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Abstract: Crop production can be greatly reduced due to various diseases, which seriously endan-
gers food security. Thus, detecting plant diseases accurately is necessary and urgent. Traditional
classification methods, such as naked-eye observation and laboratory tests, have many limitations,
such as being time consuming and subjective. Currently, deep learning (DL) methods, especially
those based on convolutional neural network (CNN), have gained widespread application in plant
disease classification. They have solved or partially solved the problems of traditional classification
methods and represent state-of-the-art technology in this field. In this work, we reviewed the latest
CNN networks pertinent to plant leaf disease classification. We summarized DL principles involved
in plant disease classification. Additionally, we summarized the main problems and correspond-
ing solutions of CNN used for plant disease classification. Furthermore, we discussed the future
development direction in plant disease classification.

Keywords: plant disease classification; deep learning; machine learning; convolutional neural network

1. Introduction

The Food and Agriculture Organization of the United Nations (http://www.fao.org/
publications/sofi/2020/en/, accessed on 5 December 2020) reported that the number of
hungry people in the world has been increasing slowly since 2014. Current estimates show
that nearly 690 million people are hungry, and they account for 8.9% of the world’s total
population; this figure represents an increase of 10 million in 1 year and nearly 60 million
in 5 years. Meanwhile, more than 90% of people in the world rely on agriculture. Farmers
produce 80% of the world’s food [1]; however, more than 50% of crop production is lost due
to plant diseases and pests [2]. Thus, recognizing and detecting plant disease accurately is
necessary and urgent.

The diverse plant diseases have an enormous effect on growing food crops. An iconic
example is the Irish potato famine of 1845–1849, which resulted in 1.2 million deaths [3]. The
diseases of several common plants are shown in Table 1. Plant diseases can be systematically
divided into fungal, oomycete, hyphomycete, bacterial, and viral types. We have shown
some pictures of plant disease in Figure 1. The pictures in Figure 1 were taken in the
greenhouse of Chengdu Academy of Agriculture and Forestry Sciences. Researchers
and farmers have never stopped exploring how to develop an intelligent and effective
method for plant disease classification. Laboratory test approaches to plant samples, such
as polymerase chain reaction, enzyme-linked immunosorbent assay, and loop-mediated
isothermal amplification, are highly specific and sensitive in identifying diseases.
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Table 1. Common diseases of several common plants.

Plant
Major Types of Disease

Reference
Fungal Bacterial Viral

Cucumber
Downy mildew, powdery
mildew, gray mold, black

spot, anthracnose

Angular spot, brown
spot, target spot

Mosaic virus, yellow spot
virus

Kianat et al. (2021) [4],
Zhang et al. (2019) [5],

Agarwal et al. (2021) [6]

Rice Rice stripe blight, false
smut, rice blast

Bacterial leaf blight,
bacterial leaf streak

Rice leaf smut, rice
black-streaked dwarf virus

Chen et al. (2021) [7],
Shrivastava et al. (2019) [8]

Maize Leaf spot disease, rust
disease, gray leaf spot

Bacterial stalk rot,
bacterial leaf streak

Rough dwarf disease,
crimson leaf disease

Sun et al. (2021) [9],
Yu et al. (2014) [10]

Tomato Early blight, late blight,
leaf mold

Bacterial wilt, soft
rot, canker Tomato yellow leaf curl virus Ferentinos (2018) [11],

Abbas et al. (2021) [12]
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Figure 1. Leaf spot in eight common plants. We took these pictures in the greenhouse of Chengdu 
Academy of Agriculture and Forestry Sciences. 

However, conventional field scouting for diseases in crops still relies primarily on 
visual inspection of the leaf color patterns and crown structures. People observe the symp-
toms of diseases on plant leaves with the naked eye and diagnose plant diseases based on 
experience, which is time and labor consuming and requires specialized skills [13]. At the 
same time, the disease characteristics among different crops are also different due to the 
variety of plants; this condition brings a high degree of complexity in the classification of 
plant diseases. Meanwhile, many studies have focused on the classification of plant dis-
eases based on machine learning. Using machine learning methods to detect plant dis-
eases is mainly divided into the following three steps: first, using preprocessing tech-
niques to remove the background or segment the infected part; second, extracting the dis-
tinguishing features for further analysis; finally, using supervised classification or unsu-
pervised clustering algorithms to classify the features [14–17]. Most machine learning 
studies have focused on the classification of plant diseases by using features, such as the 
texture [18], type [19], and color [20] of plant leaf images. The main classification methods 
include support vector machines [19], K-nearest neighbor [20], and random forest [21]. 
The major disadvantages of these methods are summarized as follows: 

Figure 1. Leaf spot in eight common plants. We took these pictures in the greenhouse of Chengdu
Academy of Agriculture and Forestry Sciences.

