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Abstract: Potato genetic improvement begins with crossing cultivars or breeding clones which often
have complementary characteristics for producing heritable variation in segregating offspring, in
which phenotypic selection is used thereafter across various vegetative generations (Ti). The aim of
this research was to determine whether tetrasomic genomic best linear unbiased predictors (GBLUPs)
may facilitate selecting for tuber yield across early Ti within and across breeding sites in inbred (S1)
and hybrid (F1) tetraploid potato offspring. This research used 858 breeding clones for a T1 trial at
Umeå (Norrland, 63◦49′30′′ N 20◦15′50′′ E) in 2021, as well as 829 and 671 clones from the breeding
population for T2 trials during 2022 at Umeå and Helgegården (Skåne, 56◦01′46′′ N 14◦09′24′′ E),
respectively, along with their parents (S0) and check cultivars. The S1 and F1 were derived from
selfing and crossing four S0. The experimental layout was an augmented design of four-plant plots
across testing sites, where breeding clones were non-replicated, and the parents and cultivars were
placed in all blocks between the former. The genomic prediction abilities (r) for tuber weight per
plant were 0.5944 and 0.6776 in T2 at Helgegården and Umeå, respectively, when T1 at Umeå was
used as the training population. On average, r was larger in inbred than in hybrid offspring at both
breeding sites. The r was also estimated using multi-environment data (involving at least one S1 and
one F1) for T2 performance at both breeding sites. The r was strongly influenced by the genotype in
both S1 and F1 offspring irrespective of the breeding site.

Keywords: Solanum tuberosum; crossing; polyploidy; genomic estimated breeding values; linear
models; Nordic latitude; selfing; tetrasomic inheritance

1. Introduction

A cycle of breeding tetraploid (2n = 4x = 48 chromosomes) potatoes (Solanum tubero-
sum) takes between one to one and a half decades from crossing to identifying superior
germplasm for potential cultivar release. The main challenge in improving breeding effi-
ciency in this tuber crop which shows tetrasomic inheritance remains, therefore, identifying
promising breeding clones in early clonal generations (Ti). Reducing the breeding cycle
increases genetic gains, which thus makes it a main priority for improving the genetic
enhancement of the potato crop.

During the first year, a few dozens to several hundreds of F1 full-sib family offspring
ensue from crossing blocks of small or large potato breeding programs, respectively [1,2].
The segregated F1 offspring (T1) resulting from crossing two heterozygous potato parents
are very heterogeneous and exhibit the maximum intrafamily genetic variance. Selecting
efficiently at this stage may significantly improve genetic gains by increasing the intensity
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of selection due to the quality of the material that advances as T2 to further stages of clonal
selection in the target population of environments.

Visual selection of promising F1 clones in early segregating generations is ineffective
in tetrasomic potato breeding [3–5]. Tuber yield is, however, an important characteristic for
visual preference scoring in T1 and T2 [6,7]. In this regard, family selection for tuber yield
has been proposed for early (T1 and T2) clonal generations [8] since interfamily heritability
appears to be higher than intrafamily heritability [9,10] as there is less of an environmental
effect seen in the family means than within each family [4,11,12]. Unfortunately, family
selection for tuber yield in the greenhouse does not seem feasible in pots whose diameter
affects tuber characteristics [13]. Although, as indicated by Ticona-Benavente et al. [14],
there is a lack of repeatability for tuber yield among individual clones across early (T1–T4)
clonal generations, the mean ranking of a cross remains the same across sites and over
years in potatoes [15], thus showing repeatability in the early generations. The tuber yield
of F1 clones in non-replicated T1 plots cannot be used for selection, while family selection
seems feasible particularly when, as noted by Brown and Caligari [16], considering both
the family mean and its within-progeny standard deviation. Nonetheless, selection in T1
may be useful for rejecting a family [17] or individual clones which show irregular tuber
shapes or deep eyes [18], rather than for the selection of individual clones [19], which may
randomly reduce the number of genotypes for further testing.

The use of best linear unbiased predictors (BLUPs) for between- or within-family selec-
tion seems to increase genetic gains for tuber yield in the potato crop [20]. BLUPs take into
account pedigrees to utilize additive genetic variance [21]. Moreover, Slater et al. [22,23]
demonstrated the advantage of BLUP-estimated breeding values (EBVs) for predicting the
performance of low heritability traits in potatoes. These BLUPs provide EBVs for each fam-
ily, individuals within each family and all cultivars in their pedigree [24]. Slater et al. [25]
also proposed the use of selection based on genomic EBVs (GEBVs) for increasing genetic
gains. In this regard, Ortiz et al. [26] have shown that multi-environment (ME) modeling
increases GEBV prediction accuracy.

