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Abstract: Cultivated land is a vital factor in agricultural production but faces multiple challenges,
including declining total area, spatial transformation, and ecological degradation. It is imperative
to enhance cultivated land use eco-efficiency (CLUE). This study aimed to evaluate the CLUE that
considers both carbon sequestration and emissions using the SBM model at the county level. Next,
spatial autocorrelation was employed to measure CLUE’s spatial correlation. The spatial agglom-
eration pattern of CLUE was determined, then time-series cluster analysis was used to identify the
temporal evolution patterns of CLUE in various districts and counties. Furthermore, we explored
the spatiotemporal dynamic relationship between CLUE and landscape pattern changes using land-
scape pattern index and geographically and temporally weighted regression (GTWR), considering
spatiotemporal heterogeneity, and using interaction detectors to identify the interaction between land-
scape pattern factors on CLUE. The results show that: (1) From 2000 to 2020, CLUE in Henan Province
varied between 0.50 and 0.70 in most years, indicating potential for improvement. There are four
primary temporal evolution patterns: 26 Late-development, 22 Wave-rising, 27 Fluctuation-rising,
and 29 Continuous-rising types of CLUE. (2) CLUE exhibits low values in the middle and eastern
regions, i.e., areas with high values are concentrated in the southern districts, counties, and western
and northern regions. CLUE has a significant positive spatial correlation with HH agglomeration
areas mainly concentrated in Xinyang City, and LL agglomeration areas mainly located in the eastern
and central regions. (3) Overall, different landscape factors exhibit varying degrees of spatiotemporal
heterogeneity in their impact on CLUE. The total area and aggregation of cultivated land have a
positive effect on CLUE, with the area of the positive influence of the total area gradually expanding
over time and the aggregation gradually decreasing. The complexity of cultivated land shape has a
negative effect. The impact of cultivated land patch density is two-sided, with the area of negative
influence gradually expanding over time. (4) The interaction between the total area, shape, and
aggregation of cultivated land is enhanced. Additionally, the interaction between cultivated land
patch density and other factors has changed from a weakening to a strengthening one, and the
“double-edged sword” effect has gradually shifted into a one-way effect. Therefore, in the process
of land consolidation, it is recommended to prioritize regularized, larger, and more concentrated
cropland patches whenever possible.

Keywords: SBM; GML index; GTWR; interaction detector; Mfuzz; spatial autocorrelation

1. Introduction

In the context of limited cultivated land, increasing grain production is an essential
task for ensuring food security in China [1]. Rapid urbanization and economic growth over
the past two decades have resulted in significant losses of cultivated land or its conversion
into non-agricultural uses, causing a gradual reduction in cultivated land resources. The
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intensive use of fertilizers and pesticides has led to a decline in land productivity, thereby
seriously endangering the production environment of cultivated land. Serious problems,
including non-agriculturalization, non-grain cultivation, and quality degradation [2], have
negatively impacted food security. As a result, improving cultivated land use eco-efficiency
(CLUE) and reducing negative ecological impacts during the production process have
become phasing issues.

Previous research may have underestimated the actual efficiency values of CLUE.
CLUE is a measure of the coordination between land use and the ecological environment
of a region [3]. Measuring methods include ecological footprint [4,5], principal component
analysis [6,7] (PCA), and data envelopment analysis (DEA) [8–11]. The super-efficiency
SBM model [12] derived from DEA has become the mainstream model for measuring
CLUE. It effectively solves the problem of slackness between input and output variables,
reflecting the differences in efficiency boundaries among research units, without the need
to specify the model’s specific form or estimate parameters. Researchers have evaluated
CLUE based on the SBM model using carbon emissions as an unexpected output [2,10],
and the results show varying degrees of decline in CLUE in most provinces after the carbon
emissions index is incorporated into the measurement system [13]. However, these studies
only consider negative environmental impacts of agricultural production, such as carbon
emissions [14,15], environmental pollution [16], or both [17], as unexpected outputs in
the measurement system. Therefore, the positive environmental impacts of agricultural
production, such as absorption and fixation of carbon dioxide in soil and plant biomass,
may be overlooked, leading to an underestimation of the actual CLUE.

Ignoring temporal or local non-stationarity of CLUE, a regression analysis may pro-
duce inaccurate results. In a study of spatiotemporal evolution and its correlated influ-
encing factors, Hou. et al. [18] employed a systematic generalized method to quantify
urbanization’s effects on CLUE. The results indicate that urbanization’s agglomeration and
barrier effects negatively impact CLUE. Using GWR, Ma. et al. [5] identified significant fac-
tors affecting CLUE, such as resource endowment, economic level, natural characteristics,
and production conditions. The impact of natural endowments, socioeconomic factors, and
agricultural productivity technology on CLUE in Guangdong province was analyzed by
Zang et al. [2] using geographic detectors. Using a GWR model, Zhao et al. [10] observed
a negative correlation between CLUE and elevation, slope, percentage of the agricultural
population, and percentage of non-food crops. In general, exploration of variables in CLUE
frequently makes use of global regression or GWR which overlooks local non-stationarity
and temporal changing variables that may promote biased results.

Landscape pattern refers to the spatial distribution, structure, and configuration
of land use and cover with various sizes, shapes, and attributes [19]. It is considered
the most visually apparent representation of land use and cover [20]. The landscape
pattern index [21] is focused on evaluating the impact of changes in the configuration and
composition of land elements on ecological processes [22] and is an important indicator of
landscape heterogeneity [23]. Changes in China’s landscape pattern are primarily driven
by alterations in land patches’ size, shape, and attributes, particularly due to the reduction
of cultivated land and spatial transfer. Economic development and urbanization contribute
to the conversion of cultivated land to non-agricultural uses, resulting in cultivated land
loss. The implementation of policies promoting a balance between land occupation and
compensation has facilitated the transfer of cultivated land from developed regions to less
developed ones [1]. Although China’s cultivated land has experienced significant changes
in its landscape pattern, few studies have explored the dynamic relationship between
landscape pattern and CLUE.

The study aims to accurately reveal the spatial and temporal characteristics of CLUE
in Henan Province, as well as to explore the dynamic relationship between the landscape
pattern of cultivated land and CLUE. Henan Province holds a prominent position in China
as a major grain producer and the largest wheat-producing province. Unfortunately, the
excessive use of chemical fertilizers and pesticides has led to severe ecological problems in
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crop production within Henan Province [24], resulting in a relatively low ranking for CLUE
among China’s provinces [25]. According to the data from 2019, Henan Province was the
third-highest contributor to the national agricultural carbon emissions [26]. This poses a
threat to China’s food security and green sustainable development. The rapid urbanization
process has contributed to a reduction in cultivated land area in Henan Province, amounting
to a decrease of 5609.93 km2 (22.78%) between 2000 and 2020 [27]. Concurrently, a transfer
of cultivated land from developed areas to underdeveloped areas has occurred [28]. During
the 13th Five-Year Plan period, Henan Province managed to supplement 2.1 million mu of
cultivated land while occupying 1.16 million mu for construction purposes. The scale of
spatial transfer of cultivated land is quite extensive. Despite the implementation of strict
control measures in Henan Province, the phenomenon of “taking advantage of advantages
and compensating for disadvantages” persists. CLUE in Henan Province has consistently
ranked among the lowest in inter-provincial comparisons over the past two decades. In
the past two decades, how has CLUE developed in each region of the province, and what
are the characteristics of temporal and spatial evolution? The area, shape, and attributes
of cultivated land patches change drastically. Does the change in the landscape pattern of
cultivated land promote the change of CLUE? What is the dynamic relationship between
the two? Is there spatial heterogeneity? Relevant research fields have not yet answered
these questions.