However, conventional field scouting for diseases in crops still relies primarily on
visual inspection of the leaf color patterns and crown structures. People observe the
symptoms of diseases on plant leaves with the naked eye and diagnose plant diseases
based on experience, which is time and labor consuming and requires specialized skills [13].
At the same time, the disease characteristics among different crops are also different
due to the variety of plants; this condition brings a high degree of complexity in the
classification of plant diseases. Meanwhile, many studies have focused on the classification
of plant diseases based on machine learning. Using machine learning methods to detect
plant diseases is mainly divided into the following three steps: first, using preprocessing
techniques to remove the background or segment the infected part; second, extracting
the distinguishing features for further analysis; finally, using supervised classification or
unsupervised clustering algorithms to classify the features [14–17]. Most machine learning
studies have focused on the classification of plant diseases by using features, such as the
texture [18], type [19], and color [20] of plant leaf images. The main classification methods
include support vector machines [19], K-nearest neighbor [20], and random forest [21]. The
major disadvantages of these methods are summarized as follows:

Low performance [22]: The performance they obtained was not ideal and could not
be used for real-time classification.
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Professional database [23]: The datasets they applied contained plant images that
were difficult to obtain in actual life. In the case of PlantVillage, the dataset was taken in an
ideal laboratory environment, such that a single image contains only one plant leaf and the
shot is not influenced by the external environment (e.g., light, rain).

Rarely used [24,25]: They often need to manually design and extract features, which
require research staff to possess professional capabilities.

Requiring the use of segmented operation [26]: The plants must be separated from
their roots to gain research datasets. Obviously, this operation is not good for real-
time applications.

Most of the traditional machine learning algorithms were based on laboratory con-
ditions, and the robustness of the algorithms is insufficient to meet the needs of practical
agricultural applications. Nowadays, deep learning (DL) methods, especially those based
on convolutional neural networks (CNNs), are gaining widespread application in the
agricultural field for detection and classification tasks, such as weed detection [27], crop
pest classification, and plant disease identification [28]. DL is a research direction of ma-
chine learning. It has solved or partially solved the problems of low performance [22],
lack of actual images [23], and segmented operation [26] of traditional machine learning
methods. The important advantage of DL models are that they can extract features without
applying segmented operation while obtaining satisfactory performance. Features of an
object are automatically extracted from the original data. Kunihiko Fukushima introduced
the Neocognitron in 1980, which inspired CNNs [29]. The emergence of CNNs has made
the technology of plant disease classification increasingly efficient and automatic.

The main works of this study are given as follows: (1) we reviewed the latest CNN
networks pertinent to plant leaf disease classification; (2) we summarized DL principles
involved in plant disease classification; (3) we summarized the main problems and corre-
sponding solutions of CNN used for plant disease classification, and (4) we discussed the
direction of future developments in plant disease classification.

2. Deep Learning

DL is a branch of machine learning [30] and is mainly used for image classification,
object detection [31–34], and natural language processing [35–37].

DL is an algorithm based on a neural network for automatic feature selection of data. It
does not need a lot of artificial feature engineering. It combines low-level features to form
abstract high-level features for discovering distributed features and attributes of sample
data. Its accuracy and generalization ability are improved compared to those of traditional
methods in image recognition and target detection. Currently, the main types of networks
are multilayer perceptron, CNN, and recurrent neural network (RNN). CNN is the most
widely used for plant leaf disease classification. As for other DL networks, such as fully
convolutional networks (FCNs) and deconvolutional networks, they are usually used for
image segmentation [38–41] or medical diagnosis [42,43] but are not used for plant leaf
disease classification. CNN usually consists of convolutional, pooling, and fully connected
layers. The convolutional layer uses the local correlation of the information in the image to
extract features. The process of convolution operation is shown in Figure 2. A kernel is placed
in the top-left corner of the image. The pixel values covered by the kernel are multiplied
with the corresponding kernel values, and then the products are summated, and the bias is
added at the end. The kernel is moved over by one pixel, and the process is repeated until all
possible locations in the image are filtered, which is shown in Figure 2. The pooling layer
selects features from the upper layer feature map by sampling and simultaneously makes the
model invariant to translation, rotation, and scaling. The commonly used one is maximum
or average pooling. The process of the pooling operation is shown in Figure 3. Maximum
pooling is to divide the input image into several rectangular regions based on the size of the
filter and output the maximum value for each region. As for average pooling, the output
is the average of each region. Convolutional and pooling layers often appear alternately in
applications. Each neuron in the fully connected layer is connected to the upper neuron, and
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the multidimensional features are integrated and converted into one-dimensional features in
the classifier for classification or detection tasks [44].
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For classification tasks, various CNN-based classification models have been developed
in DL-related research, including AlexNet, VGGNet, GoogLeNet, ResNet, MobileNet, and
EfficientNet. AlexNet [45] was proposed in 2012 and was the champion network in the
ILSVRC-2012 competition. This network contains five convolutional layers and three fully
connected layers. AlexNet has the following four highlights: (a) it is the first model to use a
GPU device for network acceleration training; (b) rectified linear units (ReLUs) were used as
the activation function; (c) local response normalization was used; (d) in the first two layers
of the fully connected layer, the dropout operation was used to reduce overfitting. Then,
the deeper networks appeared, such as VGG16, VGG19, GoogLeNet. These networks use
smaller stacked kernels but have lower memory during inference [46]. Later, researchers
found that when the number of layers of a deep CNN reached a certain depth, blindly
increasing the number of layers would not improve the classification performance but
would cause the network to converge more slowly [47,48]. Until 2015, Microsoft lab
proposed the ResNet network and won the first place in the classification task of the
ImageNet competition. The network creatively proposed residual blocks and shortcut
connections [49], which solves the problem of gradient elimination or gradient explosion,
making it possible to build a deeper network model. ResNet influenced the development
direction of DL in academia and industry in 2016. MobileNet was proposed by the Google
teams in 2017 and was designed for mobile and embedded vision applications [50]. In 2019,
the Google teams proposed another outstanding network: EfficientNet [51]. This network
uses a simple yet highly efficient compound coefficient to uniformly scale all dimensions
of depth/width/resolution, which will not arbitrarily scale the dimensions of the network
as in traditional methods. As for plant disease classification tasks, it is not necessary to use
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deep networks, because simple models, such as AlexNet and VGG16, can meet the actual
accuracy requirements.