Jinks and Lawrence [27] presented a compelling challenge to the prevailing notion
that heterozygotes are optimal for achieving high crop yields. They argued that, contrary
to conventional wisdom, inbreeding plays a pivotal role in elevating the prevalence of
beneficial alleles while simultaneously solidifying and eliminating homozygotes carrying
harmful recessive variants. Moreover, Jinks [28,29] proposed that the manifestation of
heterosis is not exclusively contingent on heterozygosity itself but is intricately linked to the
genotype. This perspective opens up the possibility of fixing advantageous homozygous
recombinants through inbreeding, thereby contributing to the enhanced performance
of crops. In this regard, Ortiz et al. [30] recently pointed out that GEBVs may lead to
eliminating undesired inbred or hybrid offspring in potato breeding. Hence, the objectives
of our research, from which this manuscript ensued, were to assess the value of genomic
best linear unbiased predictors (GBLUPs) based on the reaction norm model [31] for early
generation selection for tuber yield in the potato crop, as well as the effect of inbreeding
on genomic prediction ability (r) for this characteristic, thus emphasizing its critical role in
enhancing selection accuracy and efficiency.

2. Materials and Methods

Our multi-site trials over two years used up to 858 hybrid (F1) and inbred (S1) clones re-
sulting from the 2020 crossing block of Svenska potatisförädling, which is about 10% of the
population size for year 2021 of this potato breeding program targeting Fennoscandia [2].
Four cultivars (S0), namely Colleen (Ireland, 1991, Manna ×Mizzen), Melody (The Nether-
lands, 2001, VE 74–75×W 72–22–496), Queen Anne (Germany, 2012, SA 99–002–44 × Gala)
and Rudolph (Great Britain, 2006, Chieftain × Stirlinh’g), were used as parents. Colleen’s
tubers are used for boiling and frying; while tubers of Melody are suitable for boiling,
mashing and wedging. The tubers of Queen Anne are appropriate for frying, mashing and
roasting, and those of Rudolph for baking, boiling and frying. True seeds from the crossing



Agriculture 2024, 14, 455 3 of 12

block were grown as seedlings in a greenhouse. The tuberlings (i.e., tubers derived from
seedlings) for each offspring were grown in a field along with their parents for producing
the next year’s tubers for planting.

The tuber harvests of field trials included the four parents and 858 breeding clones
at Umeå (63◦49′30′′ N 20◦15′50′′ E, Norlland, Sweden) in 2021, as well the parents and
829 clones at same site in 2022, and the parents and 671 clones at Helgegården (56◦01′46′′

N 14◦09′24′′ E, Skåne, Sweden) in 2022 (Table 1). The field layouts in each site were
augmented designs with 4-plant plots, in which the four parents were replicated in each
of the incomplete blocks. The spacing was 0.7 m between rows and 0.3 m spacing among
plants within the plot. The tubers used for planting ‘Rudolph’ did not sprout well in 2021,
and this cultivar was not included in further data analysis at Umeå in 2021 due to the
number of unevenly lost plants in each of the nine blocks. The characteristic evaluated was
tuber yield per plant.

Table 1. Total number of offspring after selfing (S1) and crossing (F1) used for trial plantings.

S1 or F1 Offspring Number

Colleen S1 (C S1) 162

Melody S1 (M S1) 94

Queen Anne S1 (QA S1) 177

Rudolph S1 (R S1) 173

Queen Anne × Colleen (QA × C) 36

Queen Anne ×Melody (QA ×M) 272

The effect of the block was accounted for when running the spatial analysis for each
testing site by means of the AR1 × AR1 models [32], which adjusted the data by the row
and column effects simultaneously [33,34]. Heritability and intra-class correlation estimates
were based on the components of variance. The intra-class correlation (IR

2) was estimated
as follows:

