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Abstract: Selenium (Se) is an essential trace element for humans and animals. Its necessity for plants
is still under examination. Due to the contradictory nature of Se and its significance, it has received
much interest in recent years. Se deficiency can be harmful to humans, yet almost a billion people
are deficient. Its deficiency has been associated with cancers, impairment of organs, and a number
of other ailments. The biofortification of plants and livestock is a guaranteed practice to increase
human selenium consumption. Strategies such as foliar spraying, the direct application of Se in plants
and Se feed, and injections in livestock have been employed. Se biofortification has been shown to
have additional beneficial effects in plants and livestock. In plants, it has been reported to mitigate
different types of stress and increase yield. In animal biofortification, Se has been shown to reduce
the detrimental effects of ailments and promote healthy growth. Se biofortification, nevertheless,
confronts a number of difficulties. For instance, the bulk of biofortified products must be prepared
before consumption, lowering the Se concentration. The objective of this review is to convey the
current understanding of the Se biofortification of plants and animals, as well as its difficulties, taking
into account both the detrimental consequences of Se deficiency and benefits of Se biofortification.

Keywords: selenium; biofortification; plants; livestock; food; humans

1. Introduction

Selenium (Se) is mainly generated as a byproduct of copper mining [1]. Since its
industrial use began in the early 1900s, the global output of Se has expanded significantly.
Worldwide production in 1910 was around 5000 kg [1]. According to Garside, about
3300 metric tons of Se was produced globally in 2020. China, Japan, and Germany produced
the most selenium that year, producing 1120, 740 and 300 metric tons, respectively [2].

Se belongs to a group of elements that cannot be classified distinctly as either metals or
non-metals. It is found in the group VIA as a partner to sulfur (S). Se types are determined
by the potential of hydrogen (pH) and measurement of electrical potential [3,4]. It exists
in nature in four oxidation states: elemental selenium (Se(0)), selenide (Se(II)), selenite
(Se(IV)), and selenate (Se(VI)) [5–7]. According to previous studies [8,9], Marco Polo initially
described Se poisoning in the 13th century. However, it was not until research by Schwarz
and Foltz that Se’s essential function in preventing liver damage in rats was recognized [10].

In the human body, Se plays a vital function as a component of enzymes [11]. Sele-
nium’s relevance is attributed to its presence in selenoproteins [12,13]. The significance of
Se is also demonstrated in its ability to change the expression and activity of over 25 se-
lenoproteins involved in oxidative stress, detoxification, transport processes, metabolism,
and inflammatory responses [14,15]. Although essential, Se is termed as a “two-edged
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sword” [16] because of its ability to be both beneficial and detrimental at different con-
centrations [17]. Se-deficient diets have been linked to various health problems [18], and
they are common in many parts of the world [19]. At least one billion individuals globally
are Se deficient [20,21]. For instance, the consumption of Se in China was found to be ap-
proximately 26.63 µg/d, which is very low [22]. Due to the fact that Se is a non-renewable
resource, this worrying situation is expected to get worse in the future.

To increase the Se status in humans and reduce the effects of Se deficiency, the pro-
duction of crops and animals with increased Se levels is vital. Selenium’s necessity for
plants is still up for contention [23,24]. Nonetheless, several studies have shown that Se is
beneficial for plants and animals [8,25–32]. The biofortification of plants and animals with
Se has been researched using multiple techniques including genetic biofortification and
the application of selenium fertilizers. Although some are already well known, others are
constrained by government regulations and other factors. This review’s goal is to provide
an overview of the state of Se biofortification research, methods, effects, and challenges.
The review focuses on (i) Se biofortification of plants and animals; (ii) Se biofortification
effects on plants and animals; (iii) Se biofortification strategies; (iv) Se biofortification and
human health benefits; and (v) Se biofortification challenges.

2. Methodology

In this study, a comprehensive search was conducted on the World Wide Web for
published, peer-reviewed research and review articles utilizing a variety of databases and
search engines, including but not limited to Google Scholar, Web of Science, PubMed,
Science Direct, Scopus, Directory of Open Access Journals, and MEDLINE. These databases
are well-known collections of peer-reviewed articles and widely used. Keywords, index
terms, and combinations thereof, such as selenium, selenium biofortification strategies,
selenium biofortification, selenium in plants and animals, effects of selenium on plants and
animals, selenium and human health, dietary selenium, selenium in food, selenium and
cancers, selenium overdose, and selenium benefits, were utilized. Over 1000 studies were
discovered using the specified keywords and index terms. The list of studies was then
scrutinized and duplicates were removed using endnote, leaving 316 articles. To further
uncover related studies, relevant papers cited in the selected publications were reviewed.

3. Sources and Pathways of Se

Se sources can be anthropogenic, geogenic, or both [33]. Gypsum, marlstone, volcanic
eruptions, sea spray, the weathering of Se-rich rocks, soils, and animal transport are
some of the natural sources of Se [34–36]. Atmospheric discharge is one of the most
significant sources of Se in different types of soils, as natural resources volatilize Se into
the atmosphere [37,38]. In clay soils, Se levels range from 0.8 to 2 mg/kg, whereas tropical
soils have a range of 2 to 4.5 mg/kg [39]. In diverse soils, however, Se levels vary from 0.01
to 2 mg/kg [16]. Some studies show that Se accumulates more readily in igneous rocks
than in other rock types [35–40].

Se from sediments is transported into rivers and other water bodies by fluctuations in
water flow or benthic agitation (Figure 1). In certain areas, Se levels in water from wells
and subsurface waters used by humans and livestock for drinking and other activities
may surpass 10–20 µg/L, with some concentrations reaching hundreds of micrograms per
liter [41]. These waters are not often thought of as an excellent source of Se [42]. Nonetheless,
their use results in the transfer and transport of the element in the environment. Farming
and industrial activities are the main anthropogenic sources and pathways of Se [43].
However, only around 5% of the overall demand for Se is used by agriculture [44], where it
is used in producing fertilizers and animal feeds, among other uses. This renders industrial
use the primary anthropogenic source and pathway of Se.
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4. Se Biofortification Strategies

Biofortification is a quick, efficient, and sustainable way to lower micronutrient de-
ficiencies [45]. The strategies of biofortification are the approaches employed to achieve
biofortification (Figure 2a). Plants and animal produce are classified as biofortified when
there is an increase in the Se content in the edible portions of plants and food animals.

