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Abstract: Identification of yield deficits early in the growing season for cereal crops (e.g., Triticum aes-
tivum) could help to identify more precise agronomic strategies for intervention to manage production.
We investigated how effective crop canopy properties, including leaf area index (LAI), leaf chlorophyll
content, and canopy height, are as predictors of winter wheat yield over various lead times. Models
were calibrated and validated on fertiliser trials over two years in fields in the UK. Correlations of LAI
and plant height with yield were stronger than for yield and chlorophyll content. Yield prediction
models calibrated in one year and tested on another suggested that LAI and height provided the
most robust outcomes. Linear models had equal or smaller validation errors than machine learning.
The information content of data for yield prediction degraded strongly with time before harvest, and
in application to years not included in the calibration. Thus, impact of soil and weather variation
between years on crop phenotypes was critical in changing the interactions between crop variables
and yield (i.e., slopes and intercepts of regression models) and was a key contributor to predictive
error. These results show that canopy property data provide valuable information on crop status for
yield assessment, but with important limitations.

Keywords: cereal yields; leaf area index; crop height; chlorophyll content; yield prediction; winter
wheat; machine learning

1. Introduction

Winter wheat (Triticum aestivum) is one of the world’s major crops and global produc-
tion has been increasing steadily since the green revolution of the 1960s through increased
arable area, improved harvest index and more intensive farming methods [1]. Wheat
production needs to rise further to meet demands from an increasing world population, but
yields are stagnating in countries like the UK and exhibit increased annual variations [2,3].
A changing climate along with environmental and economic pressures to reduce inputs of
nutrients and pesticides add to crop management challenges [4–7].

Improving crop yield and quality whilst maintaining or reducing operational costs is
an overarching goal for sustainability [8]. Agronomic models providing yield predictions
can be useful tools to support management choices of farmers. For instance, at the sub-field
scale, the ability to forecast final crop yields during the growing season is a powerful
precision agricultural tool for guiding variable rate fertiliser applications [9–12]. Timely
crop yield predictions can also support agribusinesses for the strategic planning of harvest,
including managing the risks associated with the processing, storage and transportation of
harvests [13]. Given that wheat yields can vary considerably from year to year depending
on weather and management, decision support tools need robust predictions of inter-
annual variations in yield [14].
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Yield prediction is usually accomplished either by process simulation modelling or via
statistical modelling. Process-based models represent the mechanisms for crop growth and
production, and their environmental controls [15]. Their complexity allows for accurate
yield predictions through a mechanistic representation of the climate sensitivity. But the
application of process crop models is challenged by extensive parameter requirements
and complex inputs [16,17]. By comparison to process models, statistical models, such as
multiple linear regression [18], are simpler as they are developed empirically by linking
data and environmental factors (including monthly weather, soil and fertiliser input) to
observed yield. Statistical models are suited for decision support in agriculture as the
input variables required are fewer. Empirical models can also be generated using machine
learning methods, which offer potential advantages over statistical models in terms of
accuracy and coping with non-linear responses, although their governing relationships are
harder to interpret and there are risks of over-fitting [19].

Remote observation of crops, including that from airborne and spaceborne instru-
ments, has the potential to provide much richer spatially resolved data to constrain em-
pirical models and improve their accuracy by providing updates on crop growth and
development linked to yield variability [20]. Physiologically, the critical yield-related
variables to monitor are the light absorbing and photosynthetically active area of crops
(i.e., leaf area index, LAI) and the chlorophyll content. Early season production of a dense
canopy enables plants to capture more light to produce sugars for further growth and yield
development [21]. Leaf chlorophyll content directly influences the amount of light captured
during photosynthesis and, thus, the amount of energy available for yield production.
Remote sensing can also directly measure height [22–24], which can be related to crop
biomass allometrically and thereby to yield. Taking advantage of new high-resolution
satellite data and drone-mounted sensors, it is now possible to produce maps of these
yield-related parameters at sub-field scale with known accuracy [25]. A key unknown is
the utility of these varied crop data for yield estimation at various lead times through the
growing season, i.e., the information content of time series of LAI, chlorophyll content and
canopy height data for yield prediction.

This study quantifies the prediction error among varied empirical models for wheat
yield at varied antecedence. The models are calibrated with data from different canopy
properties (LAI, crop height and leaf chlorophyll content) or combinations against inde-
pendent yield data. The comparison includes both simple (2–4 parameter) linear models
and machine learning methods to determine their relative strengths and weaknesses. The
study determines how informative canopy properties are in predicting yield at different
periods of plant development (i.e., growth stages) and time before harvest. The study also
quantifies how robust yield forecasts are with variations in weather and soil conditions
between growing seasons and fields.

In situ canopy data were collected at key growth stages (30–83) in eastern Scotland
over two years of replicated field experiments with five different nitrogen (N) fertiliser
treatments. In addition to crop yield, these experimental plots were intensively assessed
for LAI, chlorophyll content and canopy height. The specific questions addressed were,
for these trials: (i) How accurately can yield models calibrated using measures of crop
canopy properties predict yields, including in a new growing season and field? (ii) Which
empirical modelling approach is most robust, machine learning or linear models? (iii) How
does the accuracy of prediction change with lead times (antecedence) relative to harvest?
The novelty of this study is quantifying the link between yield data from two years of crop
trials, which express a wide yield potential, to a time series of measurement of crop canopy
properties and use these to quantify the antecedent errors in forecasts.