IR
2 = σ2

A/[σ2
A + σ2

W]

where σ2
A and σ2

W are the variances among and within the six offspring, respectively. IR
2

is the degree of resemblance of the among group to the total variance [35].
Targeting genotyping using a genotype-by-sequencing approach [36] was used for

characterizing the S0, S1 and F1 with 2340 single-nucleotide polymorphisms (SNPs), which
were previously used in genomic prediction of breeding values for cultivars released in
western Europe along with Svensk potatisförädling clones [25]. We removed markers
whose minor allele frequency was smaller than 0.05; after that, 2194 SNPs were available for
further analyses. Thirteen of these SNP—distributed across the 10 potato chromosomes—
had highly significant marker trait association with tuber yield per plant in the Svensk
potatisförädling population (unp. results). The SNPs had five different allelic stages, which
ranged from 0 to 4. In this scale, 0 and 4 are the two homozygotes (OOOO or nulliplex
and AAAA or quadriplex), while 1, 2 and 3 refer to simplex (AOOO), duplex (AAOO) or
triplex (AAAO) genotypes [25]. We computed the genomic relationship matrix for a full
tetrasomic polyploid model including non-additive effects using the method proposed by
Slater et al. [25] as implemented in the R package AGHmatrix [37].

2.1. Statistical Models

We used the reaction norm model [30] as follows:

y = ZEβE + Zgg + u + e, . . . (1)
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where y is the response vector (total tuber yield per plant); ZE is the incidence ma-
trix for environments (Umeå 2021, Umeå 2022 and Helgegården 2022); βE is a vector of
environmental effects, βE ∼ MN

(
0, σ2

EI
)
, where σ2

E is the variance parameter associated
with environment and I is the identity matrix and MN stands for multivariate normal
distribution; Zg is an incidence matrix that connects phenotypes with genotypes. g is
a vector of random effects due to additive genotypic effects of genotypes; we assume
g ∼ MN

(
0, σ2

gG
)

, where G is the genomic relationship matrix, σ2
g is the variance pa-

rameter associated with the genotypes. u is a random effect that takes into account the
interaction between genotype and environments and u ∼ MN

(
0, σ2

g×EZgGZt
g#ZEZt

E

)
,

where # denotes the Haddamard product (cell by cell) between two matrices, and σ2
g×E is

the variance component associated with the interaction. Finally, e ∼ NM
(
0, σ2

e I
)
, where

σ2
e is the variance parameter associated with the error. We assume that the random terms

are independently distributed. We fitted model (1) using all available records for the three
environments (Umeå 2021, Umeå 2022, Helgegården 2022) using the Bayesian general-
ized linear regression (BGLR) package [36] within the Bayesian framework and using
default priors and hyperparameters provided by the software. Inferences were based on
15,000 MCMC iterations and obtained after discarding 15,000 iterations. Then, we obtained
the posterior distributions for the variance parameters and the posterior means.

Cross-Validation

We investigated the prediction ability of the model considering the same breeding
populations as in Ortiz et al. [30], i.e., four S1 and their two related F1 offspring. We
extended the original prediction problems in Ortiz et al. [30] to multi-environment settings,
so we considered the following problems: (1) prediction of the response variable in one
environment using the data registered in another environment; (2) prediction among full
sibs; and (3) prediction of non-related individuals and half sibs.

In prediction problem 1, we predicted the response variable in both Umeå 2022
and Helgegården 2022 independently using the phenotypic and genotypic information
registered in Umeå 2021 as training data. We computed the Pearson’s correlation between
observed and predicted tuber yield for observations in Umeå 2022 and Helgegården 2022.
For prediction problem 2, the training consisted of all phenotypic records for a given
population evaluated in Umeå 2021 and 70% of the records of that population evaluated in
Umeå 2022 or Helgegården 2022. The testing consisted of 30% of the records for a given
population evaluated in Umeå 2022 or Helgegården 2022. We generated 50 partitions
at random with training and testing sets defined as described. For each partition, we
computed Pearson’s correlation between observed and predicted tuber yield per plant.
In the case of prediction problem 3, we predicted breeding populations of individuals
evaluated in Umeå 2022 and Helgegården 2022 using records of non-related individuals
with the non-breeding populations evaluated in Umeå 2021 and evaluations of the same
population to be predicted from previous years.

