safflower-picking robotic arms
based on the ant colony genetic algorithm. The algorithm employs a second-order Bezier
curve and an improved S-type velocity curve model to optimize the time required for each
individual picking path. Additionally, the ant colony genetic algorithm is utilized to plan
the picking paths, ensuring the identification of an optimal path sequence and minimizing
any negative impact on picking efficiency caused by long paths.

2. Materials and Methods
2.1. Safflower-Picking Robot Working Principle

The safflower-picking robot (shown in Figure 1) is mainly composed of a power
system, a leveling system, a navigation system, an identification and localization system,
and a picking system.
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Figure 1. Main structure of the safflower-picking robot. 1: Navigation system; 2: Leveling system; 3: 
Power system; 4: Identification and positioning system; 5: Picking system. 

Figure 2 shows the workflow diagram of the whole machine, in which the picking 
system’s parallel robotic arm operation needs to be in the region of the safflower trajectory 
planning to reduce its impact and ensure the shortest time possible to pick all the mature 
safflower in the region. 
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Figure 2. Workflow diagram of the whole machine. 

Figure 2 presents the entire workflow diagram of the machine, wherein the robot’s 
locomotion system is equipped with integrated navigation technology, achieving precise 
global positioning and navigation. It also fine-tunes the inter-row path through its pres-
sure detection system to optimize the global navigation route. The robot is fitted with a 
leveling system that detects the platform’s inclination angle through an inclinometer and 
automatically adjusts the platform to maintain levelness through the extension and retrac-
tion of electric push rods. Furthermore, the identification and location system utilizes bin-
ocular cameras and laser imaging detection and ranging (LIDAR) technology to accurately 
identify and locate the three-dimensional coordinates of mature safflower flowers within 
the area. The harvesting system, which is the core component of the robot, is responsible for 

Figure 1. Main structure of the safflower-picking robot. 1: Navigation system; 2: Leveling system;
3: Power system; 4: Identification and positioning system; 5: Picking system.

Figure 2 shows the workflow diagram of the whole machine, in which the picking
system’s parallel robotic arm operation needs to be in the region of the safflower trajectory
planning to reduce its impact and ensure the shortest time possible to pick all the mature
safflower in the region.
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Figure 2. Workflow diagram of the whole machine.

Figure 2 presents the entire workflow diagram of the machine, wherein the robot’s
locomotion system is equipped with integrated navigation technology, achieving precise
global positioning and navigation. It also fine-tunes the inter-row path through its pressure
detection system to optimize the global navigation route. The robot is fitted with a leveling
system that detects the platform’s inclination angle through an inclinometer and automat-
ically adjusts the platform to maintain levelness through the extension and retraction of
electric push rods. Furthermore, the identification and location system utilizes binocular
cameras and laser imaging detection and ranging (LIDAR) technology to accurately identify
and locate the three-dimensional coordinates of mature safflower flowers within the area.
The harvesting system, which is the core component of the robot, is responsible for the
actual picking tasks. It comprises a robotic arm, an end-effector harvesting device, a flower
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collection box, and a vacuum fan. The robotic arm plans its trajectory based on the three-
dimensional coordinates of mature safflower provided by the identification and location
system, ensuring that the harvesting of mature safflower is completed in the shortest time.
Meanwhile, the end-effector captures and cuts the safflower, the collection box stores the
harvested safflower filaments, and the vacuum fan provides sufficient suction throughout
the harvesting process to assist in directing the safflower into the collection box.

2.2. Laws of Motion Analysis
2.2.1. Improved S-Type Velocity Curve Model

The degree of rapidity, also called the rate of change of force, is the rate of change of
acceleration, which is an important index for describing the state of motion [20]. An S-type
speed curve can limit the degree of rapidity and cause little impact damage to the motor
as well as the drive train system. The S-type speed curve can be divided into three parts:
the start-up acceleration stage, the maximum speed maintenance stage, and the braking
deceleration stage.