4.1. Se Forms

As noted earlier, Se exists in soils in four different oxidation states that determine its
behavior, specifically its mobility and bioavailability in the natural environment. Some
common organic Se compounds include selenomethionine (SeMet), selenocysteine (SeCys),
dimethylselenide, selenium methylselenocysteine, dimethyldiselenide, dimethylselenone,
methane selenol, and dimethylselenyl sulfide [46]. Se(IV) and Se(VI) are the dominant
forms of Se and are often considered the only abundant forms for plant uptake in many
studies [47,48]. Se(VI) is water soluble, while Se(IV) is less water soluble and more attached
to soil minerals and organic matter [47]. Metallic Se(II) and Se(0) are generally not water-
soluble [48]. Se(IV) and Se(VI) are considered the most bioavailable forms for plant uptake
due to their solubility [49]. Se(VI) has a higher rate of translocation from roots to shoots
compared with Se(IV) [50]. This is because Se(IV) is quickly converted into organic forms
like SeCys or SeMet in roots [51]. In anaerobic soils, Se(0) and organic Se(II) are the
dominant forms, while Se(IV) and Se(VI) are common in aerobic soils [52]. Se(0) and
metallic Se(II) are not water-soluble and, therefore, not bioavailable for plant uptake [52].
Under low redox potential conditions, Se(IV) and Se(VI) can be reduced to Se(II) and
Se(0) [53]. Se(0) can also be oxidized into bioavailable inorganic Se compounds through
microbial oxidation and hydrolysis [54]. The uptake and transport of Se by plants varies
among species and genotypes. The mobility of Se in wheat and canola plants is in the
following order: selenate > SeMet > selenite/SeCys [55]. Studies show that rice grains
contain higher amounts of Se compared with maize and wheat grains [56]. This may be due
to the existence of high-Se and low-Se varieties of rice [57]. The use of Nano-Se to increase
the Se content in food is considered a potential solution due to its high biological activity,
bioavailability, low toxicity, and large surface area [58]. The use of Se nanoparticles is a
promising alternative to other forms of Se as it simplifies application and leads to improved
antioxidant metabolism, agronomic sustainability, and waste reduction [59].
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Figure 2. (a) Selenium biofortification strategies. Note: 1. Foliar application; 2. Soil application;
3. Genetic biofortification; 4. Microbial-assisted biofortification. (b) Selenium uptake and transport.
(A) Amino acid permeases (AA Tr.) and SULTR1;1, SULTR1;2, NIP2;1, PT2, and PT8 transporters aid
organic and inorganic Se absorption by the roots. (B) The shoots receive organic Se forms from the
AA Tr. transporter. (C) Selenate is transported by both the xylem and phloem; concomitantly, organic
Se compounds enter the seed via the phloem. (D) Upon foliar application, Se enters the plants via
trichomes, stomata, and hydathodes.

In livestock production, Se is added to animal feed in both organic and inorganic
forms [60]. Ruminants absorb and retain organic forms of Se more effectively than inorganic
forms. A common way to enhance animal diets with Se is through in-feed administration of
Se-enriched yeast, which has a moderate to high Se content and is a source of SeMet [61]. A
safe and natural way to provide animals with Se is by offering feed with optimal Se content,
as long as the level of Se in the dry matter is carefully monitored. Plants accumulate Se
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primarily in the inorganic form and then synthesize seleno-amino acids in SeMet, becoming
a source of organic Se for animals [62].

4.2. Se Biofortification Strategies in Plants
4.2.1. Foliar Application

Foliar application appears to be the most popular method of applying selenium among
all methods because of its simplicity and preferable outcomes. The danger of environmental
contamination also seems to be lower. Studies have demonstrated that foliar spray entails
minimal use of Se salts [63,64]. This technique entails spraying a crop’s leaf surface with a
Se-containing solution. Selenium enters the plant through the leaf cuticles. Particles can
also enter plants through trichomes, stomata, stigma, and hydathodes [65]. In this respect,
soil chemistry and microbiological processes have less of an impact on Se, resulting in
a higher absorption rate with modest quantities of administered Se solution. With this
strategy, there are changes in plant-specific parameters that must be taken into account,
including the quantity of Se applied, leaf area and surface structure, and leaf structure.
Wang et al. [66] recently found that applying Se as Se(IV) or Se(VI) using foliar spray during
the prefilling stage has a substantial influence on Se concentration in wheat grains. In a
previous rice study, foliar application of Se (30–300 µg Se/ha as SeO3

2− or SeO4
2−) raised

the Se concentration and other bioactive molecules in rice grains [67]. Per Lidon’s recent
report, foliar SeO3

2− fertilization caused a 427–884-fold increase in grain Se content in
four rice genotypes, while SeO4

2− application led to a 128–347-fold increase in grain Se
concentrations [68]. Pannico et al. [69] found that foliar spraying of Se (0–40 µM) enhanced
leaf Se content in two lettuce cultivars with varying pigmentation, with the red cultivar
storing 57% more Se than the green cultivar. However, all treatments decreased the fresh
weight of green lettuce by 9%, whereas 32 and 40 µM lowered the fresh weight of red
lettuce by 11% and 22%, respectively.

4.2.2. Soil Application

This technique involves amending the soil with Se to raise the amount of overall
or bioaccessible Se, enhance the rhizosphere conditions for soil crops, and raise the Se
content of produce. With this approach, Se is applied either as Se salts, Se solution, or Se-
containing fertilizers. Soil chemistry and microbial activities affect whether Se administered
with this technique will result in a desired effect. This strategy is said to have been
employed by the Finnish government to boost the population’s daily consumption of
selenium [70,71]. Soil Se application has been shown to have a favorable influence on
various plant physiological systems. Plants absorb Se in the form of organic Se (SeCys
and SeMet), Se(IV), and Se(VI) [72,73]. Although plant roots cannot absorb Se(II), they
may do so for organic Se species such as SeCys and SeMet and inorganic Se species such
as Se(0), Se(IV), and Se(VI) [74,75]. Se (VI) has been shown to enter plants through the
sulfate transporters SULTR1; 2 and SULTR1 [72], while Se(IV) enters plants via phosphate
transporter transport [76,77]. OsPT2, a phosphate transporter, has been demonstrated to be
involved in plant uptake of Se(IV) [78]. Se in the form of Se(VI) applied via soil was the
best strategy for increasing Se content in the radish without causing damage to biomass
growth. The researchers found that the accumulation of Se in the leaf, root, and whole
plants was higher when Se was applied via soil compared with the foliar application [79].
This result is consistent with the findings of a recent study with the same Se application
strategy, which found that Se considerably enhanced the Se concentration in mushroom
fruit bodies (p < 0.05) [80]. However, there was no significant increase in fruit production.
Consistent with that study is one that reported a rise in Se concentrations with the same Se
application strategy but also no increase in yield [81].