2.2. Software

All computations were performed using the R statistical package [38]. Model (1) was
fitted using the package BGLR [39] within the Bayesian framework and using default
priors and hyperparameters provided by the software. Scripts are similar to those from
Pérez-Rodríguez et al. [40]. Inferences were based on 15,000 MCMC iterations and obtained
after discarding 15,000 iterations. The 15,000 iterations were subsequently thinned with
a thinning parameter equal to 10 and posterior means of the parameters of interest were
obtained. Convergence was visually inspected using the trace plot of variance parameters.
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3. Results

Heritability estimates for total tuber yield were 0.70 for Umeå in 2021, 0.24 for Umeå
in 2022 and 0.48 for Helgegården in 2022, while the intra-class correlation estimates for
this characteristic were 0.50, 0.46 and 0.71 in each of these environments, respectively.
There were significant differences (p < 0.05) in the tuber yields between S0, S1 and F1 in
each of the two testing sites over the two years (Table 2). The S0 parents always had a
greater tuber yield per plant than the inbred offspring (S1). The average total tuber weight
of the S1 was, on average, less than half of the S0 across sites over the two years, thus
indicating a significant inbreeding depression for this tuber characteristic. The inbreeding
depression was significantly higher in Umeå 2021 (tuber yield of the S1 was below 1

4 of
the S0) than in Umeå 2022 and Helgegarden 2022, where the S1 tuber yield was 40 and
50% less than that of the S0, respectively. The inbreeding depression for tuber yield was
more noticeable in Queen Anne (36% of the S0 was the tuber yield per plant in the S1 across
the testing environments) than in Colleen (47%), Melody (50%) and Rudolph (56%). The
two F1 were, on average, significantly lower (p < 0.05) than the parents in Umeå, which
suggests a lack of average heterosis in the hybrid offspring in this site. Nonetheless, Queen
Anne and Melody’s F1 offspring’s total tuber yield was higher than that of the S0 by 30% at
Helgegården 2022, thus revealing transgressive segregation for this characteristic in the
heterogeneous F1 family at this testing site. The average total tuber yield of the F1 was
always significantly (p < 0.05) above that of the S1 across testing sites over years, i.e., the F1
tuber yield was 89% higher than that of the S1, which was more noticeable at Umeå 2021,
where the F1 offspring’s tuber yield was more than double that of the S1. The S0 always had
the highest tuber yield per plant in Umeå (almost doubling in 2021 and about 11% higher
in 2022) during the 90-day cropping season with about 14.5–ca. 21 h daylength, but was
almost the same in Helgegården with a 120-day cropping season and a shorter daylength
than in Umeå.

Table 2. Average tuber weight (kg plant−1) of cultivars and their first inbred (S1) and F1 hybrid off-
spring at Umeå (Norlland, Sweden) and Helgegården (Skåne, Sweden) in 2021 (first clonal generation
T1 for S1 and F1) and 2022 (second clonal generation T2 for S1 and F1).

Genotype
Umeå Helgegården

2021 2022

Colleen 0.693 0.867 1.594

Colleen S1 0.181 0.601 0.733

Melody 0.826 1.128 1.746

Melody S1 0.195 0.739 1.040

Queen Anne 0.562 1.145 1.585

Queen Anne S1 0.124 0.392 0.807

Queen Anne × Colleen 0.290 0.857 1.189

Queen Anne ×Melody 0.386 0.981 2.058

Rudolph N/A 1.100 1.472

Rudolph S1 0.222 0.759 0.619

LSD0.05 0.094 0.125 0.279

Figures S1 and S2 shows scatter plots of the observed vs. predicted total tuber yield
per plant in Helgegården 2022 and Umeå 2022 (Problem 1). The Pearson’s correlation
coefficients between the observed and predicted values are shown in the respective legend.
The correlation for Helgegården 2022 was 0.5944, whereas in Umeå 2022 the correlation
was 0.6766. In the latter, the higher value could be attributed to the fact that both the T1
and T2 populations were grown in the same breeding site, i.e., Umeå. Tables 3 and 4 list the
correlation between the observed and predicted tuber yield per plant in one environment
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using the data registered in another environment (Problem 2). The correlations are the
average across 50 partitions and their corresponding standard deviation (SD) are included
to assess the variability of the prediction ability of the model (Figures S3 and S4).

Table 3. Genomic prediction ability (r) for tuber yield (kg plant−1) at Helgegården 2022 for full sibs.

Breeding T2 population
(30% of the records for a

given population) in
Helgegården 2022

(QA × C) (QA ×M) (C S1) (M S1) (QA S1) (R S1)

Training T1 population
in Umeå 2021 and 70%

of that population
evaluated in

Helgegården 2022

(QA × C) (QA ×M) (C S1) (M S1) (QA S1) (R S1)

r 0.503 0.141 0.262 0.392 0.683 0.389

SD 0.210 0.129 0.113 0.162 0.087 0.122

Table 4. Genomic prediction ability (r) for tuber yield (kg plant−1) at Umeå 2022 for full sibs.