Based on the aforementioned points, this study focuses on Henan Province at the
county-level unit as the research scope. The objectives are as follows:

(1) Taking into consideration the impact of carbon emissions and carbon storage, the
study aims to accurately depict the temporal and spatial evolution characteristics of
CLUE in the county-level units of Henan Province;

(2) By utilizing GTWR, which accounts for spatiotemporal non-stationarity, the study
aims to comprehensively explore the dynamic spatiotemporal relationship between
the landscape pattern of cultivated land and CLUE;

(3) Through the use of the interaction detector, the study aims to analyze the driving
effect of the interaction between factors related to the landscape pattern of cultivated
land on CLUE.

This study has three major contributions. First, it investigates the dynamic relationship
between changes in the landscape pattern of cultivated land and CLUE for the first time.
This provides a theoretical framework for enhancing CLUE and implementing policies
to safeguard cultivated land resources when facing limitations. Second, by considering
both carbon storage and carbon emission effects, a more accurate description of CLUE can
be achieved. This fosters a better understanding of CLUE under the influence of carbon
effects, promoting the transition towards environmentally friendly production practices.
Finally, the utilization of time series clustering identifies the development pattern of CLUE
in county-level units within Henan Province. This perspective offers new insights into
regional agricultural production management and the advancement of CLUE.

2. Materials and Methods

The study’s flowchart is presented in Figure 1. Section 2 provides an introduction to
the study area, data sources, and research methodology. Section 3 presents the econometric
results of the CLUE evaluation and regression models. Section 4 discusses and analyzes
these findings. Finally, Section 5 summarizes the main conclusions derived from this study.
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Figure 1. The flow chart.

2.1. Study Area

Located in the middle and lower reaches of the Yellow River Basin, Henan Province
covers an area of 167,000 square kilometers, including 17 prefecture-level cities, which
account for 1.73% of China’s total landmass. As the primary grain production area and
the second-largest grain-producing province in China, Henan Province is the country’s
highest wheat-producing province, thanks to its advantageous conditions such as soil
quality and climate. Henan province’s total cultivated land area, which is stable at more
than 112 million mu, ranks third among all provinces in China. In 2020, the sown area of
crops in China accounted for 220 million hectares or 8.78% of the total area, which played a
crucial role in maintaining national food security and facilitating carbon cycling processes
in ecosystems. Moreover, there were notable regional variations across the province, and
Sanmenxia emerged as the city with the most productive CLUE at the municipal level [29].
However, county-level research on the matter has been insufficient. Carrying out research
at a more microscopic level can not only account for socioeconomic disparities between
various regions but also ascertain a diversified range of factors that drive CLUE. Thus,
examining CLUE in Henan Province through a county-level analysis is imperative. In this
study, we excluded areas within urban districts and county-level units that lacked adequate
data due to administrative reorganization. The research area was ultimately determined to
consist of 104 counties, as shown in Figure 2.
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2.2. Data Sources

Data used in the super-efficiency SBM model are sourced from the Statistical Yearbook
of Henan Province. Missing data are filled using both social statistical bulletins and multi-
imputation methods gathered from different counties and cities. Using the cultivated
land use data derived from remote sensing images of land use by the Chinese Academy
of Sciences Resource and Environment Science Data Center (www.resdc.cn, accessed on
21 June 2022), the study uses Fragstats 4.2 to calculate landscape pattern indices. The
data cover the years 2000, 2005, 2010, 2015, and 2020, and has a spatial resolution of
1 km × 1 km.

2.3. Measurement of Carbon Effects
2.3.1. Carbon Sequestration

Crops undergo photosynthesis to absorb carbon dioxide from the atmosphere, which
is then stored in the form of carbon in living organisms such as seeds, stems, leaves,
roots, and soil. Carbon sequestration in agriculture refers to the ability of crops to absorb
carbon dioxide from the atmosphere. Tian Yun et al. [30] and Han Zhaoying et al. [31]
have developed validated methods for calculating carbon sequestration and emissions in
agricultural production, which have been supported by various studies [32,33] and are
suitable for research at the county level in Henan Province. The carbon sequestration
calculation formula is as follows:

C = ∑K
i Ci =∑K

i cai ×Yi ×
1− r
HIi

(1)

www.resdc.cn
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The formula for determining carbon sequestration in a specific county in Henan
Province is as follows: C represents the overall carbon sequestration of the county, while
Ci represents the carbon sequestration of a specific crop. K represents the crop variety, cai
represents the amount of carbon absorbed by crops through photosynthesis to synthesize
unit organic compounds, Yi represents the economic output of crops, r represents the water
content of the crop’s economic yield, and HIi represents the crop’s economic coefficient.
Table 1—Calculated parameters of carbon effect in Henan Province—displays the carbon
absorption rate, water content, and economic coefficient [30,31] of the main crops in Henan
Province.

Table 1. Calculated parameters of carbon effect in Henan Province.

Index Crop Variety Carbon Absorption Rate Economic
Coefficient

Moisture
Content

Carbon
sequestration

Wheat 0.485 0.40 0.12
Corn 0.471 0.40 0.13

Other grains 0.414 0.45 0.12
Other food crops 0.45 0.40 0.12

Beans 0.45 0.25 0.10
Cotton 0.45 0.10 0.08

Oil 0.45 0.34 0.13
Fruit 0.45 0.70 0.90

Carbon source Carbon emission
coefficient

Carbon emission

Fertilizer 0.8956 kgC × kg−1

Pesticide 4.9341 kgC × kg−1

Agricultural film 5.18 kgC × kg−1

Agricultural
machinery

process

Crop cultivation area ×
16.4 kgC × kg−1 + Total

power of agricultural
machinery × 0.18 kgC ×

kw−1 [34]
N2O Calculated based on [30]

2.3.2. Carbon Emission

The carbon emissions considered in this study are those that are generated during
crop production. These emissions come from two sources: the use of agricultural materials,
which includes the carbon emissions from chemical fertilizers, pesticides, agricultural
films, and agricultural machinery, and the N2O emissions from soil surface damage during
crop planting. CH4 and other greenhouse gases emitted during rice cultivation are not
included due to the lack of available data. Based on this, a formula has been constructed
for calculating the carbon emissions from cultivated land use.

CE = ∑ CEi = ∑ Ti × δi (2)

In the formula: CE represents the carbon emissions from cultivated land use, CEi
represents the carbon emissions from the i-th carbon source, Ti represents the consumption
of the i-th carbon source, and δi represents the emission coefficient of each carbon emission
source. The coefficient for carbon emission sources in Henan Province [30] is displayed in
Table 1. The model used in the calculation of carbon emissions converts CO2 and N2O into
standard carbon, according to the IPCC Fourth Assessment Report (2007).