The acceleration and deceleration control curve of the parallel arm of the safflower-
picking robot should meet the following basic conditions: the acceleration and velocity
changes must be smooth and continuous in the whole process, the speed must be consistent
with the required velocity at the beginning and the end of the speed change, and the accel-
eration must be zero. To avoid flexible shock, the degree of urgency must be continuous,
i.e., the value at the beginning and end of the acceleration and deceleration positions must
be zero. Figure 3 shows the position, velocity, acceleration, and acceleration curve of the
whole process of acceleration and deceleration.
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Figure 3. Characterization of acceleration and deceleration curves. A max signifies the maximum
acceleration of the end−effector of the Delta robotic arm, whereas Vmax indicates the maximum speed
of the end−effector of the Delta robotic arm. t1 is the time during which acceleration increases during
the acceleration phase, t2 is the time during which acceleration decreases during the acceleration
phase, t3 to t5 represent the period when the speed is constant at its maximum during the uniform
motion phase, t6 is the time during which acceleration increases during the deceleration phase, and
t7 is the time during which acceleration decreases during the deceleration phase.

The acceleration process includes acceleration and deceleration, the same as the de-
celeration process. The acceleration and deceleration are related to each other by uniform
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velocity. The whole process includes five stages, and the corresponding acceleration and
deceleration equations are as follows:

Amaxπ
2t1

sin πt
t1

0 ≤ t ≤ t2

0 t2 < t ≤ t5
Amaxπ

2t6
sin π(t−t5)

t6
t5 < t ≤ t7

, (1)

A(t)


− Amax

2 cos πt
t1
+ Amax

2 0 ≤ t ≤ t2

0 t2 < t ≤ t5
Amax

2 cos π(t−t5)
t6

− Amax
2 t5 < t ≤ t7

, (2)

V(t)


Amaxπ

2t1
sin πt

t1
0 ≤ t ≤ t2

Vmax t2 < t ≤ t5
Amaxπ

2t6
sin π(t−t5)

t6
t5 < t ≤ t7

, (3)

where Amax represents the maximum acceleration at the end of the Delta robotic arm, Vmax
represents the maximum velocity at the end of the Delta robotic arm, and the starting and
ending velocities at the end of the robotic arm are both 0 m/s.

From Figure 3 and Equations (1)–(3), it is evident that, in the accelerating part, the
durations t1 and t2 appear to be equal. Similarly, in the decelerating part, the durations
t6 and t7 seem to be equal. Taking into account the maximum velocity that the system
can reach, denoted as v, we can proceed to calculate the total displacement of the system
as follows:

M = (s1 + s2)+ (s3 + s4 + s5) + (s6 + s7)
= v·(t1 + t2)/2 + v·(t3 + t4 + t5) + v·(t6 + t7)/2

(4)

2.2.2. Improved Analysis of Picking Trajectories

This paper identifies a harvesting strategy for safflower filaments tailored to field-
picking requirements, maneuvering the robotic arm so its end effector is positioned directly
above the safflower filaments. Through precise vertical control, the guide sleeve within
the end effector is moved downward to the pre-determined picking point for harvesting
safflower filaments. This approach primarily aims to prevent collisions with other flowers
on the same plant during the harvesting process, which could alter the target location.

The execution of safflower filament harvesting necessitates the sequential positioning
of the end picking device at the targeted, pre-defined locations. Given the likelihood of
encountering obstacles such as branches and leaves among the safflowers, establishing a
safe descent height becomes essential. Focusing on safflowers situated at varying heights,
the conventional movement strategy employed is the gate-type path, as depicted in Fig-
ure 4a. Achieving this first requires ensuring that the picking device reaches a safe, uniform
height before descending to the targeted location. Although this approach effectively
prevents the end effector from impacting safflower filaments mid-movement, it results in
an excessively long travel path. To enhance the efficiency of safflower filament harvesting
and minimize the travel distance of the end effector while circumventing obstacles, an
optimized gate-type path scheme is proposed. This plan ensures that safflower filaments
at different elevations maintain a consistent safe height, albeit not at the same level, as
illustrated in Figure 4b.
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In the field of agricultural automation, such as safflower picking, the utilization of
Bezier curves for the trajectory planning of robotic arms can have a significant impact on
enhancing operational efficiency and accuracy. By manipulating the control points of the
Bezier curve, it becomes possible to effectively plan the trajectory of the robotic arm in
complex spatial environments. The incorporation of Bezier curves ensures a seamless and
uninterrupted movement of the robotic arm during the safflower-picking process. This
smoothness reduces sudden changes and jerking motions, leading to improved overall
efficiency when harvesting safflower. Moreover, diminishing fluctuations in the movement
of the robotic arm contributes to the preservation of the safflower’s integrity, minimizing
any potential damage to the delicate flower and thereby enhancing the accuracy of the
picking process.

