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Abstract: Recently, data-driven approaches have become the dominant solution for prediction
problems in agricultural industries. Several deep learning models have been applied to crop yield
prediction in smart farming. In this paper, we proposed an efficient hybrid deep learning model
that coordinates the outcomes of a classification model and a regression model in deep learning via
the shared layers to predict the rice crop yield. Three statistical analyses on the features, including
Pearson correlation coefficients (PCC), Shapley additive explanations (SHAP), and recursive feature
elimination with cross-validation (RFECV), are proposed to select the most relevant ones for the
predictive goal to reduce the model training time. The data preprocessing normalizes the features of
the collected data into specific ranges of values and then reformats them into a three-dimensional
matrix. As a result, the root-mean-square error (RMSE) of the proposed model in rice yield prediction
has achieved 344.56 and an R-squared of 0.64. The overall performance of the proposed model is better
than the other deep learning models, such as the multi-parametric deep neural networks (MDNNs)
(i.e., RMSE = 370.80, R-squared = 0.59) and the artificial neural networks (ANNs) (i.e., RMSE = 550.03,
R-squared = 0.09). The proposed model has demonstrated significant improvement in the predictive
results of distinguishing high yield from low yield with 90% accuracy and 94% F1 score.

Keywords: crop yield prediction; remote sensing; convolutional neural network; deep learning;
multi-task learning

1. Introduction

There are important issues in agriculture, such as crop pest detection, crop symptom
detection, and crop yield prediction. However, it is difficult for farmers to manage these
problems manually. As data-producing devices have improved in the past decade, these
issues have gradually become solvable using artificial intelligence (AI) techniques. Conven-
tional research on crop yield prediction is typically based on farmland yield in the previous
year. However, this rule-of-thumb method is not stable and precise because the indirect
features such as temperature, rainfall, soil attributes, and sunlight are not in the same
conditions yearly. When the environment changes, different crop species have different
amplitudes of impact on their yields.

In recent decades, smart farming has become increasingly popular. Remote sensing ex-
tracts information from satellites to enable AI models to establish data-driven decisions [1–4].
For example, the USGS Global Visualization Viewer (GloVis) is a fast and easy-to-use online
satellite and aerial data search tool. Satellite data usually contain predefined wavelength
bands in visible and near-infrared (NIR) spectral regions. Unfortunately, satellites face
numerous challenges when acquiring remote sensing data. One problem is that it cannot
continuously collect data from specific farmlands because of the maintenance of certain
orbital positions, periods, and heights. In addition, the spatial resolution is significantly
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affected by the satellite altitude, which makes it challenging to customize the spatial resolu-
tion. Recently, UAVs and drone technologies have become better solutions for obtaining
remote sensing data [5–8]. With such technologies, users have the flexibility to choose when
and where to collect remote sensing data and collect the specific spectral wavelength with
an appropriate sensor. However, the problems associated with using UAVs include the
management of the collected datasets and extracting relevant information, both of which re-
quire domain knowledge. The spectral bands collected from UAVs are ideal for calculating
vegetation indices, such as the normalized difference vegetation index (NDVI) [9].

Predicting the crop yield is a major issue in smart farming. With the advancement
of hardware equipment, such as drones and sensors, users can now obtain rich crop
features. Data-driven algorithms have gradually acquired the attention of researchers
in agriculture [10]. They have applied data-driven models to improve the performance
using available datasets containing crop information, weather, soil conditions, and other
environmental features. Data-driven solutions can be classified into machine learning
and deep learning. Traditional machine learning has demonstrated good performance in
crop yield prediction with classic techniques, such as multiple linear regression, decision
tree, random forest, k-nearest neighbor, and support vector machines [10–20]. Despite
significant progress in using machine learning techniques for crop yield prediction, the
inherent existence of nonlinear reliance between the input and target variables in the
datasets is difficult to express using simple linear equations. Hence, these classic machine
learning techniques face challenges in improving the next level of performance. Fortunately,
the appearance of artificial neural networks (ANNs) has brought the potential to overcome
the performance bottlenecks.

ANNs are groundbreaking machine learning algorithms that have garnered remark-
able success in enhancing the performance of data-driven models. They can approximate
any nonlinear relationship between the input and target variables [21]. Numerous studies
have implemented ANN models in agricultural fields [22–25]. In 2007, Ji et al. [22] devel-
oped an ANN model to predict Fujian rice yield for a typical mountainous climate and
compared its performance with that of a linear regression model. The experimental results
indicated that the ANN model demonstrated better performance (R-squared = 0.67) than
the traditional models (R-squared = 0.52). Subsequently, Baral et al. (2011) [23] developed
an ANN model and particle swarm optimization to predict the rice yield in three differ-
ent areas using nearly ten years of historical data, including daily mean and maximum
temperatures and rainfall. Significant research has been conducted on crop growth in
various regions. Çakır et al. (2014) [24] applied an ANN model to predict wheat yield
in the southeast region of Turkey using crop and weather conditions. They evaluated
the model’s performance by varying the number of neurons and inputs to determine the
optimal combination to improve results. Bhojani et al. (2020) [25] implemented an ANN
to predict wheat yield. The study utilized different meteorological parameter datasets as
training data and improved the neural network by incorporating three simple activation
functions. In addition, they proposed three new activation functions and tested various
configurations of hidden layers and neurons. The results demonstrated that the newly
created activation functions outperformed the sigmoid function. Although ANN has deliv-
ered better performance in crop yield prediction than other traditional methods, such as
regression models, it has to spend much more time training the model without a GPU. In
addition, the situation worsens when the predetermined numbers of neurons and hidden
layers are large because the model becomes more susceptible to overfitting.