2.4. CLUE Measure Based on Super-Efficiency SBM Model

The super-efficiency SBM model that considers undesired output effectively addresses
the issue of slack variables and undesired output during the input and output phases.
Moreover, it resolves the issue of comparing research units that have an efficiency value
of 1. Considering that the efficiency values vary under different assumptions of constant
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returns to scale (CRS) and variable returns to scale (VRS), the suggestion of Zheng [35]
is followed and the results obtained under the assumption of VRS are given a higher
priority. This model is utilized to measure and evaluate the CLUE in Henan Province. The
calculation formula for this is presented as follows [9]:

ρ∗ = min

1
m

m
∑

i=1

x
xik

1
s1+s2

(
s1
∑

s=1

yg

yg
sk
+

s2
∑

q=1

yb

yb
qk

) (3)

x >
n

∑
j=1, 6=k

xijλj; yg 6
n

∑
j=1, 6=k

yg
sjλj; yg >

n

∑
j=1, 6=k

yg
ijλj; x > xk; yg 6 yg

k ; yb > yb
k;

λj > 0, i = 1, 2, · · · , m; j = 1, 2, · · · , n; s = 1, 2, · · · , s1; q = 1, 2, · · · , s2.

The value of CLUE for each district and county in Henan Province is represented by
ρ*. x, yg, and yb denote the input matrix, expected output, and non-expected output matrix
of cultivated land production factors in the research unit, respectively. n represents the
number of research units, while m, s1, and s2 indicate, in order, the number of production
factor inputs during cultivated land utilization, the number of expected output indicators,
and the number of unexpected output indicators. The variables x, yg, and yb denote the
redundancy of input, expected output, and unexpected output, respectively. The weight
vector is represented by λ.

The CLUE is measured based on input and output during cultivated land utilization [9].
The input factors of cultivated land mainly comprise land, labor, and various materials used
in production. The labor force input is measured by the agricultural labor force, whereas
pesticide, agricultural film, chemical fertilizer usage, and the total power of agricultural
machinery are measured for the input of material production materials. The expected
output index refers to the economic and ecological effects of cultivated land utilization,
including its economic value and carbon sequestration. Carbon emissions are used as an
indicator of undesired output. All indicators are measured by the “average sown area of
crops” [36], which provides a more accurate representation of the cultivated land utilization
scenario. The indicators are explained in Table 2.

Table 2. CLUE evaluation index system.

Variable Indicators Description Unit

Input

Labor input Agricultural labor force per
unit of sown area person/ha

Pesticide input Pesticide dosage per unit
sown area ton/ha

Agricultural film
input

Amount of agricultural
film per unit sowing area ton/ha

Fertilizer input Fertilizer application per
unit sowing area ton/ha

Total power of
agricultural
machinery

Total power of agricultural
machinery per unit

sowing area
10,000 kWh/ha

Expected output
Crop yield Crop yield per unit

sown area ton/ha

Gross Agricultural
Production

Gross agricultural
production per unit

sown area

ten thousand
yuan/ha

Carbon sink Carbon sequestration per
unit planting area ton/ha

Undesired output Carbon emission Carbon emissions per unit
sown area ton/ha
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2.5. Spatial Autocorrelation

Spatial autocorrelation analysis at global and local scales can reveal the spatial re-
lationship between geographical units. The global spatial autocorrelation captures the
attributes of spatial units throughout the study area and indicates the degree of similarity
between the attributes of a given unit and its neighboring units [37], measured by using
Moran’s I index, a statistic that ranges from −1 to 1. Local autocorrelation analysis gauges
the impact of neighboring spatial units on the overall spatial autocorrelation of the study
region, in terms of the correlation between the ecological quality of the study unit and that
of its neighboring units. The outcomes of Local Moran’s I can be visualized by drawing a
spatial association (LISA) map, in which HH and LL indicate that high-value (or low-value)
areas are adjacent to their like counterparts, thereby showing positive spatial correlation
whilst HL and LH signify that high-value (or low-value) areas are adjacent to their unlike
counterparts, thus exhibiting negative spatial correlation.

GlobalMoran′sI =

n
n
∑

i=1

n
∑

j=1
wij(xi − x)

(
xj − x

)
n
∑

i=1

n
∑

j=1
wij

n
∑

i=1
(xi − x)2

(4)

LocalMoran′sI =

n(xi − x)
m
∑

j=1
Wij
(
xj − x

)
n
∑

i=1
(xi − x)2

, (i 6= j) (5)

The formula includes several parameters: n represents the number of research units, xi
denotes the observed value, wij denotes a spatial weight matrix connecting the i-th and j-th
samples, and x is the mean value. Local spatial autocorrelation employs the standardized
statistic Z to examine the significance of the spatial autocorrelation captured by Moran’s I
index. The significance level for the study was set at 0.05.

2.6. Time-Series Cluster Analysis

The study employs the “Mfuzz” package in the R programming language [38] to
perform a time-series cluster analysis of the CLUE. The method used is the fuzzy C-
means (FCM) clustering algorithm, which has found extensive application in biological
information and gene expression research fields [39]. The FCM clustering algorithm is an
improved and fuzzy version of the K-means algorithm that applies a membership function
for classification and determines the evolution pattern of each district and county based on
the membership degree size. FCM enhances the algorithm’s capacity to manage ambiguity
and uncertainty over K-means. The objective function is established as follows [40]:

J(MC) =
n
∑

i=1
∑ µ

ϕ
ijd

2
ij

i = 1, · · · , n; j = 1, · · · , c
(6)

C is the centroid matrix of the cluster category, M is the fuzzy membership degree
matrix n × c of CLUE in districts and counties, µij (µij ∈ [0,1]) is the membership degree
value of the i-th district and county corresponding to the j-th cluster, and ϕ(ϕ ≥ 1) is the
fuzzy weighting index. dij

2 is the square of the distance between the i-th district and county
corresponding to the j-th category center.

2.7. GTWR

The super-efficiency SBM model can only measure the relative CLUE among research
units in the same period. To analyze the dynamic changes of efficiency over time, the
SBM-GML index is introduced due to its time series comparability. Consequently, this
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study employs the GML index to dynamically evaluate CLUE in Henan Province. The
specific calculation formula for the GML index is presented [41,42] as follows:

GMLt,t+1(xt, yt, bt, xt+1, yt+1, bt+1) =
Dv

t+1(xt+1,yt+1,bt+1)
Dvt(xt ,yt ,bt)

×
(

Dc
t(xt ,yt ,bt)

Dct+1(xt ,yt ,bt)
× Dc

t(xt+1,yt+1,bt+1)
Dct+1(xt+1,yt+1,bt+1)

)1/2

×Dc
t+1(xt+1,yt+1,bt+1)/Dv

t+1(xt+1,yt+1,bt+1)
Dct(xt ,yt ,bt)/Dvt(xt ,yt ,bt)

(7)

In the formula: x is the input factor, y is the expected output, b is the non-radial
expected output, and t is the year. Among them, D(xt,yt,bt) is a directional distance function,
and Dc and Db are directional distance functions based on constant returns to scale and
variable returns to scale, respectively.

To eliminate the spatiotemporal non-stationarity result bias, the GTWR model embeds
the theme of time into the geographically weighted regression (GWR) model, creating a
more efficient parameter estimation. The study employed the GTWR plug-in operation
model in ArcGIS developed by Huang et al. [43] to investigate the spatiotemporal dynamic
correlation between CLUE and landscape pattern changes in Henan Province from 2000 to
2020. The model is constructed as follows:

Yi = β0
(
Xt

i , Yt
i , Ti

)
+ ∑

k
βk
(
Xt

i , Yt
i , Ti

)
Xik+εi (8)

Yi is the county-level CLUE-GML index of Henan Province, (Xi
t,Yi

t,Ti) is the space-
time coordinates of the i-th district and county, β0 (the constant term of point i in the GTWR
model, βk) is the k-th point of i point A regression parameter;—that is, the weight of the
model function at the time and space coordinates (Xi

t,Yi
t,Ti). Xik is the value of the land use

landscape pattern index Xk at point i compared with the first period—that is, the change
rate of each quantitative index of the landscape pattern.

