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Abstract: The causal basis for many of the relationships in models used to estimate the indirect
effects of U.S. biofuels on global agricultural markets has not been adequately established. This paper
addresses this gap by examining causal interactions among corn market variables through which the
indirect effects of U.S. corn use for ethanol would be transmitted. Specifically, structural break and
causal analyses of U.S. corn supply, uses, trade, and price are performed using quarterly data for
marketing years 1986 to 2017. The structural break analysis identifies three breaks in corn use for
ethanol that reflect the policy-driven evolution of U.S. corn ethanol production and other market
factors. The causality analysis finds that U.S. corn use for ethanol is not a driver of the corn price
and net corn exports. Changes in corn supply and domestic corn use are found to be the key factors
in accommodating the large increase in corn use for ethanol between 2003 and 2010. These results
mean that common assumptions linking U.S. corn ethanol production to large reductions in corn
availability and exports, and higher global corn prices merit reconsideration.

Keywords: biofuels; corn ethanol; indirect land use effects; causality; structural breaks

1. Introduction

As the world’s largest producer and exporter of corn, the potential agricultural market
impacts of U.S. conventional biofuels, particularly corn ethanol, continue to be the subject
of intense debate. The debate resulted from early appraisals suggesting that U.S. biofuel
mandates would lead to diversion of corn from export markets to domestic ethanol pro-
duction, which in turn would lead to large increases in global food prices and increase
deforestation in other countries [1]. Several review studies have summarized the ensuing
literature on the impacts of biofuels on food prices [2–5] and land use [6,7]. The more recent
studies find that changes in global agricultural markets over the last two decades were
driven by many factors and that biofuels played a smaller role than initially anticipated.
Yet, debate about the global agricultural market effects of biofuel mandates persists [8], em-
phasizing the need for continuous improvements in our understanding of the underlying
drivers of these potential effects.

A hallmark of the potential global effects of a country’s biofuel production is that they
are not directly observable. For example, the effects of biofuels on food prices and global
land use (known as indirect land-use change or ILUC) would be primarily transmitted
through adjustments in agricultural trade prices and quantities. However, observed
changes in these variables are the outcomes of multiple interacting factors and should not
be used to estimate the indirect effects of biofuels without further analysis. Given this,
the indirect effects of biofuels are usually estimated by partitioning changes in relevant
observable variables into biofuel and non-biofuel components using a variety of economic
and bio-physical models. These estimates rest on the crucial assumption that modeled
relationships between observable variables and indirect effects of biofuels reflect causal
pathways [9].
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Although the need for causal justification of the indirect effects of biofuels has been
recognized, most of the existing causal analyses focus on interactions among biofuel prices,
agricultural prices, oil prices and other commodity prices [10–25]. These studies have
generally found a strong causal relationship running from crude oil prices to agricultural
prices but a tenuous or non-existing causal relationship in the other direction [10,13,16].
Studies have also found a causal relationship running from agricultural prices to bio-
fuel prices but little evidence of a causal relationship from biofuel prices to agricultural
prices [21]. These insights are useful in discussions of price interactions among biofuel,
agricultural and other energy markets but the causal basis of other types of indirect effects
has not been fully established. Indeed, a recent analysis of global cropland expansion [26]
concluded that assumptions used to represent land use change in models are yet to be
systematically tested.

This paper extends the developing causal analysis literature on biofuels by examining
the relationship between corn use for ethanol in the U.S. and the primary channels through
which its potential indirect effects would be transmitted to global agricultural markets.
As noted previously, these primary channels are changes in U.S. net exports of corn and
corn prices. Thus, this study tests the hypotheses that U.S. corn use for ethanol is causal
for U.S. corn exports and global corn prices. Rejection of the first hypothesis would mean
that calculations of ILUC effects based on the need to replace corn exports displaced by
U.S. biofuels would need to be re-examined. Similar interpretations would follow from
a rejection of the hypothesis on the causal relationship between corn use for ethanol and
global corn prices. In addition to evaluating the causal relationships among U.S. corn use
for ethanol, corn exports and corn prices, further insights can be gained from examining
their interactions with U.S. corn supply, and other corn uses.

The rest of the paper is organized as follows. Section 2 discusses the data and describes
the methods employed in the paper. Section 3 presents the results of unit root tests,
structural break tests and the causal analysis, and Section 4 discusses the latter two sets of
results in more detail. The paper ends with conclusions.