4.2.3. Microbial-Assisted Biofortification

Agronomic biofortification strategies are not always successful due to a number of
factors including impromptu rainfall in the case of foliar applications and pH, and heavy
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metals in soil applications. Plant growth characteristics and yield have been documented
to be influenced by microorganisms located in the rhizosphere via a range of processes.
These processes include the release of hormones, nutrient transformations, and stress miti-
gation [82,83]. The roles played by microorganisms in this respect may be species and/or
Se species and bioavailability dependent. Bacterial species such as Bacillus, Entrobacter,
Paenibacillus, and Pseudomonas have been shown to be capable of Se transformations via
methylation and oxidation reduction processes [52,84]. Previous studies found that inoc-
ulating wheat with Se-tolerant bacteria derived from Se-deficient soils increased tissue
Se accumulation [85]. Researchers demonstrated in 2015 that various bacterial consortia
increased Se concentrations in Indian mustard growing in seleniferous soil [86]. A study
in 2019 indicated that in a test of two Se forms (SeCys and SeO4

2−) in shallots with and
without inoculation of arbuscular mycorrhizal fungi, inoculation increased the concentra-
tion of Se in the bulb by more than five times [87]. Recently, Enterobacter sp. EG16 (7.65107
CFU/mL) was observed to promote the growth and development of pak choi. Chlorophyll
concentration, SOD, CAT, and POD activity were likewise increased by the same Se and
EG16 doses [88]. These investigations demonstrate the essential roles microbes play in
Se biofortification. The study of bioreduction of selenate or selenite using microorgan-
isms such as bacteria, fungi, and plant extracts has become a popular area of interest for
scientists [89]. Microbes have been shown to produce the purest form of Se, with previ-
ous research demonstrating the production of Se(0) by the anaerobic bacterium Bacillus
selenireducens [90]. Yeast and other microbes play a vital role in synthesizing Se-containing
compounds such as SeCys and SeMet [91]. According to several authors’ studies on SeMet
determination, it may make up to 90% of the total Se content in yeast cells [92,93].

4.2.4. Genetic Biofortification

Genetic engineering has the capability to enhance the capacity of plants to accumulate
selenium as an alternative to agronomic approaches. Nevertheless, due to the stringent
limitations on the usage of transgenics that are still present in several nations, genetic
engineering is still not as prevalent and recognized as agronomic biofortification [94].
However, various chromosomal loci linked to elevated Se accumulation in a number
of crops have been reported [74,95,96]. Marker-assisted breeding can be employed to
transfer high-Se chromosomal loci from high-yielding, low-Se edible plant varieties into
the breeding population [75]. According to Schiavon et al., a significant drawback of
conventional or marker-assisted plant breeding is that it must be supplemented with
agronomic biofortification treatments employing Se fertilizers when crops are grown in
low Se regions [97]. The majority of plants targeted by this method are staple crops [98].
According to a previous study, double-transgenic crops produced from crossed-transgenic
mustard greens absorbed up to nine times more selenium than wild-type plants [99]. By
using the low Cd replacement line CSSLGCC7 as the breeding material, researchers at the
China National Rice Research Institute recently reported that CSSLGCC7+GSC5 demonstrated
increased Se concentrations in grains when crossed with CSSLs containing other major
quantitative trait loci for essential mineral elements [100].

4.2.5. Crop Breeding

Some researchers believe that conventional crop breeding may be a sustainable and
long-term approach to crop biofortification with Se [101]. However, compared to genetic
biofortification crop breeding is a slower and less accurate method as this procedure is
generally executed by hand. For instance, one study lasted for about five years [102].
Additionally, establishing appropriate and viable genotypic variation may be difficult [103].
Nevertheless, it can be utilized to create new plant types with enhanced features. Crop
breeding for Se biofortification uses the conventional procedure of cross-pollinating two
separate plants to develop a new hybrid plant with a mix of features from both parents to
promote Se absorption and translocation to edible portions of the crop. The researchers’
goal in the above-mentioned study was to breed Se-rich red glutinous rice and evaluate the
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concentration of Se and protein in various parts of the rice. The red glutinous rice attained
an Se concentration of 121.75 ng/g (±3.01 ng/g) after five years of breeding. According
to the results, upwards of 80% of the Se in the grain was organic Se, and over half of
the total Se was in the endosperm [102]. The study suggests that plant breeding for Se
biofortification was successful and supplementary research is needed in the future.

4.3. Se Biofortification Strategies in Livestock

In livestock, biofortification comprises employing agronomic or biotechnological
techniques to increase the quantity of vital nutrients in edible sections of animals [104]. Se
fertilization of farmlands, dietary supplementation via feed concentrate rations, and direct
administration, including injections, are viable supplementation techniques. High Se feed
concentrations are expected to raise Se concentrations in livestock. Animals can generate a
variety of selenoproteins, including glutathione peroxidase, selenoprotein P, selenoprotein
W, thioredoxin reductase, and other iodothyronine deiodinases, using absorbed selenium
forms [105]. However, excessive Se ingestion in livestock (5–50 mg per kg of mass) may
cause alkali disease, characterized by hoof deformities, a lack of vitality, anemia, and
stiffness [106].

5. Se Biofortification in Plants

Even though livestock products contain significantly higher amounts of Se, crops are
relatively good sources of Se due to their greater bioavailability [107]. While organically
cultivated foods are regarded as safe and wholesome, their low Se content may have an
unfavorable effect on their appearance [108]. Se supplementation of diets is essential to
control Se deficiency [109]. Se fertilization should be performed once every planting season
since plant supply can only be maintained for one growing season during crop production
for biofortification [110,111]. Sorption, desorption, precipitation, dissolution, production
of inorganic and organic complexes, methylation to volatile Se compounds [112,113], and
microbiological activity [114] all influence Se mobility and availability to plants (Figure 2b).
The amount of Se in a plant is determined mainly by the plant species; soil type in which
the plant is produced; use of herbicides, manure, and fertilizers; and agro-ecological man-
agement practices [93,115]. Some researchers found that vegetables contain approximately
6 mg/g Se when grown in seleniferous soil; however, asparagus and onions can accumulate
up to 17 mg/g Se when grown in similar soils [116].

Se is a valuable element for plants because it stimulates plant development
(Table 1) [23,31,32,117]. A recent study [118] discovered that Se improved the plants’
agronomic parameters when applied alone. Se application techniques influence whether
the element impacts plant development and biofortification. Selecting the appropriate
chemical form (Na2SeO4 or Na2SeO3) [119] and application approach is a crucial step for
achieving desirable effects and efficient biofortification.