2.8. Interaction Detector

The geographic detector method can detect the spatial distribution characteristics of
geographic elements or geographic phenomena [44], and the interaction detector is used
to identify the interaction between two driving factors. That is to analyze whether the
driving force for the change of CLUE is enhanced or weakened when the landscape pattern
variable X1 and the landscape pattern variable X2 act together. Table 3 presents the types
of interaction between each pair of variables.

Table 3. Interaction Type Criteria.

Criterion Interaction

q(X1∩X2) > q(X1) + q(X2) Non-linear enhancement
q(X1∩X2) > Max[q(X1),q(X2)] Two-factor enhancement

q(X1∩X2) = q(X1) + q(X2) Independent
q(X1∩X2) < Min[q(X1),q(X2)] Non-linear attenuation

Min[q(X1),q(X2)] < q(X1∩X2) < Max[q(X1),q(X2)] One-factor nonlinear attenuation

3. Results
3.1. Measure CLUE and Model Comparison

After estimating the carbon sinks and carbon emissions of each region from 2000 to
2020 using Formulae (1) and (2), the SBM model is used to calculate the CLUE taking into
account the combined effect of carbon emissions and carbon sequestration (Model.1), and
three measurements were compared. Model.2 and Model.3, respectively, use the same
model as Model.1 to calculate CLUE without considering the carbon effect index and only
considering the carbon emission index. Figure 3 shows that the mean and median of
Model.2 and Model.3 are lower than those of Model.1 each year, which means that the
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carbon effect has a positive impact on the CLUE, and only considering the negative impact
of carbon emissions will underestimate the real CLUE.
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The results show that the average value of CLUE in Henan Province from 2000 to 2020
showed a trend of increasing fluctuations, and the value in most years was mainly between
0.50 and 0.70, indicating that CLUE in most counties in Henan is not high, and there is still
great potential for growth in the future. In terms of the time change, the average value of
CLUE dropped slowly from 0.61 in 2000 to the lowest point of 0.50 in 2005, then rose to
0.65 in 2010, then dropped to 0.55 in 2015, and the rose rapidly to 0.69 in 2020, reaching the
research period highest value within. Compared with the previous ten years, the growth
rate of CLUE in the next ten years has slowed down.

3.2. Spatial and Temporal Characteristics of CLUE

According to the relevant research [1,10] and calculation results, CLUE is categorized
into four categories: low efficiency (0, 0.6), medium efficiency [0.6, 0.8), medium and high
efficiency [0.8, 1), and high efficiency (1, +∞). Figure 4 displays the spatiotemporal pattern
of CLUE across 104 counties in Henan Province from 2000 to 2020. Generally, the spatial
pattern of CLUE in Henan Province is low in the middle and east, while high-value areas
are more concentrated in southern districts and counties, and the west and north have
performed well. In 2000, there were 18 counties with CLUE that exceeded 1.0, indicating
that they have reached DEA’s relative effectiveness and had high CLUE. These counties
were mainly concentrated in southern and central Henan (mainly in Lushan County and Ye
County), Yichuan and Luoning counties in western Henan, and Qixian and Xiuwu counties
in northern Henan. Since then, the number of high-efficiency counties has declined to
11 in 2005; but since 2010, the number has increased, reaching 28. Simultaneously, their
spatial distribution gradually shifted to the west and north, with high-efficiency counties
appearing in contiguous regions within northern Henan. In 2015, the number of high-
efficiency counties decreased to 10, and as a result, the CLUE in these areas has significantly
dropped. In 2020, the number of high-efficiency counties in Henan Province increased to 25,
and the eastern region has seen an increase in high-efficiency counties, mostly in Shangqiu
City, Luyi County, Shangshui County, and Xiangcheng City in Zhoukou City.
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Using the R language Mfuzz package, we identified a dynamic evolutionary model
of GML indices that reflects county-level CLUE in Henan Province from 2000 to 2020. We
assessed the clustering effect using two methods, namely, Calinski–Harbasz and silhouette
coefficient scores. Both metrics compare the variation between clusters and the variation
within clusters (with the between-group variance being the largest and the within-group
variance being the smallest). A higher score implies a better clustering effect. Based on
Figure 5, we can observe that the dynamic evolutionary model of CLUE in Henan Province
is categorized into four optimal types.
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Figure 6 displays the four CLUE development models from 2000 to 2020, with 26, 22,
27, and 29 counties identified within each cluster. Cluster 1, located mainly in Xinxiang City
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and Jiaozuo City, is classified as a late-developing and upgrading district and county. There
was a downward trend from 2000 to 2015, which can be attributed to the relatively strong
industrial foundation in these areas, resulting in the absorption of a large amount of labor
by industrial enterprises, and a lack of interest from farmers in cultivation. Nevertheless,
the development of the “one village, one product” initiative has led to the formation of
specialized villages focused on high economic yields in some areas, which has led to a
rapid increase in CLUE. Cluster 2 is classified as a Wave-rising district and county. These
counties are spatially dispersed, mainly found in Anyang and Sanmenxia cities. These
regions have responded to the national policies promoting green agricultural development
and ecological farming. As a result, they have accelerated the establishment of ecological
farms and green-oriented agricultural modernization demonstration areas. This progress
has contributed to the notable upward trend in CLUE. Cluster 3, primarily located in the
southwestern part of Henan Province, is classified as a fluctuating rising district and county.
Terrains in these areas are relatively complex and the cultivated lands are fragmented.
Nonetheless, with an advance in traffic accessibility and planting technologies, including
fertilization and irrigation, farmland production conditions have significantly improved. In
addition, good ecological environments in these areas are conducive to the development of
green agriculture. Cluster 4, mainly located in Shangqiu, Zhoukou, and Zhumadian in the
eastern and southern parts of Henan Province, is classified as a continuously rising district
and county which maintained rapid upward trends from 2005 to 2020. The Eastern Henan
Plain is designated as an agricultural restricted development zone that plays a strategic
role in the national agricultural product supply chain. Strong supportive policies and fast
economic development have resulted in the improvement of cultivated land use efficiency,
which is of significant importance for ensuring food production safety and environmental
protection.
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Red is the centerline of the cluster.

3.3. Spatial Correlation Analysis

Based on the global Moran’s I index, CLUE at the county level in Henan Province from
2000 to 2020 was examined. Table 4 reveals that the CLUE in Henan Province passed the 1%
significance test and had a positive Moran’s I value, indicating a significant positive space
for CLUE at the county level. During the research period, Moran’s I value demonstrated a
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trend of rising initially, dropping, and then trending towards stability. From 2000 to 2005,
spatial dependence for CLUE at the county level in Henan Province increased, and the
spatial autocorrelation value decreased from 0.34 to 0.19 from 2005 to 2015, and slightly
improved from 2015 to 2020. Overall, the spatial distribution pattern of CLUE at the county
level in Henan Province is relatively stable and has not undergone major changes.