The safflower-picking trajectory cycle starts from the picking point “Ni” and ends at
the next picking point “Ni+3”. As shown in Figure 5, the picking cycle of the safflower-
picking robot can be roughly divided into five parts:

(1) The motion accelerates with an increasing acceleration from “Ni” to “P1”.
(2) The motion continues to accelerate, but with a decreasing acceleration from “P1”

to “P2”.
(3) After reaching point “P2”, the motion transitions into a uniform speed or constant

velocity motion from “P2” to “P5”.
(4) As the motion approaches point “P5”, it starts to decelerate with an increasing acceleration.
(5) As the motion approaches point “P6”, it decelerates with a decreasing acceleration

until reaching point “Ni+3”.
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To reduce the vibrations from the sudden change in acceleration at the corner and
improve the positioning accuracy, Bezier curves are used in the transition section to smooth
the transition of the right-angled segments of the “gate”-shaped trajectory, namely “P1P2”
and “P3P4” segments.

The Bezier curve definition is shown in Equation (5):

PN(t) = ∑N
i=0 Bi,N(t)Pi, t ∈ [0, 1]Pi (5)

where Pi is the coordinate information of the ith control point of the line segment and
Bi,N(t) is the Bernstein polynomial, which is the base function of the parametric equation
of the Bezier curve.

Bi,N(t) = ∑N
i=0

(
N
i

)
ti(1 − t)N−i (6)

Here, ∑N
i=0 (

N
i ) represents the binomial coefficient, and the equation’s derivative is

calculated as follows:
B′

i,N(t) = N[Bi−1,N−1(t)− Bi,N−1(t)]
′ (7)

Therefore, the derivative with respect to the points on the Bezier curve can be expressed
as follows:

P′
N = N∑N

i=1Bi−1,N−1(t)·(Pi − Pi−1) (8)

As shown in Figure 6, the second-order Bezier curve is commonly utilized due to
its simplicity and efficient handling of single inflection paths. On the other hand, the
third-order and fourth-order Bezier curves are not as numerically stable as the second-
order Bezier curves, despite offering greater flexibility and control [21]. Therefore, for the
smoothing of trajectories in this paper, the second-order Bezier curve is favored.
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Figure 6. Bezier curve. where xyz is the static platform coordinate system, A, C, E are second-order
Bessel curve reference points, A, B, D, E are third-order Bessel curve reference points, and A, B, C, D,
E are fourth-order Bessel curve reference points.

The parametric equations for the points on the second-order Bezier curve can be
derived from Equations (5) and (8) as follows:

P(t) = P0(1 − t)2 + 2P1(1 − t)t + P2t2 (9)
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where P0, P1, and P2 are the coordinates of the control points of the second-order Bezier curve.
The curvature, denoted as K(t), of a Bezier curve can be calculated at any given point:

K(t) =
x′(t) · y′′ (t)− y′(t) · x′′ (t)

(x′(t)2 + y′(t)2 )
3/2 (10)

2.3. Improved Ant Colony Genetic Fusion Algorithm

Within the context of the safflower field environment, the distribution of safflower
filaments is relatively dense, as depicted in Figure 7a, with the picking locations of safflower
filaments dispersed within a three-dimensional space. Amidst a random and chaotic
harvesting sequence, the movement path of the terminal picking device is unpredictable,
leading to a prolongation of the overall movement trajectory. This, in turn, significantly
diminishes the efficiency of the harvesting process. Therefore, it is essential to conduct
in-depth research and plan the optimal picking sequence for safflower filaments.
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Figure 7. Schematic diagram of safflower filament harvesting movement: (a) the spatial distribution
of harvesting points; (b) the movement pathway for harvesting. Where xyz is the coordinate system
of the starting point for trajectory planning.