5.1. Se Biofortification Effects in Plants

Plants have evolved a system in response to oxidative stress. It is an enzymatic an-
tioxidant complex that uses antioxidant enzymes such as superoxide dismutase (SOD),
peroxidase (POD), and catalase (CAT) to control oxidative stress [120]. For instance, malon-
dialdehyde (MDA), an oxidized output of membrane lipids, is an indicator of the degree of
oxidative stress and lipid peroxidation. Se was shown to modulate antioxidant enzyme
activity [120,121]. The primary mechanisms used by Se include the prevention of plant per-
oxidation, restoration of cell membrane integrity and function, modification of antioxidant
enzyme activity, and repair and rebuilding of chloroplast [122].

5.1.1. Se and Salinity

When plants are grown in soils with high levels of salt, their development and growth
are stifled. However, the specific mechanism of Se-mediated salinity tolerance is not fully
understood. Nonetheless, scientists frequently employ the usage of mineral elements to
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enhance crop tolerance to salt-induced stress [122]. Selenium efficacy in preventing such
stress has been documented in a number of publications. Onions grown on silt loam soil
with a salinity of 8 dS/m were less affected by salt stress after receiving an application of Se
in the form of sodium selenite (0.5–1 kg/ha). Improvements in qualitative and physiological
markers were also noted by the authors [123]. Se was shown to reduce the negative effects of
salt stress in a separate experiment using sunflower plants treated with Na2SeO4 (5 mg/kg).
Treatment with Se resulted in increased glutathione peroxidase activity and a decrease in
MDA levels in plant tissues [124]. Numerous studies have shown similar results, indicating
that the MDA content in various plant species under different circumstances might be
reduced by Se [125–127]. Recently, the use of Se was found to boost antioxidant enzyme
activities in grapes, leading to a reduction in salt stress [128]. According to their research,
foliar applications of Se treatment (Na2OSe4: 5–10 mg/L) boosted CAT activity in both
groups of plants (0 or 75 mM NaCl), and leaf ascorbate peroxidase activity also increased.

5.1.2. Se and Heavy Metals

Plants are capable of absorbing nutrients from the soil for use in their vital metabolic
activities. Meanwhile, because there is no particular preference for this mechanism, plants
face the possibility of absorbing substances that are detrimental to their physiology. Cad-
mium (Cd) is one of the most hazardous heavy metals. Previous studies have shown
that it has no identified benefits to the environment, and its introduction even in minute
concentrations may have negative consequences [129–131]. One recent study showed that
POD increased by 28%, 32%, and 27% in the presence of 0.0125, 0.025, and 0.05 mM foliar
nano-Se, whereas MDA fell by 8%, 18%, and 4%, respectively. The authors claim that this
improved rice’s ability to endure Cd stress [132]. Another recent finding suggested that
Se enhanced the antioxidant system in tall fescue plants to reduce the negative impacts of
Cd and enhance Cd resistance. According to the researchers, Cd treatment (30 mg/L, as
CdSO4·8/3 H2O) increased MDA content by 63% and the relative electrolyte leakage value
by approximately 166% higher than that of the control in tall fescue plants. However, Se
supplementation (0.1 mg/L, as Na2SeO3) reduced the MDA content by 52% and the relative
EL value by approximately 29%. Additionally, Se treatment considerably increased the
CAT activity by 40% and SOD activity by 30% compared with the Cd stress and control, re-
spectively [133]. A study on the interactive effects of Cd and Se on the growth of rice plants
found that at a constant Cd content of 4.16 mg/kg, dry grain weight rose considerably with
increasing soil Se concentration [134].

In a different study, the researchers found that the root As content decreased by 7 to
55% in the Se treatments (Se-yeast and Se-malt); additionally, the stem As content decreased
by 35 to 50%, and the leaf As content decreased by 0.1 to 33%. When Se malt was used,
the results showed a similar pattern [135]. The result of Se and heavy metal interaction
is thought to rely on Se speciation, relative dosage, application time, and application
manner [136,137].

5.1.3. Se and Extreme Temperatures

Despite extensive research into how plants react to extreme temperatures, the mecha-
nism underlying the tolerance capacity brought on by Se biofortification remains not fully
understood. Under extremely cold conditions, Se (foliar, Na2SeO3, 5 mg/L) decreased the
net photosynthetic rate and chlorophyll content and increased the MDA and hydrogen
peroxide contents of strawberry seedling leaves. Se also increased the activities of catalase
and superoxide dismutase [138].

Hasanuzzaman et al. looked at the protective function of Se (25 µM Na2SeO4) in
reducing the harm that high temperature (38 ◦C) caused to rapeseed. They claim that
heat-treated seedlings supplemented with Se experienced a considerable reduction in lipid
peroxidation as well as an increase in chlorophyll content and antioxidant activity [139].
The development and physiological tolerance of lamb’s lettuce cultivated under heat stress
(35/22 ◦C; day/night) by biofortification with Se (foliar (50 mg Se/dm3) and soil (Na2SeO4)
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improved plant growth, reduced oxidative stress due to increased guaiacol peroxidase and
catalase activity, and increased levels of GSH, and showed no change in the concentration
of phenolic compounds [140].

5.1.4. Se and Photosynthesis

The impact of Se on plant leaf anatomy has been explored, with results varying
based on soil Se concentration, plant species, and growth stage. Se can impact various
physio-biochemical processes, increasing photosynthesis efficiency (Fv/Fm) in chloro-
phylls and activating the antioxidant system, and improving photosynthesis in stressed
plants [141,142]. Wheat Fv/Fm was significantly reduced under salinity stress, but Se
and Se + Si application reduced the negative effects on photosynthesis by decreasing the
production of ROS that inhibit photosynthetic pigments [142]. In a study on Se’s impact on
tomato plant photosynthesis and ultrastructural changes under cadmium stress, Se applica-
tion improved photosynthetic attributes such as leaf transpiration and CO2 assimilation
rate compared to the control plant [141]. Se application was also found to increase photo-
synthetic attributes in sorghum, likely due to its ability to reduce ROS production, repair
damaged chloroplasts, and stimulate the production of other vital metabolites [120,143]. A
recent study also revealed that both forms of Se (1 µM Na2SeO3 and Na2SeO4) led to an
increase in mesophyll intercellular spaces and thicker leaves [141].

Table 1. Se biofortification effects in plants.