Table 4. Spatial autocorrelation analysis.

Parameter\Year 2000 2005 2010 2015 2020

Moran’s I 0.29 0.34 0.24 0.19 0.20
Z 4.61 5.45 3.83 3.06 3.23
P 0.00 0.00 0.00 0.00 0.00

Based on the analysis of local spatial autocorrelation, the local spatial pattern of carbon
efficiency can be further explored. According to Figure 7, the cluster types of CLUE in
Henan Province are mainly HH clusters and LL clusters. From 2000 to 2020, the HH
clusters were mostly concentrated in Xinyang City, indicating positive development for
CLUE in this area. From 2000 to 2010, the LL clusters were predominantly in Zhengzhou
and Kaifeng. From 2010 to 2020, the LL clusters shifted westward, forming an area of low
CLUE radiating outward from Pingdingshan as the core.
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In 2000, the L-H clusters were located within Nanyang City and Xinyang City, mainly
on the outskirts of the HH agglomeration area. In 2005, Xin’an County and Mianchi County
saw the emergence of HL and LH clusters, respectively. By 2010, HH agglomerations
appeared in several counties of Xinxiang and Jiaozuo, suggesting an improvement in the
CLUE in the region from 2005 to 2010. From 2010 to 2015, the LL clusters moved westward,
and from 2015 to 2020, both H-L and LH agglomerations emerged. The spatial distribution
of agglomeration areas in Henan Province remained relatively stable except in the northern
region, indicating a tendency toward spatial dependence stability.
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3.4. Quantitative Measurement and Dynamic Change of Landscape Pattern

The study computed the landscape pattern index by utilizing raster data of cultivated
land from remote sensing images. Six frequently employed landscape pattern indicators
were chosen at the Class level with the aid of Fragstats software (version 4.2) [45]. The
indicators include CA, which serves as an essential indicator of cultivated land contraction
and expansion by signifying the total area of cultivated land. Additionally, FRAC_AM
was utilized to reveal the degree of shape complexity of plaques based on fractal geometry
with values ranging from 1 for the simplest shapes to nearly 2 for more intricate perimeter
shapes [46]. PD is the abbreviation for patch density, which represents the total number
of patches in a region divided by the total area of cultivated land to reflect the fineness of
the landscape. On the other hand, AI depicts the degree of aggregation of similar adjacent
patches of cultivated land. The rationale for selecting these indicators is: (1) to select a
reasonable combination of indicators to comprehensively describe the spatial pattern of
cultivated land [1]; (2) to refer to previous studies and hand-pick highly recommended
and reliable indicators [47]; and (3) to primarily consider comprehensible and computable
landscape metrics while using metrics that are parsimonious and self-contained to reduce
information redundancy [48].

Figure 8 demonstrates the changes in the landscape pattern index of each region in
Henan Province from 2000 to 2020 with a 5-year interval. The total area of cultivated
land continued to decrease during the study period. In the decade from 2015 to 2020,
the pace of decline in agricultural land area in Henan Province notably increased. The
FRAC_AM index persistently increased, signifying that the shape of cultivated land in each
county had become more complex. The possible driving factor for this change was the
transformation of numerous surrounding cultivated lands to other forms of land, primarily
for construction. From 2000 to 2020, there was a steady increase in the PD value, indicating
the gradual fragmentation of cultivated land in Henan Province, and the decline in the AI
index confirmed this point.
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3.5. GTWR Regression Analysis
3.5.1. Regression Model Selection

Before conducting the regression analysis, the respective variables underwent a mul-
ticollinearity test. The results indicated that the expansion variance factors among the
selected variables were all under 3, and there was no significant multicollinearity prob-
lem, which is in line with the research requirements. Further, spatiotemporal geographic
weighted regression was performed, and the model fitting results were compared to those
of OLS, TWR, and GWR models. As shown in Table 5, the AICc value of GTWR was lower
than that of TWR and GWR, and R2 was higher than that of TWR and GWR, demonstrating
significant spatial heterogeneity in the CLUE in Henan Province in both time and space
dimensions. The GTWR model considering the time-varying dynamic perspective is more
advantageous for this study.

Table 5. Comparison of model selection.

Parameter OLS TWR GWR GTWR

Residual Squares 9.83 7.56 9.33 6.54
Sigma - 0.13 0.15 0.13
AICc −367.29 −441.71 −347.75 −460.68

R2 0.01 0.24 0.07 0.35
R2 Adjusted - 0.24 0.06 0.34

3.5.2. GTWR Results

Table 6 illustrates the effects of changes in landscape patterns on CLUE according to
the GTWR model. Generally, an increase in CA and AI has a positive impact on CLUE,
while FRAC_AM and PD have a negative impact. Additionally, based on the median
coefficient of each factor, the degree of influence on CLUE is as follows: FRAC_AM, PD, AI,
and CA, ranked in order of decreasing degree of impact.

Table 6. GTWR regression coefficients.