As more crop features can be collected, researchers are attempting to enhance the
model complexity by increasing the model depth or width. The primary objective is to
equip the model with stronger learning capabilities. Such a complex model is called deep
learning. It is considered a subset of machine learning and AI, involving the use of ANNs
with multiple layers (deep neural networks, DNNs) to learn and make decisions from data.
This approach is powerful within the broader field of AI. Various types of deep learning
models have emerged across different domains. One of the earliest deep learning algorithms
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was the convolutional neural network (CNN). It has demonstrated high efficiency among
numerous deep learning algorithms for computer vision tasks, such as image classification
and object detection [26]. The key characteristic of CNN for improving training efficiency
is weight sharing. The model can automatically learn image patterns by taking advantage
of the kernel. With spatial location information, adjacent pixels have a certain correlation
degree. Several studies have used CNN models to address crop-prediction issues in
smart farming. Villanueva et al. (2018) [27] defined six bitter melon yield ranges and
implemented a CNN model with three convolution layers to predict bitter melon crop yields
using the leaf veins of the bitter melon. Monga et al. (2018) [28] conducted experiments on
grape images using image processing techniques such as scale normalization and contrast
enhancement. They then implemented a CNN model with five convolutions and dropout
layers to forecast the Pinot Noir grape yield. Recent studies on crop yield prediction have
applied distinctive deep learning approaches rather than conditional machine learning
approaches. Khaki and Wang (2019) [29] proposed two DNNs, one for yield prediction
and the other for validating yield prediction. The utilization of the validation DNN
model indirectly fine-tuned the prediction DNN model, enhancing overall performance.
Chu and Yu (2020) [30] subsequently proposed another deep learning approach that fused
two back-propagation neural networks (BPNNs) and an independent recurrent neural
network (IndRNN) to forecast summer and winter rice yields. These studies demonstrated
that deep learning models outperformed machine learning models. In a recent study,
Kalaiarasi and Anbarasi (2021) [31] introduced the growing-degree day (GDD) as a measure
of the effect of weather conditions on crop yield and built a multiparametric deep neural
network (MDNN) containing a residual block to predict crop yield. The research findings
substantiate that MDNN surpasses DNN in achieving superior performance for crop yield
prediction. However, as the learning process involves building representations through
a hierarchical structure with increasing complexity, there is no assurance regarding the
quality of the final hidden representation.

Regarding crop characteristics, crop growth can be considered a time series containing
several time points, each representing the crop’s status at different times. The entire time-
series record contains all information about the crop. Researchers have applied time-series
models to address yield-prediction issues. One of the most famous and earliest time-series
models is the recurrent neural network (RNN). One advantage of an RNN is its hidden
state, which allows it to store historical information. This information is shared between the
neurons in the same layer for more flexible calculations. You et al. (2017) [32] implemented
a CNN and LSTM to predict soybean yield using sequential remotely sensed images. They
also included a Gaussian process unit to improve the model accuracy, which potentially
serve as inspiration for applications in remote sensing and computational sustainability.
Khaki et al. (2020) [33] proposed a hybrid model that combines a CNN and an RNN to
forecast corn yields. The data used were from the entire Corn Belt in the U.S. three years ago.
Although the RNN is a powerful and useful sequential model, it still suffers from issues such
as vanishing and exploding gradients [34]. When the time series becomes too long, RNNs
may struggle to optimize and adjust effectively. To address this problem, one type of RNN
that has been developed is the long short-term memory (LSTM) network. Rußwurm and
Korner (2017) [35] applied LSTM to extract dynamic temporal features for classifying crop
types using a long-sequence image dataset. The results showed that the LSTM-based model
outperformed the single-temporal model. The overall accuracy of the multitemporal LSTM
model was reported to be 90.6%, which is higher than that of the single-temporal CNN
model (89.2%) and the baseline SVM model (40.9%). Zhong et al. (2019) [36] developed
a hybrid deep neural network that combined two different networks–one based on LSTM
and the other based on a one-dimensional convolutional neural network (1D-CNN)–to
classify summer crops. An improved model based on an LSTM model called the GRU
was developed recently. The experiment showed that the performance of the GRU was
similar to that of the LSTM but with a faster training time. Yu et al. (2021) [37] proposed
a hybrid CNN-GRU model to predict soil water content. The hybrid model combined
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a CNN with significant feature extraction and a GRU with strong memory capacity, and the
experiment showed that the hybrid model outperformed the independent CNN or GRU.
Hence, RNN, LSTM, and GRU are widely used to implement different solutions in smart
farming. From the above related studies, hybrid models have become a major trend in
solving agricultural issues by combining the advantages of different deep neural networks
to improve performance.

In this study, we propose an architecture consisting of two deep neural network
models: a multi-kernel convolutional neural network (MKCNN) and bidirectional long
short-term memory (Bi-LSTM) [38]. We employed multitask learning to train both models
interactively, and the proposed hybrid model was utilized to predict rice yield. Van Klom-
penburg et al. (2020) [39] discovered that some researchers conducted experiments using
NDVI and other crop-relevant features. In addition to NDVI, several other useful features
have been applied to crop yield prediction. However, researchers must possess domain
knowledge to identify the necessary features. Therefore, before training the rice yield
prediction model, we proposed a combination of several feature analysis approaches to
deal with the Hughes phenomenon, including Pearson correlation coefficients (PCC), SHap-
ley additive extensions (SHAP), and recursive feature elimination with cross-validation
(RFECV), to select highly relevant features for training an optimal predictive model.