The DL model can be realized using programming languages, such as Python, C/C++.
The open-source DL framework provides a series of application programming interfaces,
supports model design, assists in network deployment, and avoids code duplication [52].
At present, DL frameworks, such as PyTorch (https://pytorch.org/, accessed on 5 March
2021), Tensorflow (https://www.tensorflow.org/, accessed on 7 March 2021), Cafe (https:
//caffe.berkeleyvision.org/, accessed on 8 March 2021), and Keras (https://keras.io/,
accessed on 10 March 2021) are widely used.

The rapid increase of DL is inseparable from the widespread development of GPU.
The implementation of deep CNN requires GPUs to provide computing power support,
otherwise it will cause the training process to be quite slow or make it impossible to train
CNN models at all. At present, the most used is CUDA. When NVIDIA launched CUDA
(Computing Unified Device Architecture) and AMD launched Stream, GPU computing
started [46], and now, CUDA is widely used in DL.

Image classification is a basic task in computer vision. It is also the basis of object
detection, image segmentation, image retrieval, and other technologies. The basic process
of DL is shown in Figure 4, taking the task of classification of diseases on the surface of
snake gourd leaves as an example. In Figure 4, we use a CNN-based architecture to extract
features, which mainly include convolutional, max-pooling, and full connection layers.
The convolutional layer is mainly used to extract features of snake gourd plant leaf images.
The shallow convolutional layer is used to extract some edge and texture information, the
middle layer is used to extract complex texture and part of semantic information, and
the deep layer is used to extract high-level semantic features. The convolutional layer is
followed by a max-pooling layer, which is used to retain the important information in
the image. At the end of the architecture is a classifier, which consists of full connection
layers. This classifier is used to classify the high-level semantic features extracted by the
feature extractor.
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In Figure 4, we input a batch of images into the feature extraction network to extract
the features and then flatten the feature map into the classifier for disease classification.
This process can be roughly divided into the following three steps.

1. Step 1. Preparing the Data and Preprocessing
2. Step 2. Building, Training, and Evaluating the Model
3. Step 3. Inference and Deployment

https://pytorch.org/
https://www.tensorflow.org/
https://caffe.berkeleyvision.org/
https://caffe.berkeleyvision.org/
https://keras.io/
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2.1. Data Preparation and Preprocessing

Data are important for DL models. The results are bound to be inaccurate no matter
how complex and perfect our model is as long as the quality of the input data is poor. The
typical percentages of the original dataset intended for training, validation, and test are
70:20:10, 80:10:10, and 60:20:20.

A DL dataset is usually composed of a training set, a validation set, and a test set. The
training set is used to make the model learn, and the validation set is usually used to adjust
hyperparameters during training. The test set is the sample of data that the model has not
seen before, and it is used to evaluate the performance of the DL model. We collected some
public plant datasets from the two websites Kaggle (https://www.kaggle.com/datasets,
accessed on 12 February 2021) and BIFROST (https://datasets.bifrost.ai/, accessed on
15 February 2021), which can be used for detection or classification tasks, as shown in
Table 2. In the literature of DL techniques applied to plant disease classification, the most
used public datasets are PlantVillage [53–55] and Kaggle [56]; notably, many authors also
collect their own datasets [57–60].