Figure 7b presents the diagrammatic route of the safflower filament harvesting appara-
tus, where black dots signify the mechanical arm’s present location and red dots highlight
the designated collection sites for the safflower filaments. To ensure that the harvesting
mechanism avoids any unintended contact with nearby filaments during operation, es-
tablishing a prudent safety elevation is crucial. Blue dots illustrate the safe elevations for
the safflower filaments, ensuring that a secure distance is maintained. As depicted, the
mechanical arm embarks from its initial position, methodically advances to these secure
elevations, and subsequently lowers to the specified harvesting locations at the established
safety height for collection. Following the harvest of a specific filament, the arm ascends
back to the safe elevation level before continuing to the next designated sites, completing
the cycle until all targeted filaments are collected and the device returns to its starting point.

Within a complex three-dimensional space, the ant colony algorithm may become
entrapped in local optima or encounter deadlock situations, hindering the arm’s ability
to identify the globally optimal path and affecting the overall operational efficiency. The
essence of this issue lies in the algorithm’s excessive reliance on local pheromone trails,
lacking a sufficient global search mechanism to escape local optima. Deadlock situations
arise when the algorithm encounters a state from which it cannot progress, unable to find
an effective path to the target location. Given that a three-dimensional environment offers
more path choices than a two-dimensional one, it simultaneously increases the complexity
and computational demands of the search.

Therefore, in the global path planning for the safflower-harvesting robotic arm, it is
necessary to adjust and optimize the ant colony algorithm to enhance its global search
capabilities and avoid the problems of local optima, ensuring that the robotic arm can effi-
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ciently and accurately complete global path planning and harvesting tasks in the complex
environment of safflower harvesting [22–24]. The following strategies (Figure 8) should be
adopted for optimization.
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2.3.1. Adaptive Regulation Mechanisms

As illustrated in Figure 9, in the basic ant colony algorithm, the pheromone evaporation
coefficient ρ is a fixed constant within the range [0,1], and its magnitude is directly related
to the global search capability and convergence speed of the ant colony algorithm during
the optimization process. To optimize the setting of this parameter, an improved ant colony
algorithm adopts an adaptive factor-updating strategy to adjust the value of ρ, catering to
the algorithm’s needs at different stages. In the initial phase of the algorithm, ρ is set to a
higher value to enhance the global search capability and increase the diversity of safflower
harvesting path choices, thereby preventing the algorithm from prematurely converging to
local optimum paths. As the algorithm iterates, the value of ρ is gradually decreased to
accelerate the convergence speed of the algorithm. This adjustment aims to focus the search
on the optimal path more in the later stages, reducing pheromone evaporation to speed up
the process of finding the optimal solution and minimizing the waiting time for the robotic
arm. This adjustment strategy helps to narrow the search range for harvesting paths in the
later stages of the algorithm, preventing the algorithm from diverging in the entire space of
the harvesting path search, ensuring the efficient convergence of the algorithm.

This adaptive adjustment mechanism makes the ant colony algorithm more flexible
and efficient in the path planning of safflower-harvesting robotic arms, enabling it to
maintain global search capabilities while effectively accelerating the convergence process,
thereby enhancing the precision and efficiency of path planning. Therefore, the pheromone
evaporation coefficient is dynamically adjusted based on the ratio of the current iteration to
the maximum number of iterations, resulting in a decrease in the pheromone evaporation
coefficient as the number of iterations increases, as shown in Equation (11):

ρ =


0.8 0 < g ≤ Gmax/4
0.5 Gmax/4 < g ≤ 3Gmax/4
0.2 3Gmax/4 < g ≤ Gmax

, (11)

where g is the current iteration number and Gmax is the maximum iteration number.
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2.3.2. Limiting Pheromones