The remainder of this paper is organized as follows: Section 2 presents the materials
used and explains the variety of crop features. It also describes the approaches used
for feature analysis and selection. Section 3 describes the preprocessing of features and
then describes the proposed model, which consists of MKCNNs and Bi-LSTM. Section 4
illustrates the experimental results with a confusion matrix and uses various evaluation
indicators to estimate the model’s performance. Finally, Section 5 presents the conclusions
of the study.

2. Materials and Feature Analysis

In this section, we introduce the materials used and illustrate how the crop dataset
was collected. We then present the application of three different feature analysis algorithms
to find useful features.

2.1. Materials

The dataset used in this study contained remote-sensing features and a time series. It
was collected from farmland near a laboratory in Wufeng District, Taichung City, Taiwan, at
latitude 24.0313498◦ N and longitude 120.6912149◦ E. The drone flowed over the field in an S
shape at a height of 25 m. The other mission parameters were as follows: forward overlap
of 80%, side overlap of 80%, and a ground sample distance of 1.78 cm per pixel. Addition-
ally, calibration photos were taken before and after the flight using an RP-04-1913023-SC
calibration panel (MicaSense). Furthermore, the Rededge-M system was equipped with
a downwelling light sensor (DLS) to measure and record the ambient light during flight.
The specific details of the multispectral camera are presented in Table 1. During image
processing using the Pix4D Mapper, the calibration value from the calibration panel and
the ambient light information from the DLS module were employed for image calibration.
A total of 333 remote sensing images were collected in 2020 and 2021. Due to the inconsis-
tent collection of data points between the two years, we have chosen to select the points
that have a time overlap between March 5 and June 2. The remote sensing image is shown
in Figure 1, with each block representing an independent farmland. The yield maps for
2020 and 2021 are depicted in Figure 2, comprising fields labeled 42-1 and 42-2. The data are
sourced from the Taiwan Agricultural Research Institute. Each field was further partitioned
into a grid measuring 10 × 16, with each region encompassing an area of 0.1 hectare. The
settings of the flight mission are presented in Table 2. First, we collected a five-band remote
sensing image containing RGB, red edges, and NIR. We then cropped each block line to
create an independent image. From each independent image, we extracted five bands and
calculated vegetation indices, such as NDVI and MSR. In total, 33 different vegetation
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indices were calculated. In the next subsection, we explain how we filtered and selected
the most relevant features for rice crop yield.

Table 1. The specifications of the multi-spectral camera.

Item Detail

Model MicaSense Rededge-M

Ground sample distance 8.2 cm px−1 per band at 120 m above ground level

Blue band 475 (20) nm *

Green band 560 (20) nm *

Red Band 668 (10) nm *

Near IR band 840 (40) nm *

Red edge band 717 (10) nm *
* Center wavelength (Bandwidth FWHM) nm.
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Table 2. The flight mission settings.

Item Detail

Flight Height 25 m above ground level

Forward overlap 80%

Side overlap 80%

Ground sample distance 1.78 cm px−1

The data supporting the findings of this study are available from the Taiwan Agricul-
tural Research Institute, Council of Agriculture, and Executive Yuan. However, restrictions
apply to the availability of these data, as they were used under the license for the current
study and are not publicly accessible. Nevertheless, authors can obtain the data upon
reasonable request and with permission from the Taiwan Agricultural Research Institute,
Council of Agriculture, and Executive Yuan.

2.2. Feature Analysis

Generally, the performance of a classifier progressively improves when the number of
features increases below a certain optimal number. After such an optimal number of fea-
tures is achieved, the feature increase begins to downgrade the classifier’s performance [40].
This is commonly known as the curse of dimensionality; the Hughes phenomenon. There-
fore, this section proposes a feature analysis process using three different algorithms:

We first applied the PCC algorithm [41] to the collected data, in which the correlation
coefficient value falls within the range [−1, 1]. The PCC equation is defined as follows:

r(x, y) =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

(1)

where x and y are the average values of x variables and y variables, respectively. Note that
there is a strong positive correlation between features x and y when the correlation coeffi-
cient approaches 1. Otherwise, a negative correlation exists. Although the PCC algorithm
helps determine the linear correlation between any two variables, it is not a perfect method
for determining other relations, such as nonlinear correlation and independence. Therefore,
a preset value of 0.4 is defined as a threshold to classify each pairwise feature into one of
two groups according to their correlation coefficient value r. That is, the linear correlation
group and the other group with r > 0.4 and r ≤ 0.4, respectively. The results of the PCC
algorithm are presented in Table 3, where fourteen out of thirty-three features were split
into a linear correlation group using PCC. The most relevant features are MSR, NDVI, and
OSAVI. The equations for these index features are summarized in Table A1. For the feature
pairs classified into the other group, we applied two other algorithms, SHAP and RFECV,
to analyze their contribution and importance concerning the given predictive model.

The SHAP value measures the contribution of each feature to a given predictive model.
It is a solution concept proposed by the game theory master Lloyd Stowell and originates
from cooperative game theory [42]. The SHAP equation is defined as follows:

φj(v) = ∑
S⊆{x1,x2,...,xp}\{xj}

|S|!(p − |S| − 1)!
p!