Table 2. Some public plant datasets from Kaggle and BIFROST.

Name Number of Images Classes Task Type of View Source

New Plant Diseases Dataset 87,000 38 Image classification Field data Kaggle
PlantVillage Dataset 162,916 38 Image classification Uniform background Kaggle
Flowers Recognition 4242 4 Image classification Field data Kaggle

Plant Seedings Dataset 5539 12 Target detection Field data BIFROST
Weed Detection in Soybean Crops 15,336 4 Target detection Uniform background Kaggle

For snake gourd leaf disease classification, we need a large number of leaf images
of different disease categories. Meanwhile, the disease image data of each category were
roughly balanced. If one disease with a particularly large number of image data is consid-
ered, then the neural network will be biased toward this disease. Apart from sufficient data
on category balance, it also needs data to preprocess including image resize, random crop,
and normalization. The shape of the data varies according to the framework used. Figure 5
shows the tensor shape of the input for the neural network, where H and W represent the
height and width of the preprocessed image, C represents the number of image channels
(gray or RGB), and N represents the number of images input to the neural network in a
training session.
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Figure 5. The tensor shape of the input neural network in PyTorch.

https://www.kaggle.com/datasets
https://datasets.bifrost.ai/
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2.2. Building Model Architecture, Training, and Evaluating the Model

Before training, a suitable DL model architecture is needed. A good model architecture
can result in more accurate classification results and more rapid classification speed. Cur-
rently, the main network types of DL are CNN, RNN, and generative adversarial networks
(GAN). Among various works, CNN is the most widely used feature extraction network
for the task of plant disease detection and classification [55,61–65].

After the model architecture is established, different hyperparameters are set for
training and evaluation. We can set some parameter combinations and use the grid search
method to iterate through them to find the best one. When training the neural network,
training data are placed into the first layer of the network, and each neuron updates
the weight of the neuron through back-propagation according to whether the output is
equal to the label. This process is repeated until new capability is learned from existing
data. However, whether the trained model has learned new capabilities is unknown. The
performance of the model was evaluated by criteria, such as accuracy, precision, recall, and
F1 score. The concept of a confusion matrix must be introduced first prior to introducing
these indexes specifically. The confusion matrix shows the predicted correct or incorrect
results in binary classification. It consists of four elements: true positive (TP, correctly
predicted positive values), false positive (FP, incorrectly predicted positive values), true
negative (TN, correctly predicted negative values), and false negative (FN, incorrectly
predicted negative values). Then, the accuracy can be calculated as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Among all the positives predicted by the model, precision predicts the proportion of
correct predictions.

Precision =
TP

TP + FP
(2)

Among all real positives, recall predicts the correct proportion of positives [66].

Recall =
TP

TP + FN
(3)

The F1 value considers precision (P) and recall (R) rates.

F1 =
2

1
P + 1

R
=

2 × P × R
P + R

(4)

In the studies on plant disease classification, accuracy is the most common evaluation
index [53,60,64,67,68]. Larger values of accuracy, precision, and recall are better. Within
a certain range, when the value of the F1 score is smaller, the better the generalization
performance of the trained model is. When the training and evaluation are complete, the
trained model has a new capability; then, this capability is applied to new data.

2.3. Inference and Deployment

The inference is the capability of the DL model to quickly apply the learning capability
by the trained model to new data and quickly provide the correct answer based on data that
it has never seen [69]. After the training process is completed, the networks are deployed
into the field for inferring a result for the provided data, which they have never seen
before. Only then can the trained deep learning models be applied in real agricultural
environments. We can deploy the trained model to the mobile terminal, cloud, or edge
devices, such as by using an application on the mobile phone to take photos of plant leaves
and judge diseases [70]. In addition, in order to use the trained model better in the field,
the generalization ability of the model needs to be improved, and we can continuously
update the models with the new labeled datasets to improve the generalization ability [71].
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3. Problems and Solutions

Before 2015, no notable breakthrough was obtained in plant disease classification.
With the fast development of DL since 2015, DL has been widely used in plant disease
detection and classification and represents state-of-the-art technology in this field. For
plant leaf disease classification, CNN-based models are the most used. In this section, we
introduce and summarize the problems and solutions existing in the development of CNN-
based DL methods applied to plant disease detection and classification. The problems are
caused by extrinsic and intrinsic factors. Sections 3.1 and 3.2 discuss extrinsic factors, and
Sections 3.3 and 3.4 describe intrinsic factors.

3.1. Insufficient Datasets

The most important problem of CNN-based DL’s application of plant disease classifi-
cation is insufficient datasets in size and diversity. All the other introduced problems are
also partially due to this condition.