2. Materials and Methods

The causal analysis in this paper is based primarily on the Granger-causality frame-
work [27]. This is the most common approach in the economic analysis of causality which
also has been applied in other areas [28]. Applications of this approach to prices in the
biofuel literature are facilitated by availability of relatively detailed, high frequency (daily,
weekly or monthly) price data. Most of the data available for quantity measures, such as
corn production and exports, are annual or quarterly and are updated less frequently than
prices. This paper uses quarterly marketing year (MY) data on corn supply, domestic corn
use for ethanol fuel and other purposes (feed, seed and residual), net corn exports and
corn price. The U.S. MY for corn begins in September (i.e., Q1 = September to November;
Q2 = December to February; Q3 = March to May; Q4 = June to August). For example, MY
2016:Q4 corresponds to the summer of 2017, while MY 2017:Q1 refers to the fall harvest
season, September–November 2017. The data are collected in marketing year (MY) quarters
by the USDA and cannot be easily converted to calendar years (CY).
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2.1. Overview of Corn Market and Other Data

Data for the analysis in this paper come almost entirely from the United States Depart-
ment of Agriculture (USDA) Feed Grains Database which records statistics on four domestic
feed grains (corn, grain sorghum, barley and oats), foreign coarse grains (feed grains plus
rye, millet, and mixed grains), hay, and related items [29]. Available data include supply,
demand and prices, among other variables, but the frequency and period spanned by the
data (month, quarter or annual) vary across commodities. The data used for the analysis
in this paper spans the period from MY 1986:Q1 to MY 2017:Q1 for which complete data
for all variables are available; a total of 125 quarterly periods. In addition to corn market
variables, average crude oil prices, specifically the West Texas Intermediate (WTI) price,
were calculated for each MY quarter using data on monthly spot prices from the U.S.
Energy Information Administration [30]. The US corn market variables extracted from the
Feed Grains Database are shown in Figure 1, and described below:

• Production: Figure 1 shows that reported USDA corn production in the U.S. is the
annual fall harvest and occurs almost entirely in MY Q1 (September–November). The
harvesting season for a few U.S. states begins in late July or August but these states
are not major corn producers.

• Total Supply: Total corn supply is the sum of production, imports and beginning
stocks. The pattern of total supply in Figure 1 shows that corn stocks are replenished
in Q1 and used over all four quarters of the MY. Since U.S. corn imports are small,
total supply and beginning stocks are nearly the same in Q2 to Q4 of the MY.

• Price: Figure 1 shows quarterly prices reported by USDA for No 2 Yellow Corn which
is used in this paper to represent the pattern of global corn prices. The corn price
tends to be stable over each MY and was largely stable across years between 1988 and
2005, after which there were significant fluctuations.

• Domestic Corn Uses: Domestic uses of corn are divided into fuel and non-fuel cat-
egories in this paper. Fuel use is reported as a separate variable in the Feed Grains
Database and is the gross input of corn for ethanol production in the U.S.—about
one-third of this corn input into biofuel production are returned as Distiller’s Dry
Grains (DDGS), a high-protein livestock feed. Non-fuel corn use, which includes uses
for feed, seed, other industrial purposes and residuals, is calculated as the difference
between total domestic corn use and corn use for ethanol fuel. Figure 1 shows that
the pattern of total domestic corn use is similar to that of total supply. Corn use for
ethanol grew very slowly until the late 1990s when a gradual period of growth started,
followed by rapid increases between 2003 and 2010. There was a sizable decline in
other domestic corn use in MY 2003:Q4 and more persistent declines between MY
2005 and 2012, corresponding to the period of acceleration in corn use for ethanol
production in the U.S.