(
v
(
S ∪

{
xj
})

− v(S)
)

(2)

where x1, x2, . . . , xp are features for building the predictive model, S is a subset that excludes
xj, and the function v indicates that if S is a participant set, then v(S) is defined as the value
of S, describing the total expected sum that the members of S can obtain by cooperation.
The advantage of using SHAP is that it reflects each feature’s positive and negative impacts
on the predictive outcomes. However, since the SHAP value’s goal is to determine each
feature’s contribution, it calculates the contributions of all permutations of the feature
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combinations. Therefore, the computational complexity of calculating the SHAP value
increases exponentially with the number of features. Fortunately, a previous study proved
that a predictive model using tree ensembles could reduce computational complexity [43].
Hence, this study applied one of the best tree ensemble implementations, XGBoost, to
evaluate the contribution of each feature [44,45]. Two major techniques are applied in
XGBoost: gradient boosting and random sampling. In gradient boosting, each tree is
related to other trees, and the main objective is to ensure that the trees generated later
correct the mistakes of the previous tree. Random sampling helps to analyze the collected
data with a lower margin of error, enabling the data to provide more accurate insights
into a specific subject matter. The primary concept of XGBoost is to integrate many weak
decision trees to form a strong predictive model using the boosting technique. In this study,
only XGBoost was used to calculate SHAP values. It was not applied to the rice yield
prediction. The resulting SHAP values for each feature are shown in Figure 3. The results
showed that the top-contributing features were the PCMSPLOT, reHTNDVI, GBNDVI,
and RED.

The two analyses, PCC and SHAP, mentioned above, can identify the features that
contribute most significantly to rice yield prediction. However, they did not indicate the
optimal number of features the model should be trained to achieve maximum training
efficiency. Training a model with too few features may result in poor performance, whereas
using too many features can slow down the training process and may even lead to the
Hughes phenomenon. Hence, this study employed a third algorithm, the recursive feature
elimination with cross-validation (RFECV) algorithm, to determine the most beneficial num-
ber of features for model utilization. The RFECV algorithm estimates the maximum number
of features required to establish an optimal model [46]. It iteratively estimates the model
error for each feature and removes the highest error. Decision trees were implemented to
obtain model errors for each feature. The results of the RFECV estimation are shown in
Figure 4. The model accuracy was the average of the k-fold cross-validation, where k was
set to ten. As shown in Figure 4, the prediction model achieved the highest accuracy when
employing seven features, which remained consistently stable even after averaging. In
addition, this algorithm documents the specific features employed to train the prediction
model, including reHTNDVI, PCMSPLOT, GBNDVI, reHT, BLU, reVARI, and RED. It is
noteworthy that the first five features aligned precisely with the top six independent SHAP
values calculated. Consequently, from the SHAP value and RFECV algorithms, it can be
inferred that the utilization of these features is expected to result in greater efficiency of the
prediction model.

Table 3. Results of using the PCC for each feature.

NDVI SAVI OSAVI MSR NIR reHT BLU GRN GRE

PCC 0.49 0.41 0.48 0.49 0.40 0.18 −0.14 −0.19 −0.13

RED SAVIl SAVIRE1 SAVIRE2 MCARI NDGR GBNDVI

PCC −0.24 0.41 0.46 0.47 0.07 0.46 0.09

NDBL NDRERED reVARI CC1 ARI TGI2 GLI2 NDRE

PCC 0.40 0.22 0.23 0.47 0.41 −0.16 0.06 0.46

SRGRN SRBLU SRGRNRED reHTNDVI PCMSPLOT PCMS

PCC 0.42 0.40 0.16 0.21 0.26 0.01

GRNDVI SRRED SRRGE

PCC 0.16 0.46 0.45
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Figure 4. The results of model accuracy for RFECV. The left plot with different colored lines represents
the use of different folds as the test set; the right plot shows the average model accuracy for the k-fold
cross validation.

The Hughes phenomenon indicates that using more features in model training is not
necessarily better. Careful analysis is required to extract useful features to achieve the
maximum benefit in prediction. Consequently, we selected three linearly correlated features
and four other correlated features for the training process. The rationale for this selection
was to strike a balance. Opting for all the linearly correlated features would oversimplify
the overall relationship and hinder the model’s generalization ability. However, choosing all
features from the other correlated sets would make it challenging for the model to train and
potentially hinder convergence to an optimal state. Therefore, the following seven features
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were selected to train the prediction model: MSR, NDVI, OSAVI, PCMSPLOT, reHTNDVI,
GBNDVI, and RED.

3. Methodology

In this section, we divide the proposed model into two main processes: (1) preprocessing
the data of the selected features; and (2) the architecture of the hybrid model, which consists
of MKCNN and Bi-LSTM, to predict crop yield.

3.1. Preprocessing

Since the collected dataset was noisy and unstructured, preprocessing and reconstruc-
tion were inevitable steps before implementing the proposed hybrid model. Hence, this
study applies the max normalization to each feature, as follows:

x̂i =
xi − xmin

i
xmax

i − xmin
i

(3)

where x̂i is the normalized value, xi is the original value, and xmin
i and xmax

i are the
minimum and maximum values of feature i, respectively. All the feature values were
projected into the range [0, 1]. The reason for normalization is that the target was predicted
based on different feature scales. They do not contribute equally to the model fitting and
learned functions, which indirectly decreases model performance.