Plant Se Forms and Dosage Se Effects Reference

Maize

Na2SeO4
20 and 40 mg/L

Foliar Spray

Increased plant development due to higher salt tolerance during the
reproductive stage by reducing oxidative damage and enhancing the

activity of antioxidant enzymes.
[122]

Na2SeO4
40 mg/L

Foliar Spray
Increased fodder yield by 15% [144]

Na2SeO4
0.8–1.0 g/L
Foliar Spray

At the jointing stage, fresh ear yield went up by 2.3%; at the large bell
stage, it went up by 2%. [145]

Na2SeO3
1, 5 and 25 µM

Addition to nutrient solution

Enhanced salt resistance via changes in photosynthetic capacity,
antioxidant activity, and Na+ homeostasis [146]

Na2SeO3
5–15 µM

Addition to nutrient solution.
Improved the activity of antioxidant system components [147]

Wheat

Na2SeO4
0.4 mg Na2SeO4/kg soil
Direct soil application

Height and weight of the plant increased [147]

Na2SeO4
5 µM

Direct addition to soil

In normal and NaCl-stressed seedlings, Se increased proline and sugar
build-up and supplied additional osmolarity to preserve relative water

content and safeguard photosynthesis.
[148]

Na2SeO4
10 mL/pot
Foliar spray

Enhanced antioxidant enzyme activity; improved plant growth,
photosynthetic capacity, relative water content, and chlorophyll content [149]

Rice

Na2SeO3
25µM

Addition to nutrient solution.
Increased phenolic chemicals and decreased arsenic accumulation [150]

Na2SeO4
10 µM

Addition to nutrient solution.

Increased plant growth and biomass, and increased protein content. The
activities of MDA, H2O2, APX, CAT, and SOD reduced in the shoots. [151]

Na2SeO3
0.8 and 1.0 mg/L

As-induced toxicity significantly decreased germination by 70%, and Se
supplementation by seed priming increased germination by 9% and
root, shoot, and seedling biomass accumulation by 1.3, 1.6, and 1.4

folds, respectively.

[152]
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Table 1. Cont.

Plant Se Forms and Dosage Se Effects Reference

Tomato

Na2SeO3 or Na2SeO4
1 µM

Addition to nutrient solution
Enhanced photosynthesis and increased root and shoot dry weight [141]

Na2SeO3·5H2O
10 µM

Direct soil application

Increased the levels of stomatal conductance, chlorophyll and carotene,
transpiration rate and net photosynthesis rate [125]

Se nanoparticles
10 mg/L

Foliar Spray
Increased the yield by 21% [153]

Pepper

Na2SeO3
5 µM

Addition to nutrient solution

Increased root development, membrane stability index, chlorophyll
concentration, and starch content in leaves [154]

Na2SeO3
3 and 7 µM

Direct addition to soil

Plants cultivated in the medium containing 0.25 mM Cd had higher
mean productivity, a greater capacity to withstand stress, and a higher

yield stability index when the Se doses were added.
[155]

Onion
Na2SeO3

0.5 and 1 kg/ha
Foliar spraying

Improvements in both qualitative and physiological markers.
Maximum production at 1 kg/ha of foliar Se supplementation [123]

Garlic
Na2SeO4

4, 8 and 16 mg/L
Addition to nutrient solution.

Se improved salt tolerance and decreased oxidative damage by
boosting the activity of antioxidant enzymes. [156]

Cucumber
Na2SeO3

2 g/L
Addition to nutrient solution

Increased root and shoot biomass, as well as chlorophyll content [157]

Mustard greens
Na2SeO4
4 µM/kg

Addition to nutrient solution

Improved growth, increased chlorophyll and carotene content, net
photosynthesis rate, stomatal conductance, and transpiration rate [158]

Broad Beans
Na2SeO3
1.5 µM

Addition to nutrient solution

Decreased MDA content; and H2O2 buildup, increased chlorophyll
content shoot elongation and shoot fresh weight [159]

Lemon balm
Na2SeO3.5H2O

0.2 µM
Addition to nutrient solution

Enhanced growth [160]

Strawberry
Na2SeO4 nanoparticles, 10 and 20

mg/L
Foliar Spray

Increased number of fruit plants−1 by 21.22 and 12.54%, and yield by
21 and 14%, respectively, in two growing seasons [161]

Pomegranate
Na2SeO4 and Se-nanoparticles, 1

and 2 µM
Foliar Spray

In two growing seasons, the number of fruits per tree grew by 1.35 and
1.28 times, and the yield grew by 1.17 and 1.16 times. [162]

Cowpea
Na2SeO4

5 and 10 µM
Foliar application

Enhanced yield-related indicators, growth, and protein levels [163]

Sunflower
Na2SeO4
5 mg/kg

Direct soil application
Increased antioxidant enzyme activity [124]

Tobacco
Na2SeO3
0.1 mg/L

Addition to nutrient solution.

Se reduced the toxicity of the high As dosage (5 mg/L) and stimulated
the development of the plant by increasing antioxidative stress

resistance and decreasing MDA levels.
[164]

6. Se Biofortification in Livestock

Rapid livestock production increases the necessity for Se [165,166]. In animals, the
liver, heart, and skeletal muscle are the first organs to become deficient in Se [114]. Inade-
quate levels of Se have been linked to a variety of illnesses in livestock, including nutritional
myopathy and ill-thrifting [167,168] as well as white muscle disease [169], which is pri-
marily unnoticeable in older animals [170]. White muscle disease is a severe degenerative
condition marked by rigidity, exhaustion, limb trembling, and inflamed muscles [171].
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It has been labeled the animal variant of Keshan disease [172]. Ruminants’ absorption
of Se is less efficient and complicated than that of non-ruminants since rumen microbial
populations may convert Se to inaccessible forms [173], and only one-third of inorganic
Se is absorbed. Some studies suggest that Se supplementation in animal feeds should be
between 0.05 and 0.1 mg/kg dry matter (DM) to satisfy Se requirements [174,175]. Fresh-
water creatures such as crayfish, crabs, and carp [176] may deposit Se in their tissues, even
in rare Se geographic locations. However, it is uncertain whether eating seafood has a role
in their Se buildup.