Breeding T2 population
(30% of the records for a

given population) in
Umeå 2022

(QA × C) (QA ×M) (C S1) (M S1) (QA S1) (R S1)

Training T1 population
in Umeå 2021 and 70%

of that population
evaluated in Umeä 2022

(QA × C) (QA ×M) (C S1) (M S1) (QA S1) (R S1)

r 0.607 0.428 0.514 0.448 0.769 0.517

SD 0.23 0.116 0.092 0.172 0.058 0.109

The variance in the phenotypes was 0.3694 and the variance associated with the
interaction was estimated as σ̂2

g×E = 0.1094 (Figure 1). The interaction explains about
30% of the phenotypic variance. Hence, it was necessary to fit a model that includes
the genotype-by-environment interaction. Tables 5 and 6 provide the prediction ability of
model (1) for individuals evaluated in Helgegården 2022 and Umeå 2022, respectively, using
records of non-related individuals evaluated in Umeå 2021 and of the same population to
be predicted evaluated in 2022 (Problem 3). The training and training sets are clearly noted
in each table. On average, the prediction ability for tuber yield per plant for each family,
as computed by the Pearson’s correlation between the observed and predicted values for
this characteristic, was higher in Umeå 2022 (0.5360) than in Helgegården 2022 (0.3610)
(Table S1), though the heritability and intraclass correlations were smaller in the former.
The S1 offspring, on average, had a higher prediction ability for tuber yield per plant than
the F1 hybrids at both testing sites (0.5651 vs. 0.5069 in Umeå 2022, and 0.4034 vs. 0.3187
in Helgegården 2022, respectively). Queen Anne S1 had the highest prediction ability
for tuber yield per plant in both testing sites, irrespective of which training population
was used in the model, while among the two F1 hybrids, Queen Anne × Colleen had, on
average, the highest prediction ability in both sites (0.5770 in Umeå 2022 and 0.5256 in
Helgegården 2022).
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Figure 1. Histograms of posterior distributions of variance parameters in reaction norm model. The
variance among environments, genotypes, genotype-by-environment interaction and residual are σ̂2
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Table 5. Genomic prediction ability (r) for tuber yield (kg plant−1) at Helgegården 2022 (H2022).

Training Population Breeding T2 Population r

U2021 C S1 + U2021 QA ×M + H2022 C S1 H2022 QA × C 0.6183
U2021 M S1 + U2021 QA ×M + H2022 M S1 H2022 QA ×M 0.0994
U 2021 QA S1 + U2021 QA × C + H2022 QA S1 H2022 QA × C 0.5345
U2021 QA S1 + U2021 QA ×M+ H2022 QA S1 H2022 QA ×M 0.1089
U2021 QA × C + U2021 QA ×M + H2022 QA × C H2022 Q ×M 0.1229
U2021 QA × C + U2021 QA ×M + H2022 QA ×M H2022 QA × C 0.4650
U2021 R S1 + U2021 Queen Anne × C + H2022 R S1 H 2022 QA × C 0.5137
U2021 RS1 + U2021 QA ×M + H2022 R S1 H2022 QA ×M 0.1139
U2021 C S1 + U2021 R S1 + H2022 R S1 H2022 C S1 0.2636
U2021 M S1 + Umeå 2021 R S1 + H2022 R S1 H2022 M S1 0.4154
U2021 QAS1 + U2021 R S1 + H2022 R S1 H2022 QA S1 0.6570
U2021 C S1 + U2021 M S1 + H2022 C S1 H2022 M S1 0.1891
U2021 QA S1 + U2021 C S1 + H2022 C S1 H2022 QA S1 0.6342
U2021 C S1 + U2021 M S1 + H 2022 S1 H2022 C S1 0.1359
U2021 QA S1 + U2021 M S1 + H2022 M S1 H2022 QA S1 0.6656
U2021 QA S1 + U2021 C S1 + H2022 QA S1 H2022 C S1 0.2635
U2021 QA S1 + U2021 M S1 + H2022 QA S1 H2022 M S1 0.4059
U2021 M S1 + U2021 QA × C + H2022 M S1 H2022 QA × C 0.4965
U2021 C S1 + U2021 QA ×M + H2022 C S1 H2022 QA ×M 0.1137

U2021 = Umeå 2021; C = Colleen; M = ×Melody; QA = Queen Anne; R = Rudolph; S1 = selfing.
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Table 6. Genomic prediction ability (r) for tuber yield (kg plant−1) at Umeå 2022 (U2022).