Mohanty et al. tested the classic network models AlexNet and GoogLeNet with a
public database of 54,306 images collected under controlled conditions to identify 14 crop
species and 26 diseases. They obtained a top accuracy of 99.35%, which demonstrates the
feasibility of this method. However, the accuracy of the model was greatly reduced when
it was tested on a set of images taken under conditions different from the images used for
training because of the insufficient diversity of the training set. In addition, plant disease
identification in this experiment was realized under ideal conditions, such as single leaves,
facing up, in a homogeneous background; thus, the accuracy rate would be much lower in
practical applications [53]. Fuentes et al. aimed to introduce a robust DL-based detector for
real-time tomato disease and pest recognition. All images of plant diseases and pests were
taken in-place, including background variations, different illumination conditions, and
multiple sizes of objects. The precision would be lower in practical application due to the
insufficient number of samples [72]. Sufficient datasets have an important influence on the
practical application. However, collecting data is easily affected by environmental factors,
such as season and climate, and image labeling is also a time-consuming and laborious
task. These factors make producing an effective dataset extremely difficult. Currently, five
ways, namely, transfer learning, data augmentation techniques, few-shot learning, citizen
science, and data sharing, can be used to resolve dataset problems.

Transfer learning is a machine learning technique, where the attained capability from
the previous task is transferred to later tasks [36]. Only a few layers of pretrained networks
are retrained with the new databases, which is good for reducing the need for masses of
datasets [73]. Mukti et al. utilized a transfer learning model based on ResNet50 to recognize
plant diseases. Their dataset contains 87,867 images. A total of 80% of the dataset was used
for training and 20% for validating. The highest accuracy they attained was 99.80% [1].
Coulibaly et al. proposed an approach using transfer learning to recognize mildew diseases
in pearl millet. This approach was based on a classical CNN model VGG16 and pretrained
on public dataset ImageNet. The experiment resulted in a satisfactory performance with
an accuracy of 95% and a recall of 94.5% [74]. Abdalla et al. used three transfer learning
methods for semantic segmentation of oilseed rape images; the experiment resulted in an
accuracy of 96% and demonstrated that transfer learning gained high performance in this
segmentation task [75]. Chen et al. proposed a DL architecture named INC-VGGN, which
utilized the transfer learning by modifying the pretrained VGGNet for the identification
task of plant leaf diseases. The proposed model achieved an accuracy of 91.83% on the
public dataset PlantVillage and 92.00% on their own dataset [60]. Table 3 summarizes some
studies that used transfer learning technology for classification or detection tasks.
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Table 3. Studies on transfer learning technology applied to the identification task.

Pretrained Model Dataset Number of Class Best Accuracy Reference

ResNet50 PlantVillage (extended) 38 99.80% Mukti and Biswas (2019) [1]
VGG16 Millet crop images (own) 7 95.00% Coulibaly et al. (2019) [74]
VGG16 Plant images (own) 93.00% Abdalla et al. (2019) [75]

VGGNet ImageNet 9 91.83% Chen et al. (2020) [60]
ResNet-101 NBAIR (extended) 40 95.02% Thenmozhi et al. (2019) [76]

AlexNet ImageNet (partial) 2 98.00% Suh et al. (2018) [77]

The data augmentation technologies can efficiently increase the number of datasets.
We show some traditional image data augmentation methods, such as rotation, mirror sym-
metry, and adjusting saturation in Figure 6. We have learned some newest augmentation
technologies: AugMix [78], population-based augmentation [79], Fast AutoAugment [80],
RandAugment [81], and CutMix [82].
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Liu et al. used data augmentation technologies to solve the problem of insufficient
apple pathological images for the identification of four apple leaf diseases. The researchers
used direction disturbance (rotation transformation and mirror symmetry), light distur-
bance, and principal component analysis jittering to disturb natural images. With the
application of these image processing technologies, the dataset expanded from 1053 images
to 13,689 images, and the accuracy with the expanded database improved 10.83% over that
in the nonexpanded database [83]. The researchers in [58] used three augmentation meth-
ods (noise addition, color jittering, and radial blur) to increase the number of databases.
Douarre et al. used a novel data augmentation strategy, namely, plant canopy simulation, to
generate new annotated data for the segmentation task of plant disease. The results showed
that simulated data had increasing segmentation performance [84]. Table 4 summarizes
some studies on using data augmentation technologies to expand the dataset.

Another method is few-shot learning (FSL), which needs small training sets but with
a small drop in accuracy. Argüeso et al. [85] introduced FSL algorithms for plant disease
classification to address the problem of requiring large annotative image datasets for DL
methods. They split the 54,303 images of the PlantVillage dataset into a source and a
target domain. First, they used the fine-tuning Inception V3 network in the source domain
to learn general plant leaf characteristics. Then, these characteristics were transferred to
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the target domain to learn new leaf types from few images. For the FSL method, the DL
Siamese network with Triplet loss was utilized. The results demonstrated that dataset size
could be reduced by 89.1% with only a 4% loss in accuracy, that is, this method is good for
small training sets.