Se Biofortification Effects in Livestock

One of the most critical factors recognized in the pathological course of many illnesses
and cancers is oxidative stress and the unregulated creation of reactive oxygen species [177].
Total superoxide dismutase (T-SOD), GSH-Px, and catalase are intricate defense and repair
mechanisms that may protect animals from oxidative damage [178]. Livestock research
has shown that Se may reduce heavy metal toxicity and alter the degree of heavy metal
exposure and illness (Table 2). For instance, in a previous study, Se reduced Cd-induced
hepatotoxicity [179]. The researchers discovered that in cocks, a 10 mg/kg Se(IV) diet
decreased Cd buildup and boosted antioxidant resistance in hepatic tissue, as well as Cd-
induced morphological alterations and oxidative stress. According to the researchers, the
results can be explained by Se’s crucial role in avoiding lipid peroxidation and preserving
the structural and functional integrity of tissues. Selenium supplementation protected the
chicken brain against chromium damage by blocking adverse effects [180]. They further
found that Se supplementation reduced MDA activity and that the supplementation at
5 mg/kg BW greatly boosted SOD activity. Furthermore, Se supplementation reduced MDA
activity because Se inhibits hydroxyl radical production and maintains tissue function.
Additionally, Se is acknowledged to be a crucial component for reproductive function in
poultry. Dietary Se supplementation at varying concentrations (0.10–1.00 mg/kg) and
sources enhanced laying performance and egg quality [181]. Se administration using either
organic (Se-enriched yeast) or inorganic (sodium selenite) forms of Se at levels of 0.3 and
0.15 mg/kg against the H9N2 virus dramatically reduced viral shedding within the chicken,
with the organic form proving more efficient [182]. However, according to an experiment
on hens augmented with Se orally at doses of 5, 10, and 15 mg/kg for 15, 30, and 45 days,
high intakes of Se caused a significant decrease in the levels of the cytokines IFN-γ and
IL-2 in both serum and the thymus, as well as a low-to-moderate incidence of pathological
changes in the thymus tissue, which suggests a decrease in protection and an upsurge in
oxidative damage [183].

A study by Li et al. [176] revealed that nano-Se may counteract the oxidative stress
and inflammation in chickens caused by di-(2-ethylhexyl)phthalate (DEHP), a plasticizer
extensively used in the food sector. According to their study, the SOD, T-AOC, GSH-PX,
and CAT activities of the DEHP group were considerably reduced (p < 0.05) compared with
those of the control group, whereas the SOD, T-AOC, and CAT activities of the nano Se
group were significantly increased (p < 0.05).

A previous study in pigs found that 6 mM Se Met suppressed PCV2, a postweaning
multisystemic wasting syndrome, and that 2 or 4 mM Se Met prevented the increase in
PCV2 replication induced by oxidative stress [184]. Some studies have speculated that the
underlying mechanism of Se Met inhibition of PCV2 replication is mediated by increased
activity of GSH-Px, which shields the cell from free-radical oxidant harm [185]. The effects
of dietary Se on parainfluenza virus infection in lambs have also been studied, focusing
on the innate and adaptive immune responses to virus infection. When the parainfluenza
virus was injected into lambs that had been fed Se, they exhibited increased immunological
activity [186]. A recent study found that health and reproduction parameters improved
for cows fed with organic Se forms [187]. Sun and coworkers [188] found that Se-yeast
treatment boosts antioxidant capacity in dairy cows. They showed an increase in serum
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glutathione peroxidase activity (p < 0.05) and total antioxidant capacity (p = 0.08), as well
as a reduction in MDA content (p < 0.05).

Table 2. Se biofortification effects in livestock.

Animal Se Form and Dosage Se Effects Reference

Cow

Se yeast supplement Enhanced antioxidant levels and immunological responses following calving [15]

Se-enriched alfalfa hay
Supplemental selenium increased immunization responses against

Escherichia coli during the weaning transition phase and subsequent
growth and survival in the feedlot.

[189]

Pig

DL-selenomethionine
2–16 µmol/L Significant inhibitive effect on Porcine circovirus type 2 replication [190]

SeMet
2–6 µM Inhibited porcine circovirus type 2 replication and its related oxidative stress [184]

Se yeast diet
Piglets given selenium yeast showed greater digestibility of DM, crude
protein, and crude fat; which impacted the production of inflammatory

cytokines, and decreased the quantity of Escherichia coli in feces.
[191]

Chicken

SeMet Increased immune function and selenoprotein expression, and reduced the
inflammation generated by lipopolysaccharides. [192]

0.3 mg/kg Se yeast
0.3 mg/kg of organic Se from
Stenotrophomonas maltophilia

(bacterial organic Se, ADS18).

Bacterial selenoprotein or Se-yeast improved the performance index, egg
quality features, egg yolk and tissue of Se concentrations and intestinal villus. [193]

Se Enriched Yeast
Na2SeO3

(High—0.30 mg/kg of feed;
Low—0.15 mg/kg of feed)

Virus shedding from the cloaca was substantially reduced in all
selenium-supplemented groups compared with non-supplemented control groups. [182]

sodium selenite
10 or 20 µg Se injection enhanced immune and antioxidant responses [194]

Probiotics as
(P, 0.11 mg Se/kg) Na2SeO3

(SS, 0.41 mg Se/kg) and
(SP, 0.41 mg Se/kg)

In groups supplemented with selenium, oocyst shedding and cecal lesion
scores were reduced. [195]

Sheep

Se yeast supplementation >4.9 mg
Se/week

Supplementation with Se-yeast enhanced the Se status of sheep and the
expression of genes involved in innate immunity in whole blood neutrophils. [196]

Se yeast
0.5–1.0 mg/kg

Drip loss of muscle decreased significantly with an increase in dietary
selenium yeast

Supplementation.
[197]

Rabbit

Se yeast
0.3 mg Se/kg diet

Positive effect on growth performance of rabbits. Se increased daily gain
and the final body weight. Supplementation with Se increased muscle Se

content to 559% of the control level.
[198]

Sodium selenate solution
10% of Se-fortified olive leaves

(2.10 mg/kg)

Meat exhibited better oxidative status and a 5-fold higher Se content
compared to that of the other treatments. [199]

7. Se Biofortification and Humans

Se deficiency in humans can be linked to lower levels in plant and livestock produce.
Deficiency in humans can be associated with numerous ailments that denote a significant
impact on the socioeconomic development of individuals. However, due to changes in
laboratory methodologies throughout the world and the lack of specific biofortification
values and guidelines for application and intake, there is a significant variability globally
(Table 3). Some regulatory agencies recommend daily Se consumption of 30–85 µg/d for
males and 30–70 µg/d for females to meet dietary requirements [200–202].

On average, the concentration of Se in cereals produced in Europe reportedly varies from
0.02 to 0.05 mg/kg DM, whereas in North America, it is 0.2 to 0.5 mg/kg
(Table 3) [45,203]. Previous studies [204,205] demonstrated that the highest mean and median
amounts of Se in rice grown in the United States were 176 and 180 ng/g, respectively. In
contrast, the lowest mean and median concentrations of Se in Egyptian rice were 9.0 and
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6.0 ng/g, respectively. The researchers also reported that the average value of rice in India
was 152 ng/g; however, 5% of Chinese rice had an Se content of more than 200 ng/g.