2. Materials and Methods
2.1. Trial Design for Fertilisation Experiments

We undertook field experiments in 2017 and 2018 on a farm near Humbie in East
Lothian, UK, located 32 km East of Edinburgh (55◦53′16.8′′ N, 2◦49′55.2′′ W). A split lattice
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square design consisted of 50 plots, each measuring 2 × 10 m enclosed within a 1 m buffer
strip for two soft group 4 winter wheat varieties: Leeds and Revelation. The analyses
involved experiments, however, whereby the variety and year of the trials were separated
to provide independent validation data. The plants were grown under five different N
fertilizer inputs (0, 50, 100, 150, 200 kg N ha−1) with half the total N applied at Growth
Stage (GS) 23 and the remainder at GS30/31 Figure 1.

Figure 1. Design of the trials experiment in 2018, showing the replication of different fertilizer
applications, and the use of two different wheat varieties. The image is an airborne mosaic of optical
imagery from a drone-based camera, clearly showing the variation in crop state with treatment.

The different fertilizer rates were chosen to artificially induce variation in yields up to
the maximum standard for that soil type and area. For both years, the plots were sown
at a seed rate of 340 m−2 and were treated with a full fungicide and herbicide program
along with 70 kg ha−1 of P2O5 and K2O. Harvest information was reported on a per plot
basis at 15% moisture content and the yields in tons per hectare (t ha−1) were calculated.
For the 2016/17 growing season the sowing date was 30 September and harvest was
7 September (day of year 250). For the 2017/18 season, the sowing date was 30 September
and harvest date was 25 August (day of year 237). Between the two growing seasons, the
trial plot location was moved by ~1 km to an adjacent field to minimize the impact of any
soil-remaining fertilizer on successive experiments. Both trial locations, however, were
managed with the same crop rotation and had a Humbie soil series with a loam texture.
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2.2. Field Measurements

Throughout the 2017 and 2018 seasons, at the trial plots three crop canopy properties
were sampled that could be (a) easily and rapidly assessed and (b) were associated with
crop development and yield production. These characteristics were LAI, leaf chlorophyll
content and canopy height. The trial site measurements were collected on six dates in 2017
and four dates in 2018 Table 1. LAI was measured using a SunScan Canopy Analysis System
(Delta-t, Cambridge, UK). The SunScan was placed underneath the crop canopy at ground
level with care taken by the operator to not cast a shadow over the device’s sensor array.
Five technical replicates were taken in each trial plot and an average was reported. Crop
chlorophyll content was estimated using a soil plant analysis development (SPAD) meter
(Konica Minolta, Japan), which is well established as a proxy for chlorophyll content [26,27].
SPAD readings were taken on the uppermost fully expanded leaf at the midpoint of the
leaf blade ensuring avoidance of the central leaf rib. Ten technical replicates per trial plot
were taken and an average reported for the entire plot. Canopy height in metres was
measured using a standard meter stick (Maped Helix Trading Ltd., West Midlands, UK).
Five technical replicates of height were taken in each trial plot and an average was reported.
Crop height was taken from the ground to the highest point in the canopy or the top of
the ear, which ever was higher. Throughout this analysis the day of year (DOY) from
1 January provided the measure of time in the growing season. Crop growth stages were
assessed according to Zadok et al. [28]. At the end of the growing season all plots were
harvested with a plot-scale combine harvester (Sampo Rosenlew 2010, Finland), with, yield
recorded and reported on an area basis. Soil mineral N was determined using a KCl extract
for NH4-N and NO3-N during the spring and post-harvest for both sites/years. The KCl
extracts were analysed colorimetrically using a San++ Automated Wet Chemistry Analyser
(Skalar, Netherlands). Weather data were recorded on an automated station (WS-GP1;
Delta-T Devices, Cambridge, UK) that was located on a 2 m mast within 1 km of both
field locations.

Figure 2. Variation in yield of winter wheat with fertilizer treatment and year of experiment (colors). The box plot shows
the median, inter-quartile and 90% range. For each treatment and year, n = 10. Inter-annual differences are relatively and
absolutely smaller at high fertilization levels.
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Table 1. Coefficients of determination (R2) and root-mean-square-error of calibration (RMSE) for
linear model correlations between yield and individual canopy variables (leaf chlorophyll content
Figure 2. and RMSE for each canopy property across all dates.