Training Population Breeding T2 Population r

U2021 C S1 + U2021 QA × C + U2022 C S1 U2022 QA × C 0.5870
U2021 M S1 + U2021 QA ×M + U2022 M S1 U2022 QA ×M 0.4363
U2021 QA S1 + U2021 QA × C + U022 QA S1 U2022 QA × C 0.5720
U2021 QA S1 + U2021 QA ×M + U2022 QA S1 U2022 QA ×M 0.4363
U2021 QA × C + U2021 QA ×M + U2022 QA × C U2022 QA ×M 0.4358
U2021 QA × C + U2021 QA×M + U2022 QA ×M U2022 QA × C 0.5863
U2021 R S1 + U2021 QA × C + U2022 R S1 U2022 QA × C 0.5700
U2021 R S1+ U2021 QA ×M + U2022 R S1 U2022 QA ×M 0.4406
U2021 C S1 + U2021 R S1 + U2022 R S1 U2022 C S1 0.4944
U2021 M S1 + U2021 R S1 + U2022 R S1 U2022 M S1 0.4231
U2021 Q S1 + U2021 R S1 + U2022 R S1 U2022 Q S1 0.7815
U2021 C S1 + U2021 M S1 + U2022 C S1 U2022 M S1 0.4324
U2021 QA S1 + U2021 C S1 + U2022 C S1 U2022 QA S1 0.7528
U2021 C S1 + U2021 M S1 + U2022 M S1 U2022 C S1 0.4713
U2021 QA S1 + U2021 M S1 + U2022 M S1 U2022 Q S1 0.7577
U2021 QA S1 + U2021 C S1 + U2022 QA S1 U2022 C S1 0.5095
U2021 QA S1 + U2021 M S1+ U2022 QA S1 U2022 M S1 0.4629
U2021 M S1 + U2021 QA × C + U2022 M S1 U022 QA × C 0.5698
U2021 C S1 + U2021 QA ×M + U2022 CS1 U2022 QA ×M 0.4350

U2021 = Umeå 2021; C = Colleen; M = ×Melody; QA = Queen Anne; R = Rudolph; S1 = selfing.

4. Discussion

The results across the testing sites and over the years (Table 2) confirm that inbreeding
significantly affects tuber yield, as noted before in this and other potato cultigen pools [30].
This inbreeding depression relates to the accumulation of deleterious recessive alleles due
to vegetative propagation in this polyploid tuber crop with tetrasomic inheritance [41].
Polyploidization hid them and masked their harmful effects in the heterozygous tetrasomic
potato. Inbreeding exposes these deleterious recessive alleles that reduce offspring fitness,
i.e., survival, vigorous growth (influencing yield) and ability to reproduce [42]. Next-
generation sequencing facilitates the identification of deleterious variants with major and
minor harmful effects in the potato genomes [43], which may further lead to their purging
through recombination and selection using large segregating populations. The significant
differences in the inbreeding effect on tuber yield per plant among the four cultivars
corroborate, as noted by Zhang et al. [44], that these variants are specific. The cultivars may
differ in the inbreeding coefficient due to their co-ancestry, in which some breeding clones
or cultivars appear more than once in the respective pedigree.

The range of the prediction ability for tuber yield per plant (0.5944–0.6776) when using
the T1 at Umeå 2021 as training population for both testing sets at Helgegården and Umeå in
2022 (Figures S1 and S2) was larger than previous estimates of prediction accuracy in early
Tis in the same Nordic sites [45] or in other potato breeding populations [46–50]. Each of the
above studies’ results depend, of course, on their datasets, reference populations and their
size, as well as the testing sites used, i.e., all of them affect the prediction accuracy of the
different models. Nevertheless, this increase in r might ensue from using a full tetrasomic
polyploid model including non-additive effects [24]. As indicated by Batista et al. [51],
including allele dosage and dominance effects improve genomic prediction in polyploid
species, particularly for those with a high frequency of different heterozygous types and
high dominance degree. Likewise, the reaction norm model [31] could account for the
improvement of the prediction ability for tuber yield per plant because the genetic and
environmental gradients are defined as linear functions of SNPs and of environmental
covariates, respectively.