Se consumption levels equivalent to the required dietary amount have been reported
in some countries. For instance, Belgium and France [41,206] have met the required dietary
quota. The present Se intake in Finland is also reported to be in accordance with the Nordic,
European Union, and United States standards [207–209]. However, studies from several
parts of the world show that the required dietary amount is not met. Places such as Italy
and Slovenia showed intakes that were below the recommended dietary limit [210–212].
Previous studies in Kuwait, Saudi Arabia, and Turkey that looked at Se concentration
in blood plasma and serum recorded that breast milk and umbilical cord blood were
low [213–215]. In Turkey, the Se content in breast milk was below the international standard
range (18.5 µg/L) during the breastfeeding period [216]. In Britain, a longitudinal study
of British individuals in good health revealed poor Se intake [217]. Se intake in Poles
compared to that of Spaniards was reported to be four times lower [218–221].

Table 3. Se intake status in different countries.

Country Se Intake References

Russia 35.5 µg [222]
Brazil 84.3–105.9 µg [223–225]

United States of America 60–220 µg [209,224,226–228]
Turkey 20–138 µg [215,229–239]

Slovakia 27–43 µg [240]
Saudi Arabia 34–121.65 µg [241,242]

Venezuela 200–350 µg [21,243]
Czech Republic 10–25 µg [243]

Canada 98–224 µg [225,228]
England 12–43 µg [228]
Belgium 28–61 µg [224]
Germany 35–47 µg [224,225]
Mexico 61–73 µg [224,228]

Venezuela 200–350 µg [224,228]
Australia 57–87 µg [209,228]

Japan 104–127 µg [228]
Greece 110 µg [228]
China 3–6690 µg [22,224,243]
Poland 30–40 µg [244]
Finland 70–80 µg [71]
Spain 44–50 µg [117,245]

Austria 48 µg [21,117]
Slovenia 87 µg [246]
Slovakia 27–43 µg [240]
Jordan 59.26 µg [247]

Greenland 193–5885 µg [248]

7.1. Se in Humans
7.1.1. Se Intake

Mehdi et al. [116] found that between inorganic and organic Se, the former is more
harmful than the latter. Additionally, Vinceti et al. [42] discovered that inorganic Se was
40 times more dangerous than organic Se. However, several studies on humans have
revealed that doses of up to 800 µg Se/day provided as Se-yeast did not result in any
harmful effects [105]. Several variables influence Se intake, including nutritional habits
and geographical location, as well as food imports and sources of food. Reduced Se intake
and levels in the United Kingdom and other northern European nations are thought to
have originated since the mid-20th century due to changing trade, which resulted in lower
wheat imports from the US and Canada [172]. In New Zealand, the process that was used
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to remove arsenic from superphosphate fertilizers also removed Se, decreasing the Se status
in plants and livestock [44].

Se deficiency is linked to a variety of cancerous diseases [249], renal impairment [250],
type 1 diabetes [251], epilepsy, and cardiovascular diseases [93]. Keshan illness [252] was
the first human disease associated with Se deficit. Kashin–Beck disease, a bone and car-
tilage disease described in China, Tibet, North Korea, and Siberia, was the second [249].
Thyroid hormone metabolism problems and selenoprotein N-related myopathy, both of
which are congenital muscle disorders, have also been linked to decreased selenoprotein
expression [253]. Other variables besides Se insufficiency may be the main cause of the con-
ditions of various diseases and increased oxidative stress. However, a strong Se status along
with a sufficient intake of other antioxidative nutrients may assist cells and tissues better
withstand the detrimental oxidative stress caused [44]. For example, hyperglycemia [231]
or the immune system’s response to infection [254].

7.1.2. Health Benefits of Se

Se has been shown to aid muscular function by improving endurance and recuperation,
as well as slowing the aging process [116]. Cengiz et al. [255] discovered a significant link
between low Se levels in expectant women’s blood and the occurrence of neural tube
abnormalities, particularly anencephaly and rachis. Hence, a reduction in reproduction in
females is usually related to Se-insufficient body saturation [256,257]. However, the role of
Se in this cycle is unclear.

In 1960, the US states with higher intakes of Se reported lower rates of cancer deaths
than states with lower intakes [258,259]. The socioeconomic impact of cancers is sig-
nificantly increasing. In 2010, the global economic cost of cancer was estimated to be
over $1.2 trillion [238], and it was €199 billion in Europe in 2018 [260]. The ingestion
of Se-supplemented foods has been researched as a potential remedy. For instance, the
consumption of Se-fortified garlic and broccoli produces Se-methyl–Se-cysteine, which is
converted to methyl selenol, a powerful cancer-fighting compound [261,262]. According
to a study on 18 individuals given 200 µg Se-enriched broccoli daily for three days, Se
intake led to noticeably greater levels of both Th1 and Th2 cytokines released by peripheral
blood mononuclear cells. The researchers found that supplementation raised plasma Se
levels [263]. The contribution of Se to tumor cell invasion, cell proliferation, and apoptosis
has been investigated [264,265]. Se contained in a fraction of selenoproteins, has been found
to promote anti-carcinogenic factors and have anti-proliferative and anti-inflammatory
properties [266,267]. It has also been shown to lessen the severe side effects of several
chemotherapeutic drugs while maintaining their anticancer properties [268,269].

In the treatment of viral infections, 200 µg of selenium per day reduced HIV patients’
hospital admissions and infection-related admissions [270]. Similar research showed that
higher Se content in serum was associated with lower viral load, even after adjusting
for antiretroviral therapy regimen and adherence [271]. However, some researchers have
disputed the data analysis approach [272]. In patients who received a live attenuated
poliovirus vaccination, treatment using 100µg Se/d increased the number of total T cells
and Th cells and improved virus clearance [273].

Se is reportedly used in a number of health materials. It suppresses bone cancer in
a localized location without damaging healthy tissue in the surrounding area, indicating
tremendous potential for novel bone cancer therapy options. Depending on the kind of
Se used, the frequent technique for treating bone cancer is incorporating it into ceramic
substrates [274]. Moreover, Se has been used as an anticancer material in breast, lung [275],
and prostate [276] applications. This indicates Se antioxidant capabilities, immunological
protection, carcinogen detoxification, cell proliferation modulation, and suppression of
cancer cell invasion and angiogenesis, among other things [277]. Selenium has also been
shown to lessen the severe side effects of several chemotherapeutic drugs while maintaining
their anticancer properties [268,269].
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8. Se Biofortification Challenges
8.1. Influence of Soil Characeristics

Direct soil application has been shown to enhance the biofortification of crops with
Se. However, studies highlight issues with Se biofortification through soil, owing to the
lower uptake by plants and the probable economic losses associated with this strategy [278].
Previous research, for example, found that improving Se status in grain to 100 µg Se/kg
requires almost six times more fertilizer for soil treatment than foliar spray [279]. Plants
absorb most of their nutrients in the rhizosphere, and the conditions there can affect how
bioavailable Se is to plants [280,281].