Index Average Min Median Max

CA 0.35 −1.35 0.11 4.54
FRAC_AM −0.44 −2.79 −0.23 −0.02

PD −0.44 −3.13 −0.33 1.50
AI 0.42 −7.30 0.13 4.33

(1) The median and mean influence coefficients of the CA factor on CLUE are positive,
with values of 0.11 and 0.35, respectively, indicating an overall positive performance
of CA. According to Figure 9, the impact direction in most regions has changed from
positive to negative and then back to positive, revealing strong spatial heterogeneity
in the regression coefficient of CA. However, this spatial heterogeneity has weakened
in the recent period. Between 2000 and 2005, the areas with negative impacts of CA
were mainly located in the central and northern regions, with the intensity gradually
weakening from north to south. The area of strong positive correlation was found
in Xinyang City in the south of Henan Province, while the eastern and western
areas showed moderate and weak positive correlations. From 2005 to 2010, CA
and CLUE exhibited positive correlations in all regions of Henan Province, and the
spatial heterogeneity decreased. The areas that were weakly positively correlated
during this period mostly transformed from the previously negatively correlated
areas. During the period from 2000 to 2010, the area of the positive influence of CA
gradually expanded, and the positive effect strengthened. However, from 2010 to
2015, there was a sharp increase in the negative impact areas of CA, with only Lingbao
City and Lushi County in Sanmenxia City showing a positive correlation, while
the remaining areas turned mostly negative. The intensity of the negative impact
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weakened gradually from northeast to southwest. With the rapid advancement of
urbanization, the economic benefits of agriculture have fallen behind those of the
industry and service sectors. Consequently, the expansion of cultivated land does
not increase farmers’ enthusiasm for agricultural production, and the shortage of
agricultural labor, alongside the misuse of pesticides and chemical fertilizers, increases
the cost of cultivated land management, resulting in a decrease in the CLUE. From
2015 to 2020, the influence of CA has mostly become positive, largely concentrated
between 0.01 and 0.50, with a more noticeable spatial correlation. Only six districts
and counties showed a weak negative correlation, indicating that the reduction in the
cultivated land area would hinder the improvement of CLUE.
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(2) The median and mean values of the regression coefficients of FRAC_AM are −0.23
and −0.44, respectively, indicating that patch complexity hinders the improvement of
CLUE. Compared with CA, FRAC_AM has a greater influence. Figure 10 shows that
the influence of FRAC_AM has weak spatial heterogeneity, and the area of negative
influence is widely distributed and strong. From 2000 to 2020, the response of county-
level CLUE to the increase of FRAC_AM in Henan Province was always negatively
correlated, indicating that the smoother and more regular the shape of the cultivated
land patch, the faster the CLUE improvement. From 2000 to 2005, from the southwest
to the northeast of Henan Province, the intensity of the negative influence gradually
weakened, and most of the regional regression coefficients were between −1.49 and
−0.15. From 2005 to 2010, the intensity of the negative impact in the north and
south was weak, and the regression coefficient in the west was still relatively large,
decreasing from west to east. From 2010 to 2015, the influence intensity of FRAC_AM
weakened, and the spatial pattern was similar to that from 2005 to 2010. From 2015 to
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2020, the spatial pattern of the regression coefficient of FRAC_AM decreased from
the east and west sides to the middle. From 2000 to 2010, the negative driving force
of patch shape complexity on CLUE gradually increased. From 2010 to 2020, the
influence intensity of cultivated land patch complexity gradually decreased, mostly
between −0.39 and 0.
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(3) The median and mean values of the regression coefficients for PD are−0.33 and−0.44,
respectively. Compared to CA and FRAC_AM, PD has a stronger influence. Figure 11
shows that the regression coefficient of PD exhibits significant spatial heterogeneity,
with alternating positive and negative effects observed in different regions. However,
overall, an increase in the patch density of cultivated land impedes improvements
in CLUE. From 2000 to 2005, the positive impact area lies below the axis, roughly
with Xin’an County of Luoyang City and Gushi County of Xinyang City as the axis
point, while the negative impact area is above the axis. The positive influence area
exhibits a strong spatial correlation, and the strength of the negative influence area
gradually increases with the distance from the axis. From 2005 to 2010, only two
districts and counties show a positive correlation, while the rest exhibit a negative
correlation, with the negative correlation strength decreasing from the eastern and
western sides towards the middle. From 2010 to 2015, the strong negative correlation
area disappears, with most areas showing a weak negative correlation between −0.59
and −0.1, and the positive impact area mainly concentrated in Xinyang City. From
2015 to 2020, all districts and counties display a negative correlation, and the spatial
heterogeneity of regression coefficients diminishes, with the influence intensity of
most districts and counties falling between −0.29 and −0.10.
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(4) The median and mean regression coefficients for AI are 0.13 and 0.42, respectively.
The influence of AI is greater than that of CA and less than that of FRAC_AM and
PD. Figure 12 indicates strong spatial heterogeneity in the AI regression coefficient,
with significant regional variations in positive and negative effects observed across
different periods. However, overall, a denser concentration of cultivated land tends
to contribute more to the improvement of CLUE. From 2000 to 2005, the positive
impact area lies to the west of the central region, while the negative impact area
lies to the east, with the regression coefficient gradually weakening as one moves
from west to east. The south exhibits the strongest negative effect, while the west
shows that AI improvement promotes the enhancement of CLUE. From 2005 to
2010, in the western region, the influence of AI gradually turns negative, with the
boundary between positive and negative effects shifting from a north-south boundary
to an east-west boundary, resulting in positive influence in the north and negative
influence in the south. From 2010 to 2015, the number of negatively affected regions
in the western region increases significantly, with the majority of remaining regions
exhibiting a positive correlation. During this period, the regression coefficient shows
strong spatial correlation and less pronounced spatial heterogeneity. From 2015 to
2020, only the northwest and southeast regions show a positive correlation, forming a
high-value CLUE cluster where improved AI leads to a rapid increase in the CLUE.
The majority of the remaining regions display a negative correlation with enhanced
degrees, resulting in increased spatial heterogeneity. In the northern region, the impact
of AI on improving CLUE shows signs of weakening.
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3.5.3. Robustness Check

In this study, we aim to evaluate the robustness of GTWR results in three aspects.
Firstly, residual analysis is conducted to identify significant spatial correlation. When
residuals exhibit such correlation, research outcomes cannot be trusted, so we perform a
spatial autocorrelation analysis. The results confirmed that the residuals follow a normal
distribution, as evidenced by the non-rejection of the null hypothesis at a 10% significance
level with Z and P values of 0.11 and 0.91, respectively.

Second, to ensure the accuracy of our analysis, we performed variable substitution
in Reg_Model.2 and Reg_Model.3. We replaced the FRAC_AM index in Reg_Model.2
with SHAPE_AM, which indicates the area-weighted average shape index determining
the plaque’s complexity based on Euclidean geometry. For example, when the plaque
takes the shape of a square, its SHAPE_AM equals 1, while more irregular shapes result in
an unlimited increase in the value. In Reg_Model.3, we replaced CA with GYRATE_AM,
which represents the weighted average distance from the pixel center to the centroid within
the patch to describe the cultivated land patch’s area. According to Table 7, although
Reg_Model.2 and Reg_Model.3 have lower R2 and R2 values compared to the Reg_Model.1,
there were no significant changes in the size and direction of the coefficients. We employed
supplementary variables in Reg_Model.4, where we incorporated the LSI index to indicate
the landscape’s shape index. LSI equals 1 for a landscape with only one square patch and
increases as the landscape becomes more irregular. Results from our study confirmed that
adding the LSI variable did not significantly affect the coefficients of explanatory variables
or the diagnostic information, supporting the robustness of our regression model.
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Table 7. Robustness Check.

Parameter Reg_Model.1 Reg_Model.2 Reg_Model.3 Reg_Model.4

CA 0.11 0.03 0.04
GYRATE_AM 0.19
FRAC_AM −0.33 −0.38 −0.22
SHAPE_AM −0.14
LSI −0.08
PD −0.23 −0.23 −0.42 −0.33
AI 0.13 0.15 0.11 0.02
Residual Squares 6.54 6.94 6.83 6.64
Sigma 0.13 0.13 0.13 0.13
AICc −460.68 −450.22 −468.55 −451.17
R2 0.35 0.31 0.32 0.34
R2 Adjusted 0.34 0.30 0.31 0.33

Note: The coefficient value of the explanatory variable in the table is the median of the regression coefficient.

3.6. Interaction Analysis

Interactive detection can evaluate whether the pairwise effects of landscape pattern
indicators contribute to improved explanations for changes in CLUE. Overall (Figure 13),
there is substantial explanatory power in the interaction between FRAC_AM and other
factors. Most interaction values are greater than the maximum value of a single factor, indi-
cating that landscape pattern factors’ impact on CLUE is not independent but synergistic.
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The interaction between CA and FRAC_AM consistently exhibits nonlinear enhance-
ment, with the explanatory power showing a fluctuating upward trend. From 2000 to 2020,
the interaction is consistently significant and relatively strong. The interaction between
CA and PD initially weakens in the period 2000–2005, but from 2005–2020, it consistently
demonstrates enhancement. Among these periods, 2005–2010 and 2015–2020 show nonlin-
ear enhancements, while 2010–2015 indicates two-factor enhancements. The interaction
strength significantly increases, rising gradually from 0.16 to 0.45. The joint analysis of
these factors provides a better explanation for CLUE. The interaction between CA and
AI consistently shows enhancement. In 2000–2005 and 2015–2020, it displays two-factor
enhancement, while in 2005–2015, it exhibits nonlinear enhancement. The interaction
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value gradually increases from 0.25 to 0.37, resulting in an improved explanatory power
for CLUE.