The concept of citizen science was proposed in 1995. In this method, nonprofessional
volunteers collect and/or process data as part of a scientific inquiry. In the case of plant
disease and pest classification, farmers and field workers upload the collected images to a
server; then, those images would be properly labeled and processed by an expert [86]. This
idea has been applied in practice. PEAT (a company in Berlin) has built an Android APP
called Plantix that supports farmers with small networks.

Another method for expanding datasets is data sharing. Now, many studies focus
on automatic disease classification around the world. If the various datasets are shared
and properly integrated, then the database will be more representative. This condition will
promote more meaningful and satisfactory research results.

Table 4. Studies on using data augmentation technologies to expand the dataset.

Expanded Dataset Methods Best Accuracy Reference

From 1053 to 13,689 images
Direction disturbance and light
disturbance and PCA (Principal
components analysis) jittering

97.62% Bin et al. (2017) [83]

From 10,820 to 32,460 images Noise addition, color jittering, and
radial blur 96.17% (improved 3.15%) Lin et al. (2018) [58]

From 54,309 to 87,848 images Cropping, resizing 99.53% Ferentinos (2018) [11]
From 1567 to 46,409 images Segmentation, resizing 94.00% (improved 12%) Arnal Barbedo (2019) [86]
From 5000 to 43,398 images Resizing, crop, rotation, noise... 85.98% Fuente et al. (2017) [72]

From 4483 to 33,469 images Affine transformation, perspective
transformation, and rotation 96.30% Srdjan et al. (2016) [87]

3.2. Nonideal Robustness

In classic DL problems, we often assume that the training and test sets have the same
distribution. Usually, we train the model on the training set and test the model on the
test set. However, the test scenario is often uncontrollable in actual application. The
distribution of the test set is really different from the training set due to various factors,
such as the influence of season and climate. Under the circumstances, the overfitting
problem appears, that is, the trained model does not work well in practical application.
This nonideal robustness problem was confirmed by Mohanty et al. [53], who trained and
tested deep CNN (DCNN) models with the PlantVillage dataset; the top accuracy they
obtained was 99.35%. However, when the DCNN models were tested on a set of images
taken under conditions that were different from the training set, the accuracy dropped to
31% [53]. Similarly, Ferentinos used CNN models (i.e., AlexNet, GoogLeNet, and VGG) to
detect and recognize plant diseases with a public dataset PlantVillage. When the model
was trained and tested with PlantVillage, the best success was 99.53% with the VGG model.
However, when they trained the VGG model with laboratory images and tested it with
field images, the success rate was only up to 33.27% [11].

Three ways can be used to improve the robustness of CNN models. Compressed
models that have a simpler set of parameters show more robustness and less overfit-
ting. However, compressed models achieve poor performance in dealing with complex
recognition. Unsupervised-based DL methods are also good at achieving more robust
performances. Compared with the overall performance of supervised DL models, that
of unsupervised models often drops largely. Another method is multicondition training
(MCT). Yuwana et al. proposed MCT to train more robust DCNNs. They investigated
two types of distortion: blurring and rotations. They evaluated the model on a tea disease
dataset with 5632 images. The results showed that MCT improved the robustness of DCNN
to some extent [59]. Still, another method is persistently enriching the diversity of datasets,
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for example through using different geographical locations and cultivation conditions. It is
not a simple task, and social work and cooperation are particularly important.

3.3. Symptom Variations

When detecting plant diseases, we usually assume that the symptoms of the disease
will not change. The symptoms of plant diseases are the results of the interaction of
diseases, plants, and the environment [88]. Changes in any one of the three may lead to
changes in disease symptoms, as discussed below.

In general, plant disease has the following three variations: (1) at different devel-
opment stages of the disease, the symptoms shown may be different [73,88]; (2) in the
same period, multiple diseases may be observed on the same plant leaves. If multiple
diseases are clustered together, then the symptoms may change drastically, which brings
difficulty in identifying the types of diseases [88]; (3) similar symptoms may appear among
different diseases, which increases the difficulty of disease classification. Meanwhile, the
age [89], genotype [90], and healthy tissue color variation (and consequent contrast alter-
ations) [88,91] of the plant itself may cause difficulty in recognizing plant diseases. Other
factors, such as temperature, humidity, wind, soil condition, and sunlight, may also alter
the symptoms of a specific disease.

The interaction of diseases, plants, and the environment may lead to all kinds of
symptom variations, which bring great challenges to image capture and annotation. Two
methods can be used to solve this problem:

1. collecting images of specific diseases that contain the entire range of variation [88]; and
2. gradually enriching the diversity of the database in practical applications [73].