• Trade: Since U.S. corn imports are small relative to exports, Figure 1 shows U.S.
net exports of corn (quarterly U.S. corn imports are generally below 0.3 million
tons whereas quarterly exports are more than 12 million tons), showing substantial
variations across quarters and years. The large dip in net U.S. corn exports in MY 2012
corresponds to the severe drought period from 2011 to 2013.
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2.2. Methodology

The Granger-causality framework is based on the vector autoregression (VAR) model
and has been used to examine price interactions in the biofuel literature [21,31–33]. We use a
multivariate VAR to control for interdependence among corn market variables in evaluating
causality between any two of the variables. Although multivariate analysis introduces
potential non-linearity into the causal relationship between two given variables, an analysis
of direct causality between two variables in the multivariate framework produces valid
one-step ahead linear causality results. Implementation of the causality analysis in this
study is similar to other studies [34–36]. The augmented-VAR approach of Toda and
Yamamoto [37], henceforth referred to as TY in this paper, is used for the Granger causality
(GC) analysis. Residuals from the TY augmented-VAR equations are also used to perform
instantaneous causality (IC) analysis of the variables [38]. The TY augmented-VAR enables
valid causality tests with non-stationary data, as in this study, without the need to test for
cointegration among the variables. Since the TY Granger-causality test procedure does not
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distinguish between causal relationships due to short-run or long-run interactions among
variables, evidence on causal relationships represent the combined potential effects of both
types of interactions.

2.2.1. Unit Root and Structural Break Tests

Prior to conducting causality tests, it is important to understand the stationarity
properties of each variable in the analysis based on unit root tests. Stationarity is an
important assumption since it implies that the parameters of a given model or variable
remain constant so that it is applicable over time. Structural breaks are shifts in the mean,
variance or other properties of a variable [39] and can lead to Type II errors in the unit root
tests (reduced “ability to reject a false unit root null hypothesis”) [40]. The Augmented
Dicker Fuller (ADF) test is the most common unit root test but has low power in the
presence of structural breaks or small samples. The KPSS test has greater power than the
ADF test but tends to lead to more Type I errors (i.e., rejecting the null hypothesis too
often) [41]. The Zivot-Andrews test is robust to the presence of a single structural break of
unknown date in the data [42]. All three unit root tests are performed in this paper. There
are two additional reasons for a deeper investigation of the structural break properties
of the variables in this paper. First, structural breaks may identify important events that
shift the statistical properties of a variable. For example, dates of structural breaks in U.S.
corn use for ethanol may capture the transition from its pre-2000 slow growth to post-2000
rapid growth. Second, the presence of structural breaks can, as in the case of unit root tests,
lower the power of causality tests. Given this, the Bai and Perron method [43] is used in
this study to identify break-dates in the variables.

2.2.2. Causal Analysis Tests

The Granger-causality tests in this paper are based on the following vector autoregres-
sion (VAR) model:

xi,t = ai + µit +
q

∑
k=1

δi,kdtmk,t +
n

∑
j=1

p+d

∑
l=1

αi,j,kxj,t−l + ei,t ; ∀ i = 1..n (1)

where xi,t (i = 1...n) are the n variables included in the causal analysis for period t = 1 . . .
T, with lags l = 1 . . . (p + d); dtmk,t (k = 1 . . . q) are deterministic terms, including three
dummies for Q2 to Q4 of the MY and other exogenous variables; ei,t are residuals. The
model parameters ai, µi, δi,k and αi,j,k are to be estimated. Parameter p is the lag order of
the standard VAR model, determined in this study using the Akaike Criterion (AIC), while
parameter d is the TY lag augmentation which is equal to the maximum order of integration
of the variables in Equation (1) determined by the unit root tests in Section 2.2.1.

The causal model in Equation (1) includes only six of the eight variables considered in
this study, excluding beginning stocks and WTI oil price, because of the limited number
of data sample for the analysis. Beginning stocks was dropped since it is pre-determined
for each period and is closely related to total corn supply, which would lead to multi-
collinearity issues in the model. The WTI price variable was dropped since previous
studies have shown that agricultural markets are not causal drivers for the oil price.
However, beginning stocks, WTI price and nominal U.S. gross domestic product (nominal
GDP) are included as exogenous deterministic variables in Equation (1) to control for
their role in driving corn market variables. All variables are in logarithm for the causality
tests. Granger-causality tests are performed by testing zero restrictions on coefficients of
Equation (1) using the Wald statistic [38]. The null and alternative hypothesis for testing
the causal influence of xj,t on xi,t is:

H0 : θi,j = 0 ; H1 : θi,j 6= 0 (2)

where θi,j is the column vector (αi,j,1, αi,j,2, . . . , αi,j,p). The Wald statistic has a chi-squared
distribution with p degrees of freedom. The last p + 1 . . . p + d lag coefficients are unre-
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stricted under the TY approach to ensure validity of the statistic. Instantaneous causality
between xj,t and xi,t is based on tests of the TY augmented-VAR residuals using the cor-
responding Wald statistic [38]. Although these tests are performed using a multivariate
VAR model the causality tests are bivariate and does not account for indirect causality from
other variables. As previously discussed, this means that the results represent one-step
ahead or next period causality.