From 2000 to 2005, the interaction between FRAC_AM and PD is 0.17, indicating
a nonlinear weakening. From 2005 to 2015, the interaction value increases to 0.19, and
it becomes a two-factor enhancement. From 2015 to 2020, the interaction value rises to
0.57, indicating nonlinear enhancement. The joint analysis of these factors provides a
more comprehensive explanation of CLUE. From 2000 to 2005, the interaction between
FRAC_AM and AI shows single-factor enhancement, and in the remaining periods, it
exhibits two-factor enhancement, gradually increasing the explanatory power. Similar to
CA and FRAC_AM, PD and AI demonstrate single-factor weakening from 2000 to 2005,
with an interaction value of 0.13. However, from 2005 to 2020, the interaction significantly
increases, gradually rising from 0.13 to the highest value of 0.59 in the latest period,
indicating the strongest interaction value.

4. Discussion

Spatial and temporal evolution of CLUE in Henan Province: From 2000 to 2020,
the mean value of CLUE fluctuated in 104 counties in Henan Province. From 2000 to
2005, CLUE showed a downward trend, which may be because with the advancement of
urbanization, farmers have a strong willingness to go out to work, the agricultural labor
force is insufficient, and the enthusiasm for agricultural production is not high. In 2006,
after China abolished the agricultural tax, farmers’ enthusiasm for farming was enhanced.
At the same time, the improvement of agricultural technology promoted the increase
of agricultural output and output value. This is the reason why CLUE rose rapidly in
2005–2010. From 2010 to 2015, CLUE declined. This may be because, with the gradual
improvement of industrial production levels, the reduction of production costs of pesticides
and chemical fertilizers also reduced the opportunity cost of farmers’ use, resulting in the
gradual or even complete replacement of chemical fertilizers and pesticides. The application
of farmyard manure has gradually increased carbon emissions and soil pollution. On
the other hand, coupled with the accumulation of “reversed ecological” effects in the
production of cultivated land for many years, it has further inhibited the improvement
of the CLUE. From 2015 to 2020, the growth trend of CLUE may be a response to the
implementation of the Chinese government’s “13th Five-Year Plan” for agricultural energy
conservation, elimination of old agricultural machinery, and promotion of agricultural
energy-saving machinery. Henan Province fully implements high-standard farmland
construction to improve land production capacity and encourages the use of organic
fertilizers and new agricultural machinery to promote the transformation of agriculture
into eco-friendly agriculture. CLUE was highest in southern Henan Province, followed
by southwest and northern regions. There are many large grain-producing counties in
these areas, and the efficiency of grain production should continue to be improved to reach
the leading level in the country. The CLUE values in the central and eastern regions of
Henan Province were low, but most of them showed an upward trend in the recent period,
especially in the eastern regions. As the most economically developed area in the central
part of Henan Province, the planting industry is shrinking and neglected. Additional efforts
are needed to improve CLUE and narrow the gap with other areas.

The dynamic relationship between area index and CLUE: Generally speaking, larger
arable land means more input and output. CA has a significant positive effect on CLUE as a
whole; that is, the larger the total area of cultivated land, the higher the CLUE value. There
is significant spatiotemporal heterogeneity in the relationships between cultivated land area
and CLUE. However, as time goes by, the area of the negative influence of cultivated land
gradually shrinks, but the overall explanatory power of CLUE gradually decreases. From
the perspective of input and output, the increase in farm scale is related to the reduction
of unit fertilizer and pesticide usage [1], which is beneficial to the improvement of CLUE.
In the practice of arable land production, larger land areas are more dependent on the
widespread use of machinery, better transportation systems, and advanced agricultural
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technology [49], and the increase in CA is important for increasing production while
reducing input costs and carbon emissions [35]. Units of agricultural inputs may also
be reduced due to the existence of economies of scale. In countries and regions with
large plains or relatively flat terrain, such as Henan Province, changes in the patch area of
cultivated land will not cause drastic changes in elevation, irrigation, and transportation,
which also shows that its positive impact on CLUE is more reliable. However, the large area
of cultivated land may promote the deposition of chemical fertilizers and pesticides in the
soil, causing soil pollution, and the large-scale use of agricultural machinery may also cause
more carbon emissions. However, with the popularization of organic fertilizers, the gradual
upgrading of agricultural machinery and agricultural technology, and the enhancement of
farmers’ awareness of the ecological environment, the area of cultivated land is of great
significance for improving CLUE and maintaining national and regional food security.

The dynamic relationship between shape metrics and CLUE: It has been observed
that complex shapes of cultivated land tend to inhibit the CLUE. Specifically, when the
shape of a cultivated land patch is more regular, the CLUE tends to increase at a faster
rate. The regression analysis revealed that shape factors have a greater influence on CLUE
compared to area factors. Complex cultivated land patches pose challenges in terms of
boundary management and maintenance. On the other hand, regular patches facilitate the
development of agricultural machinery services, leading to reduced production costs and
labor input. It becomes more difficult and expensive to manage complex patch shapes, as
it often requires the construction of road networks, boundaries, or fences [50,51], which
ultimately leads to higher production management costs. Flatter cultivated land patches are
typically associated with a convenient transportation system, making it easier for growers
to manage their operations [52]. Moreover, these patches lend themselves to the efficient
use of agricultural machinery in various production activities such as sowing, irrigation,
harvesting, and straw returning [53]. Additionally, relatively regular cultivated land
patches facilitate land consolidation and are attractive to professional planting contractors.
However, the increasing popularity of drone-based applications, such as spraying pesticides
and fertilization, and the presence of convenient transportation systems have gradually
weakened the inhibitory effect of complex cultivated land patches. The improved CLUE
now relies more on advanced industrial equipment and efficient management practices.
Nevertheless, considering that complex cultivated land patches are not conducive to
improving CLUE, each region needs to prioritize sorting out such patches or simplifying
and regularizing them as part of land consolidation efforts.

The dynamic relationship between aggregation metrics and CLUE: In general, the
agglomeration of cultivated land contributes to the improvement of CLUE. However, these
aggregation indicators exhibit strong spatial heterogeneity. The fragmentation of cultivated
land has both positive and negative effects, but over time, the overall impact intensity has
weakened. There are several reasons behind this. On the one hand, the fragmentation
of cultivated land encourages farmers to refine their cultivation practices, promotes crop
diversification, and catalyzes the development of professional farmers and specialized
agricultural villages. At the same time, the more concentrated cultivated land may be
due to the concentrated use of chemicals such as fertilizers and pesticides, as well as the
mechanization of a large amount of fuel, which accelerates soil erosion, causes ecological
problems in the cultivated land, reduces agricultural productivity, and increases agricultural
carbon emissions. On the other hand, aggregated cultivated land improves mechanical
operation efficiency, reduces input costs (such as losses and fuel consumption) per unit area,
and facilitates production organization, the large-scale application of irrigation systems,
and management, thereby enhancing CLUE [54]. Nevertheless, studies have shown that
the positive effect of cultivated land fragmentation cannot be sustained in countries and
regions that prioritize agricultural modernization through mechanization and scale, such
as Henan Province. In these areas, the negative impact expands gradually. Excessive
fragmentation of cultivated land hinders farmers engaging in large-scale and mechanized
cultivation, resulting in labor and agricultural inputs being wasted, inconvenient utilization
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of agricultural machinery, unclear land ownership, management difficulties, and low
efficiency in land use [53]. In response, it is imperative to promote the development of an
ecological farmland governance system, which effectively mitigates issues such as land
pollution caused by the accumulation of farmland. By doing so, the ecological environment
of farmland can be adequately maintained, thereby promoting the overall improvement
of CLUE.