The differences in the prediction ability between S1 and their half sib F1 offspring
depend on the parents used (S0) as well as the training population used for modeling
GBLUPs (Tables 5 and 6). Hence, genomic predictions depend on the genetic background of
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both training and testing sets. The fact that the prediction ability, on average, was larger for
inbred (S1) than for hybrid (F1) offspring suggests that GBLUPs are likely to be effective for
purging deleterious alleles with harmful effects on tuber yield per plant, which are noticed
after inbreeding. Likewise, the linkage disequilibrium between the tested SNPs and causal
genes is kept more efficiently in S1 than in F1 offspring, thereby showing that decreasing
the recombination rate may increase r. Although selfing is seldom used in potato breeding,
inbreeding along with selection based on GBLUPs could both reveal deleterious recessive
alleles and identify promising germplasm based on their EBVs for further crossing. In
large potato breeding programs with hundreds of full sib F1 family offspring, GBLUPs
may also allow for a two-stage selection in early segregating generations, i.e., selecting the
best among the F1 full sib family offspring, and thereafter the best breeding clones within
each family.

The emphasis on early generation selection, specifically in T1, signifies the importance
of identifying and harnessing heritable variations in the initial stages of potato breeding.
This approach enables breeders to streamline the breeding process by focusing on traits
relevant to tuber yield, contributing to developing improved cultivars more efficiently.
The use of tetrasomic GBLUPs in this research introduces a genomic prediction method
that considers the tetraploid nature of potatoes. This methodology holds promise in
accurately predicting the tuber yield trait, as it accounts for the complexity arising from
the tetraploid genome. This study explored how this method compares with traditional
breeding approaches and its potential implications for enhancing breeding precision.

4.1. Inbred vs. Hybrid Offspring Performance

The observed larger average r values in inbred offspring compared to hybrid offspring
raise intriguing questions about the genetic dynamics at play. This study revolves around
the genetic basis of this disparity and how it might influence the crossbreeding strategy for
potatoes. The results show that that some inbreds are more predictable in terms of tuber
yield. However, results suggest a need for further investigation into hybrid vigor and its
impact on yield prediction. Nevertheless, the inclusion of multi-environmental data in the
analysis enhances the robustness of the findings of this study. Exploring how r may vary
across different breeding sites provides valuable insights into the adaptability and stability
of the selected breeding clones. Clearly the results of this research highlight the challenges
posed by environmental variations and the need for cultivars (inbreds and hybrids) with
broad adaptability.

4.2. Genotype Influence on Predictive Ability

The strong influence of genotype on the predictive ability (r) for both S1 and F1
offspring underscores the genetic control of tuber yield. The discussion could delve into
the potential genetic markers associated with high-yielding traits and how this knowledge
can be leveraged for marker-assisted selection, thus accelerating the breeding process.

In summary, the results are encouraging for using GBLUPs for T1 selection for tuber
yield per plant using a model based on a training population evaluated in four-plant plots
using an augmented design. Such an approach, as envisaged by Bradshaw [52], would
greatly impact potato breeding efficiency. Likewise, our findings confirm the in silico
research by Wu et al. [53], who stated that GBLUPs used in successive early selection
stages may increase short term genetic gains. Indeed, GBLUPs allows selecting clones with
different inbreeding levels in early stages of potato breeding.

5. Conclusions

Considering the findings, future research should explore how these insights can be
integrated into current potato breeding practices. Are there implications for the design
of breeding programs, selection criteria, or the identification of parents? Moreover, how
might this research contribute to addressing challenges such as disease resistance, climate
resilience and market preferences for potato cultivars? In this regard, this research provides
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valuable insights into the ongoing efforts to enhance potato genetic improvement. The
discussion can stimulate further exploration of the intricacies involved in early generation
selection, genomic prediction methods and the genetic factors influencing tuber yield,
ultimately informing more effective and sustainable potato breeding strategies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agriculture14030455/s1, Figure S1 Genomic prediction using
Umeå 2021 of inbred and hybrid performance as training population and Helgegården 2022 of inbred
and hybrid performance as breeding population. r: prediction ability; Figure S2 Genomic prediction
using Umeå 2021 of inbred and hybrid performance as training population and Umeå 2022 of inbred
and hybrid performance as breeding population. r: prediction ability; Figure S3 Distribution of
correlations for prediction problem described in Table 3; Figure S4 Distribution of correlations for
prediction problem described in Table 4.
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