However, since the MKCNN cannot utilize digital data as an input source, we recon-
structed the collected data into a three-dimensional matrix. Each remote sensing feature is
defined as f1, f2, . . . , fn, the time stamps are defined as t1, t2, . . . , tm, and each farmland is
defined as l1, l2, . . . , lp. The remote-sensing features and time series were set as columns
and rows, respectively. Hence, the size of the three-dimensional matrix was lp × tm × fn.
Figure 5 shows a general view of the reconstructed data collected from the farmland, where
each block line is reconstructed as a two-dimensional matrix, and the entire farmland is
integrated into a three-dimensional matrix.
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Figure 5. General view of reconstruction collected data for (a) a unit of farmland and (b) the
entire farmland.

For the Bi-LSTM, the time stamps t1, t2, . . . , tm are split into separate segments, with
each segment containing all the remote sensing features f1, f2, . . . , fn. Each timestamp is
sequentially fed into a hybrid model.

3.2. Proposed Model

The proposed hybrid model integrates two different classes of deep learning models
to analyze the data in block and stream modes, which enriches feature learning. Figure 6
shows a general view of the proposed model architecture. The implementation of MKC-
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NNs was inspired by MS-Blocks [47]. In the following subsections, we comprehensively
introduce each part of the proposed hybrid model.
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The proposed model can be divided into two main modules: MKCNNs and Bi-LSTM.
First, the input data are converted into the corresponding input structure based on the
module. For example, the input structure required for an MKCNN is a three-dimensional
matrix obtained through a preprocessing operation. Next, the hybrid model received the in-
put data, processed through various operations and flattened into a one-dimensional vector.
Subsequently, it passes through the fully connected layers, resulting in the calculation of
two values: the predicted crop yield (regression task) and the classification of high or low
yield (classification task). The hybrid model also incorporates shared layers from multi-task
learning techniques. In this study, the shared layers were integrated into the MKCNN,
enabling the model to indirectly improve the prediction results of the regression task while
optimizing the classification task. This enhances the overall accuracy of the model. The
internal architecture of the proposed model is described in detail in the following sections.

CNN is a major component of MKCNNs, a deep learning model that handles grid-like
data, such as images or rows of multi-column data. It consists of four major operations:
a convolution layer, padding, an activation function, and a fully connected layer. The
convolutional operation is the first operation generally used in CNN models. This can be
regarded as calculating the sum of the products of a block of input values and the values
of a convolutional kernel, also called a filter. Kernel K was applied to input image I using
a sliding window. For each pixel in I, the sum of the element-wise products was calculated
using K and stored in the corresponding pixel in F. Once K convolves the entire image, the
resulting feature map F is produced. To prevent loss of information at the image’s borders,
additional pixels are added to the periphery of the image during convolution. The padding
operation has two benefits: it allows border patterns to be captured and prevents the image
from being continuously compressed, resulting in the loss of block patterns. All the pixels
of the image are subjected to an activation function that transforms the output and input
into a nonlinear relationship, thereby enabling the deep learning model to have a more
expressive meaning. Finally, the high-dimensional data are flattened into a one-dimensional
array and imported into the fully connected layer, where the previously extracted features
are classified or regressed after weight calculation in the final stage.

The core of MKCNNs is a multi-kernel block, which applies several kernels of different
sizes to perform convolution. We believe implementing filters with the same kernel but
different sizes can result in different meanings for the collected feature maps. For instance,
the Sobel operation for edge detection in an image with filters of varying sizes, such as
3 × 3, 5 × 5, and 7 × 7, produces feature maps with different meanings. These distinct
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feature maps enable the model to learn from a wider range of features. A schematic of the
multi-kernel block is shown in Figure 7.
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As shown in Figure 7, the inputs are sent to three different convolutional kernels,
denoted as K1, K2, and K3 for feature extraction. The previous layer is denoted as Pm∗n.
The convolutional operation is defined as the product of Wc

q and the input layer P as in (4),
where Wc

q represents the convolution using cth kernel with q convolutional operations,
and the bias of the cth kernel is denoted as biasc

q,m×n. Each feature map is defined as

Fc
q =

[
( f1)

c
m×n ( f2)

c
m×n . . .

(
fq
)c

m×n

]T
, where fi indicates one of the convolved fea-

ture maps using cth kernel. Each entire convolved feature map Fc
q with cth kernel is

concatenated to form F, as shown in Equation (5).

Fc
q = activate

(
Wc

q P + biasc
q,m∗n

)
c = 1, 2, 3 (4)

F =
[

F1
q F2

q F3
q

]T
(5)

On the other hand, we aim to retain more detailed feature maps, but using more
convolutional operations can result in a lack of fidelity in the feature maps. Thus, we
applied a forward mechanism in which each multi-kernel block result was passed to the
fully connected layers. For instance, if we implement three multi-kernel blocks, we obtain
three status forms: F1, F2, and F3. Next, we concatenate these forms into a one-dimensional
matrix and feed them into the fully connected layers. This mechanism can also save more
features for training predictive models without sacrificing the fidelity of feature maps with
more multi-kernel blocks.