In regions where agricultural production is characterized by large-scale mechanization
and intensification [55], large and flat cultivated land is advantageous for farmers to carry
out cultivation. It helps reduce transportation and labor costs while effectively avoiding
the inefficiencies caused by complex land rights [56]. Large and aggregated cultivated
land is conducive to large-scale mechanized operations, leading to cost savings for farmers
and increased agricultural yield. On the other hand, dispersed and irregularly shaped
cultivated land increases transportation and management costs for farmers, intensifies labor
and agricultural input consumption, and hinders the improvement of CLUE. Therefore, the
interaction between these factors has a stronger explanatory power in the spatial variation
of CLUE. Although small and dispersed farmland can increase land income through
diversified crop diversity and reduced production risks, the limited economic benefits
due to small land areas are not conducive to long-term agricultural development [57].
Consequently, the relationship between land area and farmland patch density gradually
shifts towards synergy rather than a trade-off. In essence, the balance between land
fragmentation and aggregation represents a trade-off between economic benefits and the
ecological environment. For example, specialized villages that plant one or a few types of
crops can obtain higher economic returns due to their specialization and scale. However,
specially planted crops will often absorb more soil nutrients. Like the four major medicines
in Jiaozuo City, after planting once, they cannot be planted again in the next five or even
ten years because the land needs time to restore its fertility; secondly, specialized planting
reduces biodiversity, leading to a decrease in the ability of farmland ecosystems to resist
risks, which will increase the risk to the ecological environment. Therefore, highlighting
the significance of seeking a Pareto optimum between agricultural economic benefits and
ecological sustainability for the improvement of CLUE.

The study considers both carbon sequestration and carbon emissions perspectives, ad-
dressing the shortcomings of previous research [13] that often overlooks the positive effects
of land use on the ecological environment. It provides a more comprehensive evaluation of
CLUE, offering insights for adjusting agricultural inputs, improving cultivation manage-
ment practices, and implementing agricultural technology and mechanization in different
regions. The findings of CLUE calculations contribute to the balancing of agricultural
production processes. For example, reducing inputs can decrease resource consumption
and carbon emissions, but reducing inputs may also lead to a decrease in grain yield and
carbon sequestration. Previous research has mainly focused on global [58,59] or GWR
regression analyses to identify factors influencing CLUE, neglecting the local or temporal
non-stationarity, which may lead to inaccurate results. This study takes a spatiotemporal
perspective, analyzing the aspects of area, shape, fragmentation, and aggregation from
both spatial and temporal angles. It provides a more comprehensive exploration of the
spatiotemporal heterogeneity in the driving forces of land use landscape patterns, enabling
a more comprehensive analysis and explanation of the dynamic relationship between CLUE
and landscape patterns. The study also employs time clustering analysis, identifying four
temporal evolution patterns of CLUE which can guide decision-makers in implementing
regional management strategies to promote the improvement of CLUE.

5. Conclusions

From the perspective of carbon effects, this study utilizes the super-efficiency SBM-
GML model to assess the CLUE in 104 counties in Henan Province from 2000 to 2020.
Spatial autocorrelation modeling and time series cluster analysis are employed to identify
the temporal and spatial characteristics of CLUE. Subsequently, the GTWR model and
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interactive detectors are used to analyze the spatiotemporal dynamic relationship between
landscape pattern changes and CLUE. The primary conclusions drawn from the analysis
are as follows:

(1) The construction of the CLUE evaluation index system should not underestimate or
ignore the positive effects of crops on the ecological environment, including carbon
sequestration. Comparing the index system that considers both positive and negative
crop carbon effects with the results of ignoring carbon effects or positive carbon effects,
the study reveals that carbon effects contribute to the improvement of CLUE, and
disregarding crop carbon sequestration underestimates the actual carbon effect.

(2) During the study period, the average value of CLUE in Henan Province showed an
upward trend, and the value in most years was between 0.50 and 0.70, indicating that
the CLUE in most counties in Henan was not high, and there is still great potential
for improvement in the future. The overall spatial pattern is weak in the middle and
east, high-value areas are concentrated in the southern districts and counties, and
the west and north perform well. Spatial autocorrelation shows that CLUE has a
significant positive spatial dependence, and this effect also fluctuates and increases
with CLUE. Local autocorrelation showed that HH clusters were mainly concentrated
in Xinyang City, and LL clusters were mainly concentrated in the central and eastern
parts of Henan Province. Based on the change in CLUE, four development modes of
CLUE in Henan Province were identified, namely, the wave-by-wave rising type, the
fluctuating rising type, the rising and gradually weakening type, and the late-rising
and improving districts and counties. This will provide a new perspective for the
government to implement zoning management according to local conditions. For
example, districts and counties with Wave-rising should continue to promote ecologi-
cal agriculture, sustainable intensive agriculture, and improve the ecological effect of
cultivated land. Districts and counties located in the plains that are Continuous-rising
and Fluctuating-rising should take advantage of scale to increase production, de-
velop agricultural processing and logistics industries, and promote economic growth.
Late-development districts and counties located in mountainous or hilly areas, such
as western Henan and southern Henan, can rely on their endowments to focus on
the development of small- and medium-scale high-quality agriculture and increase
agricultural income with characteristic or high-end products.

(3) The study used the GTWR model to test that the change of CLUE in Henan Province
has significant temporal and spatial non-stationarity, and GTWR can more comprehen-
sively and accurately analyze the relationship between CLUE and landscape pattern
changes. The landscape pattern was described from the dimensions of area, shape,
and aggregation. The study found that the area of cultivated land has a positive
effect on the CLUE, and the spatial heterogeneity and intensity of influence gradually
weakened over time. The increase in shape complexity and fragmentation hurts
CLUE use as a whole. The spatial heterogeneity of cultivated land shape is weak, the
negative impact is extensive and significant, and the degree of negative correlation
gradually weakens over time. PD has the strongest explanation for CLUE, and the
influence has strong spatial heterogeneity. As time goes by, the positive influence
area gradually shrinks, and the negative influence area gradually expands, but the
explanatory power and spatial heterogeneity gradually decrease. AI generally has a
positive impact, with strong spatial heterogeneity.

(4) The interactive detectors showed that there was a clear synergy between the impact of
each landscape indicator on CLUE. The interaction between the shape factor and other
factors has a stronger impact on CLUE than the interaction between other factors.
The interaction between CA, FRAC_AM, and AI is enhanced, indicating that large,
flat, and aggregated cultivated land patches are conducive to the improvement of
CLUE, and the interaction between PD and other factors has changed from weakening
to strengthening, indicating that for PD, the “double-edged sword” effect gradually
tends to be a one-way effect. With the strict implementation of the balance policy of
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cultivated land occupation and compensation, the occupation and compensation of
cultivated land will continue to exist for a long time. The research findings suggest
that when planning for cultivated land translocation and compensation, priority
should be given to square-shaped plots that simplify the overall shape. In addition,
priority should be given to creating larger and more concentrated compensation plots.
During the land consolidation process, emphasis should be placed on the pursuit of
more regular, larger, and concentrated cultivated land patches to improve CLUE. This
approach is crucial for ensuring food security and protecting cultivated land.
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