Ions present in soils may hinder the uptake of selenium by plants (Figure 3). The an-
ions sulfate and phosphate may compete with Se for absorption by plants [282]. Se remains
bound in phosphate precipitates when phosphate fertilizers are applied to the soil, render-
ing it unavailable for uptake [44]. Selenium also shares similar characteristics to S [283,284],
and it is documented that adding S to the soil inhibits plant Se absorption [285,286], as they
share the same metabolic pathway during translocation [287].
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Additionally, metal and metalloid bioavailability and speciation in soils are affected
by soil clay [288,289]. Se is poorly bioavailable in clayey soils as a result of its attraction
to clay minerals [290]. According to studies, Se can adsorb on positively charged sites of
Al-octahedral sheets in clay minerals such as kaolinite and changes significantly with soil
pH [291].

Soil pH also affects the adsorption of Se [282]. Selenite is insoluble in acidic and neutral
soils while Se(IV) is more readily absorbed by plants in neutral and alkaline soils [292].
This has been demonstrated in previous studies in which Se-Se(VI)-enriched soils were
noted to absorb Se 10 times more readily than Se-Se(IV) [293]. Additionally, according to
thermodynamic calculations, Se(IV) should predominate in mineral soils with pH values
between acidic and neutral (7.5 < pe + pH < 15), and selenate in alkaline and well-oxidized
soils (pe + pH > 15) [294–296].

8.2. Food Processing Methods

Consuming Se-fortified foods is critical for improving Se status in humans. The major
goal of Se biofortification of plants and animals is to raise the Se status in humans. The
concentration of Se in a living organism is heavily influenced by Se consumption [20,297].
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However, Se-fortified products such as grains, vegetables, and meat are usually ingested
after cooking practices such as roasting, frying, and boiling. Se content in foods is reported
to be affected by cooking and preservation methods. Dong et al. [298] found that the overall
Se content was reduced by about 43.3% after boiling (10 min, 100 degrees Celsius), 38.5%
was lost to the water used, and 31.7% was lost after frying (10 min, 180 degrees Celsius).
They also observed that Se in tubers was reduced by 53.4–69.9% when peeled. Some
researchers observed that among the five typical processing techniques, frying recorded the
highest Se loss (64%) in garlic, and Se volatilization caused by high-temperature heating
was the primary factor [299]. Correspondingly, other food processing techniques, such
as soaking, have recorded a loss in the concentration of Se content by 2.6% to 7.2% [300].
Boiling, steaming, and frying were found to negatively affect the total Se concentration in
wheat (5.6–13.6%) [301]. A recent publication found that the latter had a more significant
decreasing effect on the total Se concentration in Pleurotus eryngii fruit bodies than in boiled
fruit bodies [80]. Additionally, food preservation methods have been observed to cause
Se to be embedded in the food medium and not freed in the intestines [302]; as a result,
absorption and usage of the element are affected [303]. Matos and coworkers found that
while the Se content in blue shark rose after steaming and grilling, its bioaccessibility
decreased considerably (p < 0.05) [304]. Zhou et al. [304] discovered that 35.3% of Se in
boiled tubers was not bioavailable, but the figure for fried samples rose to 76.6% following
oral and gastrointestinal digestion.

8.3. Toxic Nature of Se

Despite the importance of Se, its toxic nature past a certain level is a factor that
hinders its biofortification. The transition between biofortification and toxicity of Se is
narrow. Considering the very small range between nutritional quantities that are deadly
and inadequate, it is easy for selenium supplementation in animals to lead to toxic or even
fatal doses. Treatments for Se biofortification in animals can lead to poisoning as a result
of either unintentional or deliberate dosages [305]. In plants, while some can accumulate
high concentrations of the element and are termed hyperaccumulators [292], most plants
that are consumed, such as wheat, rice, maize and barley, which cannot accumulate such
higher amounts and are termed non-accumulators [72]. Selenium toxicity has been reported
to cause a negative impact on plant physiology, growth and development [50,306–313],
nutrient content [50,312,314,315], and yield [306,316,317].

Selenium (SeO3
2−; 50 or 100 µM) produced secondary nitrooxidative stress, lowered

root development and yield, lowered cell viability, affected cell wall structure by altering
pectin and callose, and lowered stomatal density in a study using thale cress [306]. Se-
fortified (SeO4

2− 80 µM and SeO3
2− 20 µM) cucumbers showed reduced biomass, shoot

growth, root growth, and leaf area. Additionally, it worsened nutritional content, decreased
the formation of photosynthetic pigments, increased lipid peroxidation, and decreased
chlorophyll fluorescence [50].

8.4. Government Support

Considering that Se deposits are rare, finite, and potentially susceptible to depletion by
improper or inefficient use, they must be conserved [279]. Support from government in the
type of funds for research and laws will be essential to ensure the proper utilization of the
resource. Most importantly, as the greatest advantage of Se enrichment is to improve public
wellbeing by lowering illness costs [318], policymakers must ensure that scientists, food
producers, and health providers have enough data on the population and environment to
aid them in better assessing the situation and providing the necessary and required duties.
Education programs about Se biofortification, Se biofortified products and why they are
needed will also go a long way to help the social acceptance and patronage of Se-biofortified
produce. A higher patronage will likely cause a more affordable price for the general public.
According to Bouis et al., [319], if provided biofortified produce is comparatively less
expensive than the competition and has similar quality, individuals from developed and
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underdeveloped countries will patronize them. However, most developing economies do
not have the resources needed to ensure the needed measures for biofortification and put
to action.

9. Conclusions

Inadequate Se status in plants and livestock appears to be the most prevalent cause of Se
deficiency. Se-deficient crops may stem from either a low Se concentration in the soil, a limited
availability of soil Se for absorption by plant roots, or both. In food animals, low levels of Se
in their diets seem to be the primary cause. Research trends suggest Se supplementation’s
efficacy in maintaining homeostasis of several metabolic processes. Researchers are utilizing
various techniques to increase Se content in edible sections of crops and livestock to address
both the issue of low Se intake and its impacts. However, biofortification of agricultural
products should be thoroughly researched and assessed in view of Se resource planning and
conservation. Additionally, further study is required to confirm the safety and appropriateness
of present Se levels to define optimal levels. Modern biological and analytical technologies
must also be progressively developed and utilized to assess the imprints and pathways of
selenium in a wide variety of foods and geographic locations to find other Se-deficient regions
and combat the existing global Se shortfall. Additionally, international support systems must
be recognized for developing economies.
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