The TY procedure may reject the null hypothesis too often (Type I error) [34], and
small samples can lead to low power (Type II error) of the causality tests. Wild bootstrap
simulations are used in this paper to address potential Type I and II errors. Specifically,
wild bootstrap simulations are used to calculate critical values for each set of parameters
tested, accounting for potential non-normality, autocorrelation and heteroscedasticity in
the residuals [44].

3. Results
3.1. Unit Root and Structural Break Test Results

Table 1 shows that nearly all variables have a unit root in levels under the ADF and
KPSS tests, particularly when no intercept term is included in the regression. The Zivot-
Andrew test shows that the two price variables, as well as corn use for ethanol have a unit
root even after accounting for a structural break. In contrast, none of the variables, except
for corn ethanol under the KPSS test, has a unit root in first differences. These results imply
that most of the variables can be considered non-stationary and integrated of order 1 or
I(1). Figure 2 shows that there are structural break-dates in the variables, except beginning
stocks, net corn exports and other domestic corn use. The most notable observation is that
there are three break-dates in corn use for ethanol, which occur in MY 2002:Q1, MY 2007:Q1
and MY 2012:Q1. There are two break-dates in total domestic corn use (MY 1996:Q4 and
MY 2006:Q4) and WTI oil price (MY 1999:Q4 and MY 2004:Q4), and one break-date in total
corn supply (MY 2003:Q4) and corn price (MY 2006:Q4).

Table 1. Unit root test results for U.S. MY quarterly data (* indicates unit root at 5% level).

ADF Test KPSS Test Zivot-Andrew Test

Variables None Drift Trend Drift Trend Drift Trend Both

Beginning Stocks Level −3.36 −12.36 −12.86 0.34 0.13 −15.64 −15.89 −15.81
1st Diff. −15.11 −15.04 −14.98 0.01 0.01 −15.27 −15.27 −15.38

Total Supply Level −2.35 −10.89 −13.28 1.11 * 0.14 −15.47 −15.75 −15.68
1st Diff. −14.97 −14.91 −14.86 0.03 0.01 −14.88 −14.88 −14.97

Price (No2 Y Gulf) Level −0.66 * −2.29 * −2.94 * 3.35 * 0.50 * −4.32 * −3.29 * −5.93
1st Diff. −11.55 −11.51 −11.47 0.04 0.04 −12.29 −11.81 −12.28

Net Corn Exports Level −0.98 * −5.41 −5.40 0.11 0.10 −5.78 −5.46 −6.49
1st Diff. −10.65 −10.60 −10.56 0.03 0.01 −10.77 −10.67 −11.24

Corn for Ethanol Fuel Level 2.71 * 1.04 * −1.55 * 5.50 * 1.35 * −4.62 * −2.23 * −2.75 *
1st Diff. −4.63 −5.23 −5.50 0.81 * 0.21 * −6.73 −6.08 −6.68

Other Domestic Uses Level −1.58 * −12.49 −13.17 0.47 * 0.19 * −16.19 −15.42 −16.27
1st Diff. −14.55 −14.49 −14.43 0.01 0.01 −14.43 −14.43 −14.50

Total Domestic Use Level −0.86 * −4.72 −14.27 4.72 * 0.13 −15.99 −15.61 −15.96
1st Diff. −14.54 −14.50 −14.44 0.02 0.01 −14.44 −14.44 −14.50

WTI Crude Price Level −0.89 * −2.05 * −3.22 * 4.58 * 0.51 * −4.98 −4.21 * −4.68 *
1st Diff. −11.44 −11.41 −11.38 0.04 0.04 −12.03 −11.66 −13.09

Critical Values 1% −2.58 −3.46 −3.99 0.74 0.22 −5.34 −4.93 −5.57
5% −1.95 −2.88 −3.43 0.46 0.15 −4.80 −4.42 −5.08
10% −1.62 −2.57 −3.13 0.35 0.12 −4.58 −4.11 −4.82
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3.2. Causality Test Results