The first method is unrealistic because collecting images of the entire range of variation
is a very labor-intensive and financially demanding task, and whether researchers have
collected variations completely is unclear. The other method is much more realistic, and
this method is currently extensively used by researchers to effectively increase the diversity
of data.

3.4. Image Background

The influence of the picture background on the final classification is unclear. Two
situations should be considered. One is that a regularization process is used when collecting
images, which generates relatively homogeneous backgrounds. In this case, the background
is usually retained. It will not reduce the classification effect and may also improve
the classification accuracy. Mohanty et al. used three different versions of the whole
PlantVillage dataset (color, grayscaled, and segmented) to identify plant diseases and
assess the influence of image background on classification results. The results showed that
the performance of the DCNN model using colored images was slightly higher than that of
the model using the segmented version of the images [53]. The other situation occurs when
images are collected in real-time conditions with a busy background, and some features
of the background are similar to the region of interest. Under these circumstances, leaf
segmentation technology is needed. Otherwise, the model will also learn the features of
the background during training, which will lead to erroneous classification results.

In general, there are five methods that can be used for leaf segmentation. The threshold
segmentation technique, which segments the foreground by setting a specific threshold,
has a serious disadvantage. Usually, the same threshold is used for all pixels, which may
produce incorrect holes or even divide the object into several pieces. This disadvantage will
lead to the subsequent process, such as image classification, being harmed [92]. Meanwhile,
obtaining a reasonable threshold, which is usually selected by manual work, is difficult. K-
means clustering is automatic and works well in most circumstances but is time consuming
and unsuitable for high-speed scenes [93]. Otsu, which is an effective and adaptive
thresholding method, has been widely used for image segmentation [94]. Although the
Otsu method works well with regard to time consumption and is threshold adaptive, it
will not produce an appropriate threshold when the gray-level histogram approximates
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a unimodal distribution [95]. One more method is DL FCN. FCN is trained pixel to
pixel on semantic segmentation to achieve the pixel-level classification of images. If we
ignore time and memory limitations, then the FCN method can segment images of any
size but has some drawbacks, such as inadequately considering the relationship between
pixels [96]. The final segmentation method is watershed segmentation, which is an effective
segmentation method. The main drawback of this algorithm is the over-segmentation;
three optimized watershed algorithms, namely, hierarchical watershed segmentation, post-
merging watershed segmentation, and marker-based watershed segmentation [89], have
been proposed to solve this problem. No single segmentation method is suitable for all
problems. The combined use of different methods would be a good choice. Gao and
Lin proposed a fully automatic segmentation method for medicinal plant leaf images in
a complex background. First, they used a vein enhancement and extraction operation
to obtain an accurate foreground marker image. Then, the marker-controlled watershed
method was used to realize image segmentation. The results of the test experiment showed
that the proposed method was better than many other automatic image segmentation
methods, such as DL FCV [96].

4. Discussion

Table 5 provides and explains all the necessary information to help readers choose
one or more criteria and compare different DL models at a glance. As shown in Table 5,
most authors use similar network architectures and thus attain similar experiment results.
Accordingly, new tests with more challenging datasets and new leaner DL architectures
should be implemented; otherwise, much repetition work will appear.

Table 5. Studies on different CNN methods applied to plant leaf disease identification.

No. Reference Task Dataset Method Accuracy Pros and Cons

1 Mohanty et al.
(2016) [53]

Identify 14 crop species
and 26 diseases

54,306 images
from PlantVillage AlexNet, GoogLeNet 99.35% Not good for

practical application

2 Fuentes et al.
(2017) [72]

Detect diseases and pests
in tomato plants using

images captured in-place
by camera devices

5000 images
taken under

different
conditions

and scenarios

VGGNet and
Residual

Network (ResNet)

83%
(mean)

Lacking number of samples, the
precision would be lower in

practical application

3 Chen et al.
(2020) [60]

Identify rice and maize
leaf diseases

500 images of rice
and 466 images

of maize
VGGNet, Inception 92%

Future works will focus on
deploying the module on mobile
devices and applying it to more

real-world applications

4 Bin et al.
(2017) [83]

Identify four common
types of apple leaf

diseases (mosaic, rust,
brown spot, and Alternaria

leaf spot)

13,689 images of
diseased

apple leaves

A novel architecture
based on AlexNet,

image
generation technique

97.62%

The image generation technique
proposed in this paper can

enhance the robustness of the
convolutional neural

network model

5 Brahimi et al.
(2017) [67]

Classify nine diseases of
tomato leaves 14,828 images AlexNet, GoogLeNet 99.18% Lacking number of samples

6 Mishra et al.
(2020) [55]

Recognize two corn leaf
disease (rust, northern

leaf blight)

Some of
PlantVillage

dataset and some
real-time images

DCNN (Deep
Convolutional Neural

Network)
88.46%

Only two corn diseases are
identified and classified, and the

dataset is not enough.