As depicted in Figure 10, in the unimproved ant colony algorithm, ants tend to
choose paths where pheromone accumulation is high, leading the algorithm to excessively
concentrate on searching within local areas, thereby overlooking some latent optimal
paths. This issue is particularly pronounced when certain paths are not searched for an
extended period, causing the pheromone on these paths to gradually dissipate due to
evaporation, resulting in these paths no longer being searched. Consequently, this can
cause the algorithm to stagnate, making it unable to find a superior global solution.
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In this study, we introduce the concept of simplified min-max thinking, specifically,
the fixation of the pheromone domain. This approach is designed to prevent the complete
evaporation of pheromones on lesser-traveled paths, ensuring that they remain viable
options for exploration. By establishing a minimum threshold for pheromone levels, we
ensure that all paths have the potential to be explored, thus avoiding the pitfall of the
algorithm neglecting potentially optimal but less frequented routes. This strategy helps to
maintain a balance between exploration and exploitation, facilitating the algorithm’s ability
to escape local optima and enhance its chances of discovering the global optimum.

τ ∈ [τmin, τmax], (12)
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The initial value of the pheromone is τ0 = x τmax. The method of fixing the pheromone
domain ensures that the difference in pheromone levels across various paths is not substan-
tial. This grants ants a broader range of path choices, effectively preventing the algorithm
from prematurely converging to a halt and, simultaneously, accelerating the convergence
toward the optimal solution.

2.3.3. Parameter Optimization of the Ant Colony Algorithm Based on Genetic Algorithm

This study employs a genetic algorithm to optimize the initial parameters α, β, x, and
q of the ant colony algorithm, with the aim of enhancing its performance. By integrating
the concepts of genetic algorithms into the ant colony system, the approach achieves
optimal algorithm performance without the need for manual settings. The specific steps
are as follows:

(1) Initializing the population: The genetic algorithm initially generates a certain number
of initial populations randomly and encodes them, representing the parameters α,
β, x, and q with four binary code strings x1, x2, x3, x4, respectively. These are then
combined into a single binary code string. Moreover, based on the findings of previous
researchers, it is known that the overall performance of the algorithm is better when α
is in the range [1, 3], β in [5, 9], and q in [10, 10, 000].

(2) Adaptive function: Genetic algorithms simulate natural genetic mechanisms to tackle
optimization problems, where “fitness” serves as a crucial metric for evaluating the
extent to which a solution addresses the problem. The fitness function is tailored
according to the optimization objective, assessing the effectiveness of each solution.
The algorithm selects and propagates optimal solutions based on their fitness, gener-
ally without requiring additional information. In this study, the optimal solution is
defined as the one that enables the robotic arm to harvest safflower filaments via the
shortest possible path. Therefore, the fitness function is formulated as follows:

f un =
1

L f un
, (13)

The fitness function is the reciprocal of the global optimal path length found by the
ant colony algorithm, denoted as L f un.

(3) Genetic operators: Consistent with the ant colony algorithm, the selection operation
employs the roulette wheel method; the crossover and mutation operations utilize the
methods described in Equations (14) and (15), respectively.

Pc = Pc1 +
Pc1( fmax − f )

fmax − favg
, (14)

Pm = Pm1 +
Pm1( fmax − f ′)

fmax − f ′
, (15)

Here, Pc is the crossover probability, Pm is the variance probability, Pc1 is the initial
crossover probability, Pm1 is the initialized variance probability, favg is the average fitness
of the genetic algorithm population, fmax is the genetic algorithm’s population maximal
fitness, f is the higher fitness value among the two to-be-hybridized individuals, and f ′ is
the fitness of the mutated individuals.

(4) Algorithm parameter configuration: For the improved ant colony algorithm, the
parameter settings are as follows: the number of ants m = 50 and the maximum
number of iterations G = 300. For the genetic algorithm, the parameter settings
include population size P = 40, the number of iterations set to 200, initial crossover
probability Pc1 = 0.7, and initial mutation probability Pm1 = 0.03.