Given the structural break test results, four structural break variables are included
among the deterministic terms in Equation (1) using the flexible Fourier approach [45].
Table 2 presents the Granger-causality (GC) and Instantaneous-causality (IC) test results.
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The coefficients in Table 2 are estimated with the actual data, using the unrestricted form of
Equation (1) with seven lags of each variable. The GC coefficients in Table 2 are averages
of the lag coefficients, whereas the IC coefficients are Pearson correlation coefficients of
residuals. Although the variables are in logarithms, so that the coefficients are in the form
of “causal impact elasticities”, these are not elasticities in the usual sense. In addition, the
IC estimates are correlation coefficients, which are related, but different, from regression
coefficients. As previously discussed, significance of the GC and IC coefficients are based
on bootstrapped critical values and the causality results are applicable in the one-step
ahead or next period sense.

Table 2. Granger and instantaneous causality test results (Significance: *** = 1%, ** = 5%, * = 10%).

Impact Driver Granger Instantaneous

Corn for Ethanol Net Exports −0.02 0.04
No2Y Corn Gulf Price −0.05 * −0.01

Other Dom. Uses −0.24 * 0.28 **
Total Dom. Uses −0.02 0.41 ***

Total Supply 0.04 0.23 *

Net Exports Corn for Ethanol 0.11 0.04
No2Y Corn Gulf Price −0.12 −0.35 ***

Other Dom. Uses 0.47 ** 0.34 ***
Total Dom. Uses −1.09 ** 0.37 ***

Total Supply 0.09 0.22 **

No2Y Corn Gulf Price Corn for Ethanol −0.08 −0.01
Net Exports 0.03 −0.35 ***

Other Dom. Uses 0.22 −0.25 ***
Total Dom. Uses 0.13 −0.37 ***

Total Supply −0.24 * −0.17 *

Other Dom. Uses Corn for Ethanol −0.04 ** 0.28 **
Net Exports 0.00 0.34 ***

No2Y Corn Gulf Price 0.02 * −0.25 ***
Total Dom. Uses 0.08 0.91 ***

Total Supply 0.28 ** 0.49 ***

Total Dom. Uses Corn for Ethanol −0.03 ** 0.41 ***
Net Exports 0.00 0.37 ***

No2Y Corn Gulf Price 0.00 −0.37 ***
Other Dom. Uses −0.39 ** 0.91 ***

Total Supply 0.21 * 0.60 ***

Total Supply Corn for Ethanol 0.02 *** 0.23 *
Net Exports −0.01 ** 0.22 **

No2Y Corn Gulf Price 0.03 −0.17 *
Other Dom. Uses −0.38 * 0.49 ***
Total Dom. Uses −0.06 *** 0.60 ***

Note: The Granger coefficients are averages of the p-lag (p = 7) coefficients for each causal driver, and the IC
coefficients are Pearson correlation coefficients. Significance levels are based on bootstrapped critical values and
the causality results are applicable in the one-step ahead or next period sense.

Table 2 shows that the corn price and other domestic corn use have significant, negative
GC impacts on corn use for ethanol. Corn use for ethanol has significant, negative GC
impacts on other domestic corn use and total domestic corn use, as well as a positive impact
on total corn supply. There are also significant IC interactions of corn use for ethanol with
other domestic corn use, total domestic corn use and total corn supply which are all positive.
The only significant GC impact on the corn price is from total corn supply and is negative.
The corn price has significant negative GC impacts on corn use for ethanol, as previously
highlighted, and a positive GC impact on other domestic corn use. IC interactions of the
corn price with other variables are significant and negative for corn use for ethanol, other
domestic corn use, total domestic corn use and total corn supply.
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Other domestic corn use and total domestic corn use have significant GC impacts on
net corn exports, which are positive and negative, respectively, whereas net corn export
has a significant, negative GC impact on only total corn supply. IC interactions of net corn
exports with other domestic corn use, total domestic corn use, and total corn supply are
significant and positive, but negative with the corn price. Total corn supply has significant
positive GC impacts on other domestic corn use and total domestic corn use but negative
GC impact on the corn price. Similarly, IC interactions of total corn supply with other
domestic corn use and total domestic corn use are positive, but negative with the corn
price. The GC impact of other domestic corn use on total domestic corn use is significant
and negative, whereas their IC interaction is significant and positive.