7 Darwish et al.
(2019) [56]

Diagnose three maize
plant diseases

15,408 images
from Kaggle VGG16&19 98.2% The diversity of dataset is

not enough

8 Ferentinos
(2018) [11]

Plant disease detection
and diagnosis

87,848 images
(PlantVillage)

AlexNetOWTBn,
VGG

99.53%
(best)

Obtaining significantly high
success rate

9 Yuwana et al.
(2019) [59]

Train more robust deep
convolutional

neural networks
5632 images of tea

Multicondition
training (MCT),

AlexNet, GoogLeNet
None-

Only two segmentation methods
(blur with kernel size of 5 and

rotation of 40◦) were used
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As for the unique challenge, insufficient datasets or tedious labeling work, besides the
methods discussed in Section 3.1, unsupervised and semi-supervised model methods may
be a good choice. In the unsupervised models, such as generative adversarial networks
(GANs) [97] and variational autoencoders (VAEs) [98], only normal samples are used
for training, which solves the problem of difficulty in obtaining disease datasets. The
existing few-shot classification studies are mainly based on supervised learning schemes,
ignoring the helpful information of unlabeled samples [99]. However, the semi-supervised
algorithms use both a few annotated samples and many unannotated samples to train a
model and can use unlabeled samples to solve the difficulty of network training in the case
of a few labeled samples. Therefore, the use of unsupervised and semi-supervised model
methods may be a good research direction in the future.

As for the network design, the models proposed between 2017 and 2021 are slightly
different from the earlier ones. They are specially focused on reducing the number of
networks parameters [94], designing the networks to be trained with a small database [88],
and designing the networks to be trained with field images [100]. Undoubtedly, the trend
of designing computationally efficient classification networks will continue to develop in
the future [101].

Today, the quick development of intelligent devices, such as smartphones, personal
computers, fixed cameras, and UAV, is making image classification projects more conve-
nient and intelligent. He et al. proposed a scheme based on the combination of android
clients and servers, which are ubiquitous in our daily lives. The scheme consists of two
parts: (1) mobile phone client, through which users can upload the collected images to the
server; (2) server-side program, which processes the images and returns the classification
results to the user. Meanwhile, the server also needs to store the relevant results in the
database to facilitate the query of users [102]. Turui (Beijing, China) Information Technol-
ogy Co., LTD. (https://www.mapsharp.com/wzsy, accessed on 22 July 2021) developed
the “Insect Prophet” pest monitoring product. Using the cloud platform, it can easily
realize the functions of taking photos to identity pests and counting insects. With the
quick development of intelligent devices, the application of deep learning in daily life will
become more and more extensive. However, agricultural areas are sometimes far from
well-connected regions. Under this circumstance, edge devices and mobile clients, which
do not need to send data to the server and can be deployed offline, could be great measures.

Meanwhile, some research shows [103,104] that the electrical signal response pro-
duced within plants can be used for real-time detection of plant diseases. Plants perceive
the environment by generating electrical signals that essentially represent changes in un-
derlying physiological processes [105]. Under the influence of stress (such as disease), the
metabolic activities of various cells and tissues of plants are unstable, which is bound to
be reflected in physiological electrical properties. Therefore, the extraction of meaningful
features from the generating electrical signals (such as the varying capacitance, conduc-
tivity, impedance) and the use of such extracted features [106] would be a good research
direction for the classification of plant diseases. For example, Najdenovska et al. used plant
electrophysiological signals recorded from 12 tomato plants contaminated with spider
mites for an automated classification of the plant’s abnormal state caused by spider mites,
and this study got an accuracy of 80% [104].

5. Conclusions

DL methods have gained widespread application in plant disease detection and
classification. It has solved or partially solved the problems of traditional machine learning
methods. DL, which is a branch of machine learning, is mainly used for image classification,
target detection, and image segmentation. In this paper, we reviewed the latest CNN
networks pertinent to plant leaf disease classification. We introduce the process of CNN
methods applied to plant disease classification and summarize DL principles involved
in plant disease classification. We also summarize some problems and corresponding
solutions of DL used for plant disease classification with extrinsic and intrinsic factors as

https://www.mapsharp.com/wzsy
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listed below: (1) insufficient datasets: transfer learning, data augmentation techniques,
citizen science, and data sharing; (2) no-ideal robustness: compressed model, unsupervised
DL model, and multicondition training; (3) symptom variations: collecting an entire
range of variation and gradually enriching the diversity of dataset; (4) image background:
threshold segmentation technique, K-means clustering, Otsu, DL FCN, and watershed
segmentation. Furthermore, we discussed the future development direction in plant disease
classification, for example, plant electrophysiology and the combination of the mobile
phone client and the server-side program would be good future research directions [106].
Such a combination is good for the practice and real-time application of DL methods in
plant disease classification.
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