Through the iterations of the above genetic algorithm, the optimal solutions for the
uncertain parameters of the ant colony algorithm can be identified. These solutions are
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then incorporated into the ant colony algorithm to enhance its efficiency. The flowchart of
the ant colony genetic algorithm is illustrated in Figure 11.
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3. Results
3.1. Comparative Analysis of Velocity Profile Models

The improved S-curve speed profile is integrated into the motion control card of
the servo motor. Adjustments are made to the supervisory control software, enabling the
safflower harvesting robot’s Delta parallel mechanism to complete a work cycle based on
the set parameters. This approach also satisfies constraints on speed, acceleration, and jerk,
ensuring smooth operation throughout the work process. Two operational conditions, as
described in Table 1, are set to compare the S-curve model and the improved S-curve model.

Table 1. Design value of the task.

Mandates
Working Condition 1 Working Condition 2

Coordinate Value Motor Running Angle

Starting coordinate value (0, 0, 0) ( π
12 , π

12 , π
6 )

Endpoint coordinate value (100, 50, 50) ( π
3 , π

3 , π
4 )

Speed limit 10 (mm/s) 1.8 (rad/s)
Acceleration constraint 30 (mm/s2) 10 (rad/s2)

Jerk constraints 30 (mm/s3) 50 (rad/s3)

Table 2 reveals that, in Condition 1, the improved S-curve speed profile reduced the
time from 5.667 s to 5.032 s, achieving an 11.2% time reduction. In Condition 2, the refined
S-curve speed profile decreased the time from 3.972 s to 3.088 s, resulting in a 22.3% time
reduction. Thus, the enhanced S-curve speed profile significantly reduces the operation
time in both Condition 1 and Condition 2.
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Table 2. Optimum working time for reference conditions.

Speed Curve Time/s

Working condition 1 S-curve model 5.728
Improved S-curve model 5.032

Working condition 2 S-curve model 3.988
Improved S-curve model 3.088

The improved S-curve model can reduce the working time as well as limit the jerk. As
indicated in Table 3, it allows for a comparison between the maximum and average jerk at
the motor joint. Compared to the S-curve speed model, the improved model can impose
restrictions on jerk.

Table 3. Maximum urgency and average urgency.

Algorithm
Maximum Jerk Average Jerk

Joints 1 Joints 2 Joints 3 Joints 1 Joints 2 Joints 3
(mm/s3)

Working
condition 1

S-curve model 27.3 21.4 20.2 17.54 16.88 18.92
Improved S-curve model 7.3 7.8 6.8 6.81 7.22 6.42

Working
condition 2

S-curve model 48.2 49.5 45.8 28.24 24.58 27.35
Improved S-curve model 25.3 25.0 24.8 15.42 14.08 14.22

A simulation was conducted on the harvesting of safflower filaments in Jimsar County,
Xinjiang, to test the viability and efficiency of the proposed improved S-curve speed model
within the harvesting cycle. The simulated harvesting covered an area of 1 m2, with mature
safflower plants numbering 15 and 30, respectively, for each group, and each set underwent
20 tests. According to the results shown in Table 4, the improved model, when compared
to its predecessor, reduces the average working time and decreases the jerk. These results
indicate that, while adhering to constraint conditions, the improved S-curve speed model
surpasses the original S-curve speed model in terms of jerk and average working time.

Table 4. Comparison of velocity profile model simulation results.

Safflower Count Models Time/s Jerk/(rad/s3)

15
Improved S-curve model 44.2642 10.4342

S-curve model 51.5422 23.4251

30
Improved S-curve model 76.4586 13.6485

S-curve model 98.3549 28.4265

3.2. Comparative Analysis of Path Planning Algorithms

Based on field photography and statistical analysis of actual safflower spatial distribu-
tion samples in Jimsar County, Changji Hui Autonomous Prefecture, Xinjiang, as shown
in Figure 12, a safflower harvesting robot simulation system was designed. Simulation
experiments were conducted using Matlab2019b software. This study selected the basic
ant colony optimization algorithm (ACO) and an ant colony genetic hybrid optimization
algorithm for experimental comparative analysis. The experimental environment consisted
of a 3.2 GHz AMD Ryzen 7 5800 H processor, 16 GB of memory, and MatlabR2019a as the
simulation software.
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Figure 12. Field safflower locations.