4. Discussion
4.1. Structural Breaks

All eight variables examined in this paper, except beginning stocks and other domestic
corn use, contain at least one structural break in the mean during the MY 1986 to MY
2017 period. The three breaks in corn use for ethanol are in MY 2002, 2007 and 2012.
The break-date in the fall of 2002 (MY 2002:Q1) precedes the 2005 RFS1 legislation but
falls within the period of public discussions and planning leading up to its enactment. A
Blue Ribbon advisory panel of the U.S. Environmental Protection Agency (EPA) called for
reductions in MTBE use in 1999 due to its contamination of drinking water [46]. MTBE
(methyl tertiary-butyl ether) is a flammable, colorless liquid that dissolves easily in water.
It is part of a group of chemicals known as fuel oxygenates that are added to increase
gasoline’s oxygen content. California led the way with legislation to eliminate MTBE as an
oxygenate in gasoline supplies by December 2002 [47]. In addition, a proposal to eliminate
MTBE from all U.S. gasoline was introduced but not passed by the U.S. Senate in 2001 [48].
In response to state bans and potential liability concerns, large fuel producers, such as BP
and Exxon, announced plans to eliminate MTBE from their gasoline production by early
2003. Consequently, U.S. ethanol production grew by 21% in 2002 marking a period of
double-digit annual growth that lasted until 2010. Thus, the MY 2002:Q1 break in corn use
for ethanol identified in this study marks the shift to ethanol initiated by state-level laws
on MTBE that by 2005 included more than 20 states [46,47].

The MY 2007:Q1 break in corn use for ethanol occurs in the fall following EPA’s
final rule for implementing the RFS1 in April 2007, and just precedes enactment of the
RFS2 in December 2007. However, December 2007 was also the official start of the Great
Recession of 2008/2009; judged as the second worst in U.S. economic history next to the
Great Depression of the 1930s. The data show that corn use for ethanol dipped slightly in
MY 2008:Q1, likely because of the recession. The last break-date in corn use for ethanol
in MY 2012:Q1 is associated with a sizable dip in corn use for ethanol during the severe
drought of 2012. This has been described as the worst U.S. drought to hit the U.S. farm belt
since the 1950s [49]. The drought began in 2011 and was most severe in 2012, leading to
idled ethanol plants and operations below capacity that impacted U.S. ethanol production
trends through 2013 [50].

There are two break-dates in total domestic corn use (MY 1996:Q4 and MY 2006:Q4)
and one for total corn supply (MY2003:Q4) in Figure 2. The initial break in domestic corn
use occurs as a steep decline in corn prices began in MY 1996:Q4 from nearly USD 200/ton
to a low of about USD 75/ton in MY 2000:Q4. The second break in total domestic corn use
(MY 2006:Q4) occurs simultaneously with a break in the corn price and precedes by one
quarter the break in corn use for ethanol, discussed above, following EPA’s publication
of regulations for the RFS2. The MY 2003:Q4 break-date for total corn supply follows the
MY 2002:Q1 break in corn use for ethanol and aligns with the rapid expansion of U.S.
production to complete the transition from MTBE. The upward shift in total corn supply
during this period, visible in Figure 1, is a reasonable response to the increasing corn
demand for ethanol production.
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Structural breaks also occur in world oil price in MY 1999:Q4 and MY 2004:Q4. These
periods align with increases in the oil price. Strong global economic growth during the
period from 2003 to 2007 was accompanied by a steady increase in most commodity prices,
including oil. Although oil prices started a rapid climb in 2004, corn prices did not break
upward until 2006. The single structural break in corn price occurs in the summer of 2007,
just preceding the enactment of RFS2.

4.2. Causality

Results show that the corn price has a negative GC impact on corn use for ethanol,
but GC impacts in the other direction and IC interactions between the two variables are
not significant. In other words, corn ethanol production declines in response to high corn
prices, but high corn use for ethanol does not lead to corn price increases. Given these
results, corn prices appear to play only a small role in the large increases in corn use for
ethanol over the last two decades. However, other domestic corn use has a negative GC
impact on corn use for ethanol, indicating that increases (decreases) in other corn uses
in previous periods corresponds to lower (higher) corn use for ethanol production in the
current period. GC impacts in the other direction, that is of corn use for ethanol production
on other domestic corn use, is also significant and negative but is about one order of
magnitude smaller. Thus, other domestic corn use is the dominant driver in the lagging
relationship with corn use for ethanol. The significant, positive IC results mean that corn
use for ethanol, other domestic corn use, and total domestic corn use increase or decrease
simultaneously.