MKCNNs determine high-yield versus low-yield patterns based on a data block area
of multiple times and features. However, the original data were in a time series. The feature
value at a specific time can relate to either the previous or the latter values. Therefore, we
applied Bi-LSTM as another model to analyze the data sequentially. The LSTM is a variant
of the RNN that overcomes the problem of gradient vanishing or explosion by integrating
a gradient superhighway in the form of a cell state C, in addition to the hidden state h [48].
Given a sequence of data x1, x2, . . ., xP for P times with output yt−1 and hidden state ht−1,
the forget gate that decides to discard information can be defined as follows:

ft = σ
(

W f [ht−1 · xt] + bias f

)
(6)

where σ is sigmoid function, and W f is the weight matrix for the forget gate. The input
gate can control whether the input value it at time step t is calculated using the previous
hidden state ht−1, which is defined in (7). Similarly, the hidden state ht and output state ot
of the LSTM are defined in Equations (8) and (9), respectively, where the cell Ct at time step
t can be taken as an intermediate variable.

it = σ(Wi[ht−1 · xt] + biasi) (7)



Agriculture 2024, 14, 513 12 of 21

ht = ot · tanh(Ct) (8)

ot = σ(Wo[ht−1 · xt] + biaso) (9)

LSTM is more efficient and performs better than a simple RNN in building long-term
time sequences. However, LSTM applies only previously learned information without
considering subsequent information in the time series. In practical scenarios, predictions
may require information from the entire input sequence. The model training of Bi-LSTM
requires the use of all information from the input sequence. This combines forward and
backward information from the input sequence. The output vector contains information
from both directions using concatenation operations.

The proposed hybrid model introduced a multi-tasking technique [49] to enhance
model performance. Many studies have used the root-mean-square error (RMSE) as a loss
function for crop yield prediction. RMSE calculates the distance between the ground
truth and the predicted value. In this study, we used the predicted value with the RMSE
to determine whether the crop yield was high or low. Our main goal was to achieve
greater accuracy in the regression task for predicting the rice yield. We found that simply
applying the RMSE did not accurately determine the correct predicted value. Therefore,
we attempted to incorporate classification to adjust the predicted value. We introduced
a multitasking technique to increase the regression accuracy and prevent overfitting of the
proposed model. The shared layers facilitate the coordination of relationships between
multiple tasks. By sharing layers, adjustments made to one task can affect the performance
of other tasks. Given several tasks, t1, t2, . . . , tN for N tasks. The loss function is defined
as follows:

L = ∑N

i=1
wiL(θi, ti) (10)

where θi is the learning weights of ti, L is the loss function in ti, and the wi, is the proportion
of loss in L [50].

4. Experimental Results

In this section, five indicators were employed to assess the performance of the pro-
posed model. To illustrate the performance of the model, we conducted several experiments,
including an ablation experiment. In addition, various hybrid model parameters were
evaluated to determine the optimal configuration.

The origin dataset comprises a total of 405 entries. Due to the presence of some data
errors, such as missing values, the dataset was cleaned, resulting in a final usable count
of 333 entries. The dataset was then divided into training, validation, and testing sets in
proportions of 80%, 10%, and 10%, respectively. The validation set was used with an early
stopping technique, with the parameter patient set to 100 to avoid overfitting during model
training. We collected rice yield data from the past five years and calculated the average
value to set the decision boundary. In this study, the decision boundary was set at 3032.
Based on this boundary, the positive class was assigned a high yield, and the negative class
was assigned a low yield. Five metrics were applied to evaluate the model’s performance:
accuracy, recall, precision, R-squared

(
R2), and F1 score. These metrics are defined by

Equations (11)–(15):

R2 = 1 − ∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − y)2 (11)

accuracy =
(TP + TN)

Total.N
(12)

precision =
TP

(TP + FP)
(13)

recall =
TP

(TP + FN)
(14)
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F1 score = 2(
precision ∗ recall
precision + recall

) (15)

where yi is the true value, ŷi is the predict value, and y is the average value of y variable.
It is necessary to demonstrate that the seven features extracted using the three ana-

lytical algorithms benefit model training. The experimental results, depicted in Table 4,
with the best results highlighted in bold, indicate that training the model using 33 features
does not yield superior results compared to using only seven features. The experimen-
tal results suggest that employing all the features for training inevitably leads to the
Hughes phenomenon. Hence, the extraction of the most relevant features of rice yield is
an indispensable step.

Table 4. Comparison of feature quantity in model training.

Number of Features Loss R2

33 387.45 0.54

7 344.56 0.64

The proposed hybrid model sets up shared layers to coordinate the prediction re-
sults of MKCNN and Bi-LSTM, in which the task of crop yield prediction is split into
two subtasks: regression and classification. The regression subtask provided a scalar out-
put for prediction, whereas the classification subtask provided a discrete result (i.e., high
versus low yield). Two loss functions, RMSE and cross-entropy, were used in the regression
and classification tasks, respectively. It is important to demonstrate that the hybrid model
performs better than a single model. Therefore, an ablation experiment was conducted to
test this hypothesis. The results of the ablation experiments are presented in Table 5, with
the best results highlighted in bold. The experiment involved implementing single models
for crop yield prediction, showcasing the superior performance of the hybrid Bi-LSTM and
MKCNN models. The models were constructed both with and without specific components
to determine their necessity. As a result, the proposed model, combining MKCNN and
Bi-LSTM, achieved the best performance in all aspects except recall. One reason is that the
collected data have an imbalanced amount of high-yield versus low-yield data, with more
high-yield data than low-yield data. Since the ANN model accurately predicts a high yield
for almost all data, it results in the highest recall among the prediction models.

Table 5. Results of ablation experiment.