As shown in Table 5, for 15 and 31 safflower flowers, the genetic algorithm was used
to optimize some initial parameters of the improved ant colony algorithm.

Table 5. Genetic algorithm optimization results safflower flowers.

Count
Considerations

α β Q x

15 2.46 8.99 1734.80 25.69
30 2.30 8.85 387.59 59.54

Figure 13 displays the results of 20 independent runs and the convergence curves of the
best outcomes for both algorithms when tasked with harvesting 15 and 30 safflower flowers,
iterating 200 times. The figure reveals that the ant colony genetic algorithm demonstrates
more stable solutions compared to the basic ant colony algorithm and the improved ant
colony algorithm, capable of finding better solutions. In all 20 independent runs, the ant
colony genetic algorithm consistently converged to the optimal solution more effectively
than the other algorithms. These results indicate that the ant colony genetic algorithm
successfully addresses issues of premature convergence and overly rapid convergence
speeds. Moreover, in all 20 independent runs, the ant colony genetic algorithm can plan
shorter continuous harvesting paths, making continuous harvesting more efficient. For a
more intuitive understanding of the harvesting paths, the three-dimensional coordinates
and harvesting paths of 15 safflower flowers were visualized, as shown in Figure 14.
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Figure 13. Algorithm optimization results. (a) Iteration curve of the improved ant colony algorithm
based on 15 safflower flowers; (b) Iteration curve of the ant colony genetic algorithm based on
15 safflower flowers; (c) Lengths of 20 optimized paths based on 15 safflower flowers; (d) Iteration
curve of the improved ant colony algorithm based on 30 safflower flowers; (e) Iteration curve of the
ant colony genetic algorithm based on 30 safflower flowers; (f) Lengths of 20 optimized paths based
on 30 safflower flowers.
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indicates that, under the same harvesting cycle, the safflower harvesting robot employ-
ing the ant colony genetic algorithm required from 6.8% to 8.3% less time to complete a
work cycle compared to the basic ant colony algorithm, and it was 32.8% to 35.2% faster
than sequential random harvesting. Consequently, the experiments demonstrate that the
safflower-harvesting robot can efficiently complete a harvesting cycle in field conditions,
significantly enhancing the operational efficiency of the safflower-harvesting robotic arm.
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Table 6. Genetic algorithm optimization results safflower harvesting.

Amount of Safflower
Average Working Time/s

Imitate Manual Picking Basic Ant Colony Algorithm Ant Colony Genetic Algorithm

small amount (15) 64.354 46.172 43.244
large amount (30) 111.465 77.524 72.246

4. Discussion

This study introduced a trajectory planning scheme aimed at enhancing the efficiency
of safflower filament harvesting. The model, designed based on the growth patterns in
safflower fields, generates smoother and more continuous curves for velocity, acceleration,
and jerk, thereby significantly improving the motion stability and positioning accuracy of
parallel robotic arms. Additionally, by simplifying the continuous safflower-harvesting
path problem into a traveling salesman problem (TSP) without considering obstacle avoid-
ance, an ant colony genetic algorithm was proposed. The simulation results indicate that,
compared to the basic ant colony algorithm, the path length with the ant colony genetic
algorithm is reduced by 1.33% to 7.85%, and it also shows superior convergence stability.
Moreover, field trials demonstrated that, under the premise of maintaining S-curve velocity,
the ant colony genetic algorithm reduces harvesting time by 28.25% to 35.18% compared to
random harvesting and by 6.34% to 6.81% compared to the basic ant colony algorithm. This
significantly enhances the harvesting efficiency of the safflower-harvesting robotic arm.
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