Corn use for ethanol also has a positive GC impact on total corn supply, which means
that increases in U.S. corn supply over the last two decades were driven in part by corn
demand for ethanol production. This is an important finding. Since the shares of biofuels
in U.S. petroleum fuels are determined on an annual basis, this finding likely reflects
the fact that quarterly variations in corn use for ethanol demand are small as shown in
Figure 1. As a result, past quarterly corn use for ethanol is a good predictor of demand,
and thus a determinant of total corn supply, in the current quarter. In addition to the GC
effects discussed above, IC between corn use for ethanol and total corn supply is also
positive, meaning that the two variables also tend to increase or decrease together in the
current quarter. These findings follow from the fact that policies to replace MTBE and
to develop a Renewable Fuel Standard provide advance notice to markets and impose
limited quarter to quarter variations in corn use for ethanol. Therefore, U.S. corn supply,
which combines production and stocks, was able to grow with increases in corn demand
for ethanol production, using a combination of past information and expected changes.
These results are also consistent with the fact that no GC impact from total supply on corn
use for ethanol was found in this study, that is, corn use for ethanol in the current period is
not driven by total corn supply in previous periods.

Figure 1 clearly shows that corn use for ethanol more than tripled from about 33 million
tons in 2004 to nearly 127 million tons from MY 2005 to 2010, whereas other domestic corn
use declined by about 17% from about 190 million tons to 156 million tons. Obviously,
corn use for ethanol during this period was driven by policy changes, but previous studies
have indicated that reductions in other domestic corn use may be traced to the resulting
increase in corn use for ethanol demand [51]. The findings in this study mean that changes
in other corn use have a stronger impact on corn use for ethanol than the reverse. This may
be explained by the fact that livestock producers (representing the largest other domestic
user of corn) anticipated policy-driven increases in corn ethanol by reducing their direct
use of corn to accommodate corn demand for ethanol, even as total supply increased.
This pathway reflects both the contract (planned) nature of corn input into U.S. livestock
production and the use of distiller’s dry grains (DDGS) which is a high protein animal feed.
In the first instance, the co-production of DDGS means that about 30% of all corn input
into corn ethanol production is returned as livestock feed. In the second instance, Hoffman
and Baker [52] found that “a metric ton of DDGS can replace, on average, 1.22 metric tons
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of feed consisting of corn and soybean meal in the United States”. Thus, combined, the
quantity and quality of increases in DDGS made up nearly all direct reductions in other
domestic corn use between 2005 and 2010.

Complementary explanations for the reduction in other domestic corn use during
this period include the stagnation in U.S. cattle output between 2003 and 2007 due to the
discovery of mad cow infections in U.S. and Canadian herds. Hanrahan and Becker [53]
showed that the ban on U.S. beef exports by its four principal markets, Canada, Mexico,
Japan and South Korea, reduced the global share of U.S. beef exports from 18% in 2002
to 3% in 2004, recovering to about 9% in 2007. All cattle and calves inventory, as well as
slaughtered cattle, declined in 2004 and did not recover to 2003 levels for several years [54].

There are no significant GC impacts of corn use for ethanol on net corn exports or the
corn price, with total corn supply as the only significant GC driver of corn prices. However,
total corn supply, net corn exports, other domestic demand and total domestic demand
have significant negative IC interactions with the corn price. Thus, total corn supply in
previous periods, and corn supply and all corn demand variables in the current period,
except corn use for ethanol, jointly drive current period corn prices. The negative impact of
total corn supply on corn prices follows from the fact that current period total corn supply
is largely fixed, and high corn availability would tend to reduce prices. As previously
discussed, total corn supply is essentially equal to beginning stocks during Q2 to Q4 of the
MY, and advance projections generally provide accurate estimates of corn production in
the first quarter of the marketing year. On the one hand, the lack of any GC impacts from
corn demand variables on the corn price mean that these variables are not lagging drivers
of corn prices. On the other hand, negative IC interactions with the corn price mean that
unexpected increases (decreases) in corn prices would lead to decreases (increases) in corn
demand, except corn use for ethanol, in the current period.