Model Loss R2

CNN 550.13 0.09

LSTM 518.42 0.22

Bi-LSTM 489.07 0.28

MKCNN 395.15 0.53

MKCNN + LSTM (w/o MTL) 404.27 0.51

MKCNN + Bi-LSTM
(w/o MTL) 399.77 0.52

MKCNN + LSTM 367.98 0.59

MKCNN + Bi-LSTM 344.56 0.64

First, we implemented a single model to predict crop yield. The results in the
first four rows show that the Bi-LSTM model performed better than the LSTM model
and that the MKCNN model performed the best. This is because the Bi-LSTM model
incorporates both forward and backward information from the input sequence, resulting
in better accuracy than the LSTM model. The single MKCNN model outperformed the
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other models because it first applied multi-kernel block operations, extracting more useful
feature maps that were fed to the fully connected layers. However, LSTM-based models
are not inherently poor for crop prediction. Their poor performance is owing to the short
input sequence length of only seven units, which does not fully leverage the advantages of
the LSTM-based model. The hybrid models without the MTL technique perform similarly
to a single MKCNN, as shown in Table 5. The model without the MTL used two models
that made separate crop predictions and averaged the results for the final prediction. The
model proposed in the final row fuses the MKCNN and Bi-LSTM models by exploiting their
advantages. The proposed model performed best in the ablation experiment. The MKCNN
perfectly extracts feature maps, and Bi-LSTM extracts forward and backward information
from the input sequence. Finally, applying shared layers to connect the two models yielded
the best performance.

Moreover, we attempt to determine the optimal distribution of the two models. The
results are listed in Table 6. We tested various distribution ratios between the regression
and classification subtasks, respectively. The model achieved the best performance with
a distribution ratio of 3 to 7 compared to other distributions. Therefore, a distribution ratio
of 3:7 was identified as optimal for the two models.

Table 6. The performance in different settings of distribution ratios between the regression and
classification subtasks.

Ratio of Regression and Classification Loss R2

5:5 354.26 0.62

6:4 346.21 0.64

4:6 350.17 0.63

7:3 349.03 0.63

3:7 344.56 0.64

8:2 356.86 0.62

2:8 355.80 0.62

9:1 347.40 0.64

1:9 346.40 0.64

Table 7 shows the overall performance of the proposed model compared to other deep
learning models [29,31,47]. The best results are highlighted in bold. The proposed model
outperformed the other deep learning approaches in all metrics except recall.

Table 7. Comparison with other models used for crop yield prediction.

Model Loss R2 Accuracy Precision Recall F1

ANN 550.03 0.09 0.76 0.76 1.0 0.86

DNN
[29] 389.86 0.54 0.82 0.92 0.88 0.90

MDNN
[31] 370.80 0.59 0.82 0.85 0.92 0.88

MS-Block
[47] 372.69 0.58 0.88 0.89 0.96 0.92

Proposed 344.56 0.64 0.90 0.92 0.96 0.94

Detailed information is shown in Figure 8, where we use a confusion matrix to illustrate
the performance of the proposed models. The left plot (a) shows the results of the ANN
model, and the right plot (b) shows the results of the proposed model. Four parameters
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were calculated: the true positives (TP), false positives (FP), false negatives (FN), and true
negatives (TN). As shown in Figure 8, although the ANN model achieved a perfect recall
result of 100%, it failed to predict low-yield instances. This indicates that the ANN model
was biased towards predicting high yields even when the ground truth had a low yield.
However, the proposed model could forecast both high and low yields accurately. This
is because the dataset was imbalanced, and the proposed model was able to handle such
imbalanced datasets effectively. However, the accuracy of the ANN model is 14% lower
than that of the proposed model. This means that a high false-positive rate for the ANN in
predicting high yield led to poor prediction of low yield.
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Next, we discuss the impact of the different parameters used in the proposed model,
with a focus on rice yield prediction. To evaluate their effects, we compared loss values,
R-squared values, and training times across different settings. The discussion is organized
into several subsections, each addressing a specific parameter.

Table 8 lists the performance of the proposed model with different numbers of layers
in a fully connected layer. There was a strong relationship between the number of layers
and model accuracy. As the number of layers increased, the loss decreased. Although the
optimal number of layers is four, as shown in Table 8, the loss almost reaches a convergent
state when the number of layers is three. The reason why the loss of four layers is better
than three layers is due to slight fluctuations in the hybrid model, resulting in the losses for
three layers to five layers being close to each other (≤1.2%). Therefore, we considered the
optimal number of layers to be three for a fully connected layer.

Table 8. Comparison of performance with different numbers of fully connected layers.

Layers Loss R2 Training Time

1 370.01 0.59 87.02

2 364.89 0.60 92.17

3 355.31 0.62 99.18

4 351.40 0.63 101.79

5 354.52 0.62 105.12

Table 9 lists the performance of the proposed model for different batch sizes. Batch size
refers to the number of training samples used in each iteration during training. The batch
size has a significant impact on the accuracy of the model as well as its optimization degree
and speed. The advantage of a small batch size is that it introduces more randomness during
training, which can improve the model’s generalization ability. However, using a small
batch size may make converging difficult for the models. Similarly, increasing the batch size
is not recommended because it may cause the model to fall into local optima. Implementing
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a larger batch size can decrease the training time and improve convergence but may affect
the model’s accuracy. Therefore, selecting an optimal batch size is an important issue that
must be carefully considered.

Table 9. Performance with different batch sizes.

Batch Size Loss R2 Training Time

16 344.89 0.64 107.29

32 351.50 0.63 105.51

64 355.91 0.62 102.97

100 354.02 0.62 101.81

128 373.48 0.58 99.52

We also tested five network optimizers: Adam, Adagrad, Adadelta, Adamax, and
RMSProp. Table 10 displays the best performance achieved by the different network
optimizers, whereas Figure 9 shows the detailed loss values observed during the training
process using various network optimizers.