The GC results show that net corn exports tend to rise in periods following increases
in other domestic corn use, suggesting that, while changes in global corn demand are im-
mediately reflected in domestic demand, effects on U.S. corn exports are lagging. However,
the results also imply that net corn exports tend to decrease following periods of higher
total domestic corn use, all else equal. This is likely because unexpected jumps in total
domestic corn use in one period depletes available supplies in the next period. In contrast,
IC results show that high corn exports coincide with high corn use for ethanol production
and other domestic corn use in the same period. Total corn supply is a positive GC driver
for other domestic corn use and total domestic corn use, but a negative GC driver for the
corn price. The positive IC interactions between total corn supply and all demand variables
on the one hand, and negative IC between the corn price and all corn demand variable
(except corn use for ethanol) on the other, mean that the competition for corn supplies in a
given period is mediated by the corn price.

4.3. Summary

The structural break test results in this study found three break dates in corn use for
ethanol that are associated with important events during the period of rapid increases
in U.S. ethanol production over the last two decades. These are in MY 2002 marking the
period of vigorous public discussion and legislation on oxygenates, MTBE and renewable
fuels in U.S. gasoline, MY 2007 during the implementation and expansion of the U.S.
renewable fuel standards and MY 2012 during the most severe U.S. drought in the last
fifty years. These break dates point to the important role of policy changes in accelerating
corn ethanol use in the U.S. Results of the causality analysis are summarized in Figure 3
(panels b and c) and compared with common assumptions (panel a) about the role of corn
use for ethanol in corn markets. These causality results contribute a number of insights
into the debate about the global agricultural market effects of U.S. biofuel policies. First, it
is generally assumed that corn use for ethanol in the U.S. caused increases in corn prices
via increased demand for feedstock. This relationship is not confirmed by the empirical
data examined in this paper. The GC results did not find that corn use for ethanol is a



Agriculture 2021, 11, 267 12 of 15

significant lagging driver of corn prices and there is no significant IC or current period
interactions between the two variables. Instead, adjustments and interactions between
total corn supply and other domestic corn use appear to account for the large increase in
corn use for ethanol production since 2003. Second, enhanced corn ethanol production
following the introduction of biofuel policies is thought to affect crop production abroad
by limiting corn exports from the U.S. The GC and IC analyses presented here do not
support such effects, as there are no significant GC impacts and IC interactions between
corn ethanol production and net corn exports. The negative GC impact of total domestic
corn use on net corn exports follow directly from the fact that higher than expected total
domestic corn use in previous periods generally reduces available supplies in the next
period, all else equal. In addition, IC interactions of net corn exports with other domestic
corn use and total domestic corn use are positive, so that these three sources of demand
for corn increase together in a given period. As would be expected, current period net
corn export is also significant and positively related to total corn supply but negatively to
the corn price (i.e., higher corn prices tend to diminish exports). Since total corn supply
also has strong negative GC impact on and IC interaction with the corn price, these two
variables (total supply and price), and not corn use for ethanol, are the key determinants of
net corn exports.
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5. Conclusions

The findings in this paper point to a different assessment of potential indirect effects
of U.S. corn use for ethanol on corn markets than commonly is assumed. First, corn
use for ethanol is not found to be a lagging driver of net corn exports, but both increase
simultaneously. Second, corn use for ethanol does not have a (lagging or same-period)
causal effect on the corn price, which means that it does not affect corn prices. Third, corn
use for ethanol is found to be a positive driver of total corn supply, which in turn is a
positive driver for all domestic corn uses and exports. Fourth, structural breaks in corn use
for ethanol emphasize the policy-driven nature of the U.S. ethanol market over the last two
decades, initially driven by state-level legislations/incentives and then by enactment of the
national RFS1 in 2005 and RFS2 in 2007. Thus, total corn supply and other domestic corn
use appear to be the key pathways of adjustments to the large increase in U.S. corn use for
ethanol between 2003 and 2010. No significant role was found for either corn price or net
corn exports. The implications of these findings would differ dramatically from common
assumptions that link U.S. corn-based ethanol to reduced corn exports, increased global
corn prices, and related consequences for global land use change and food markets. As
with any empirical analysis, caveats are in order for the work in this paper. The results of
this study should be interpreted within the context of the data available for the analysis.
Additionally, as discussed previously, the causality results in this paper have a one-step
ahead or next period interpretation and do not address potential non-linear causality or
other causality concepts. These topics are reserved for future efforts.
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