Table 10. Comparison of performance with different optimizers for the proposed hybrid model.

Optimizer Loss R2

Adam 347.42 0.64

Adagrad 450.26 0.39

Adadelta 499.34 0.25

Adamax 362.84 0.60

RMSProp 491.15 0.28
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The number of epochs was not consistent due to the application of an early stopping
technique. Therefore, the first 100 training epochs are selected to represent the training steps
of the model. Figure 9 illustrates that Adam was the fastest converging optimizer during
training. Interestingly, the Adam optimizer yields the lowest loss in the hybrid model. The
reason behind this is Adam combines the advantages of both AdaGrad and RMSProp. It
utilizes the same learning rate for each parameter and adapts them independently as the
learning progresses. According to the R2 values in Table 10, the two worst-performing
optimizers were Adadelta and RMSprop. The RMSprop alone may not effectively converge
to a stable state, leading to significant fluctuations during training. Although Adadelta
appeared to converge after 60 epochs, it became trapped in the local optima. However, the
choice of a suitable optimizer depends on the model and problem definition.

The experiments show that the depth of the multi-kernel blocks affects the predictive
performance. This is illustrated in Figure 10, which shows the effect of the depth of the
multi-kernel blocks. The experiment used three different sizes of kernels to extract the
feature maps.
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Table 11 describes the results for different depths of the multi-kernel blocks. The
results indicated that the optimal depth was 3. We can also see that as the depth of the
multi-kernel blocks increases, the model performance also improves. However, if the depth
of a multi-kernel block exceeds a certain threshold, the overall performance decreases.
As shown in Table 11, an infinite increase in the depth of the multi-kernel block leads to
overfitting problems rather than the extraction of more useful feature maps. This can result
in high accuracy in the training set but poor performance in the testing and validation sets.
In addition, as the depth increased, the model training time increased.

As a part of the hybrid model, it is necessary to determine the optimal number of
Bi-LSTM neurons. We experimented with five different numbers of neurons in the Bi-LSTM
and set up only one Bi-LSTM layer. The results are listed in Table 12. As a result, the
loss value gradually decreases with neurons in the Bi-LSTM. However, increasing the
number of neurons beyond 64 did not effectively improve the model performance (i.e., the
improvement range was less than 1%), and the training time increased. Therefore, this
study set the optimal number of neurons to 64.
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Table 11. Performance with different depths of multi-kernel blocks.

Depth Loss R2 Training Time

1 369.34 0.59 98.54

2 357.89 0.62 103.81

3 344.56 0.64 107.21

4 365.92 0.60 123.17

5 368.53 0.59 127.82

Table 12. Performance with different number of Bi-LSTM neurons.

Neurons Loss R2 Training Time

16 365.58 0.60 97.49

32 355.94 0.62 98.21

64 345.88 0.64 101.12

128 347.55 0.64 112.28

256 346.97 0.64 127.71

5. Conclusions

This study proposed a hybrid deep learning model for rice yield prediction based
on drone environmental data. Three different feature analysis methods were applied to
the collected data to select the features that contributed the most to model training. The
proposed hybrid model combines the regression and classification loss functions of the
shared layers using a multi-tasking technique, which improves the model’s overall accuracy.
The experimental results show that the proposed hybrid model achieved an F1 score of
94% with only a small amount of data. However, most deep learning models show full
performance potential when there is a sufficiently large amount of data. Unfortunately, the
cost of collecting such data from agricultural fields is high. Therefore, in future work, we
will explore the use of generative adversarial networks to augment real data and boost the
performance of the proposed hybrid model to the next level.
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Appendix A

Table A1. Performance with Different Numbers of Bi-LSTM Neurons.

Index Feature Description

NIR NIR

reHT Canopy height (from DSM)

RGE Red edge (735 nm)

RED Red (660 nm)

GRN Green (550 nm)

BLU Blue

NDVI NIR − RED
NIR + RED

SAVI 1.5 × NIR − RED
NIR + RED + 0.5

OSAVI 1.16 × NIR − RED
NIR + RED + 0.16

MSR
NIR

R − 1√
NIR

R + 1

SAVIl 2 × NIR − RED
NIR + RED + 1

SAVIRE1 1.355 × NIR − RGE
NIR + RGE + 0.355

SAVIRE2 1.261 × NIR − RGE
NIR + RGE + 0.261

MCARI RE − RED − 0.2 × (RE − GRN)( RGE
RED )

NDGR NIR − GRN
NIR + GRN

GBNDVI GRN − BLU
GRN + BLU

NDBL NIR − BLU
NIR + BLU

NDRERED NDRE Red

reVARI GRN − RED
GRN + R − BLU × 100 + 100

CC1 NIR − RGE
NIR+RED

ARI NIR ×
(

1
GRN − 1

RGE

)
TGI2 −0.5 × (193 × (RED − GRN) − 108 × (RED − BLU))

GLI2 G − R + G − B
2 × G + R + B

NDRE NIR − RGE
NIR + RGE

SRGRN NIR
GRN

SRBLU NIR
BLU

SRGRNRED GRN
RED

reHTNDVI reHT × NDVI

PCMSPLOT 1 −
(

0.98 − NDVI
0.98 − 0.1

)0.9

PCMS thresholded plot pixel #
whole plot pixel #

GRNDVI GRN − RED
GRN + RED

SRRED NIR
RED

SRRGE NIR
RGE
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