Date Growth Stage
SPAD HEIGHT LAI

R2 RMSE R2 RMSE R2 RMSE

2017/04/20 31 0.12 1.51 0.37 1.28 0.35 1.29
2017/05/16 32 0.48 1.16 0.59 1.03 0.61 1.01
2017/05/30 50 0.00 1.61 0.78 0.76 0.63 0.98
2017/06/12 59 0.57 1.06 0.73 0.83 0.63 0.98
2017/06/26 71 0.48 1.16 0.80 0.73 0.79 0.74
2017/07/10 78 0.03 1.59 0.83 0.66 0.84 0.64
2018/05/07 31 0.66 1.37 0.65 1.39 0.78 1.09
2018/06/13 62 0.66 1.36 0.74 1.19 0.78 1.11
2018/06/19 68 0.70 1.28 0.87 0.86 0.88 0.81
2018/07/04 79 0.63 1.42 0.83 0.97 0.68 1.33

Mean - 0.43 1.35 0.72 0.97 0.70 1.00

2.3. Statistical Analysis and Modelling

The interactive effect of fertilizer treatment and weather were evaluated through plot-
ting mean yield estimates for each year and reporting the spread of results in the replicated
studies Figure 2. Scatterplots and correlation analyses determined first order interactions
between yield and the canopy variables, and by visualizing for linear relationships. Linear
regressions determined the strength of correlation between yield and the canopy variables
(LAI, height and SPAD) independently, and their variation with growth stage/time of year.

A machine learning algorithm, Gaussian process regression (GPR) [29], further ex-
plored the relationship between yield and canopy variables. GPR provides a non-parametric,
non-linear and probabilistic modelling approach to establishing relationships between the
canopy variables and yield, obtaining both a predictive mean and variance. Han et al. [30]
demonstrated that GPR performed favourably for the estimation of wheat yields when
compared to alternative machine learning algorithms. The GPR modelling approach was
implemented using the machine learning regression algorithms toolbox (MLRA v1.23) [31]
available in the ARTMO software package (Automated Radiative Transfer Models Oper-
ator, v.3.26) [32]. Within ARTMO, the specific GPR modelling was performed using an
automatic relevance determination (ARD) squared exponential kernel function:

k
(
xi, xj

)
= v exp(−

m

∑
m=1

(
xm

i − xm
j

)2

2σ2
m

) + σ2
nδij (1)

where the covariance function relating two observations, k
(
xi, xj

)
is determined from

hyperparameters, including a scaling factor, v, a standard deviation describing the variance
of the estimates, σn, and a characteristic length-scale, σm. The inverse of the σm parameter,
which is set for each predicter, represents the importance of each predictor on k (i.e., a higher
σ−1

m value indicates a higher information content when developing the model). These
hyperparameters are automatically optimised by maximising the marginal likelihood when
training the GPR model based on yield observations. The specific GPR model parameter
values calibrated for yield estimating as a function of different canopy properties for each
year are provided in the Supplementary Material Section Table S1.

2.4. Model Evaluation and Forecasting Approaches

Validation data were kept separate from the calibration data to provide an independent
test of the calibrated model as a forecast tool. There were two different calibration and
validation experiments: (a) models were calibrated on a single year of data and evaluated
on the other year, and vice versa; and (b), models were cross-validated using a 10-fold
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approach for the entire data set. The data set was randomly divided into 10 equal parts (i.e.,
folds). Calibration was undertaken on 9 of the 10 folds of the data and validation on the
remaining fold, with the process repeated 10 times so that validation was undertaken on
each fold in a final combined analysis. The process was repeated three times with different
samplings of folds to increase rigour, using the train function from the caret package in
R. The quality of the model was evaluated using the validation root-mean-square error
(RMSE) and the coefficient of determination (R2).

Time was included as a variable to the linear and GPR models to take account of
changes in relationships between canopy properties and yield, linked to crop development.
Time was represented by the DOY variable, i.e., the day-of-year (1–365) of the canopy ob-
servation. Models using growth stage, or cumulative growing season temperature, instead
of time, were tested, but had similar results and are not discussed further. Multiplicative
models were used for multiple variables in linear models to account for interactions. Val-
idation statistics from the two experiments were used to address research question (i),
assessing which canopy property was the model robust for prediction via lowest prediction
RMSE. Additional canopy variables were then included in the linear and machine learning
models to determine how combining multiple crop properties improved the accuracy of
yield predictions. A comparison of the validation statistics of linear and GPR models
assessed their relative performance, addressing research question (ii). Based on the most
robust linear model, as determined from the independent validation in (i), further analysis
quantified how yield prediction error depended on antecedence. The error from the 10-fold
cross-validation, determined between forecast and actual yield, was calculated for the
day of year of the canopy property observation. The outcome was a characterisation of
how forecast error changes with antecedence, the time before the forecast of interest (i.e.,
harvest), thereby answering research question (iii).

We used the R programming language [33] for calibrating and evaluating statisti-
cal models. A range of evaluation statistics allowed a quantitative inter-comparison of
model skill (R DMwR:regr.eval function) for both calibration and validation. R2 quantified
the fraction of variation explained by the model. RMSE characterised the typical error
associated with a yield estimate made with a model. Mean absolute percentage error
(MAPE) presents the mean absolute error normalised by the mean yield. The same eval-
uation statistics allowed direct comparison between the linear models and the machine
learning approaches.

3. Results
3.1. Variability of Yield and Canopy Development in the Trials

The experiment captured a wide and representative range of crop canopy proper-
ties and yield based on fertilizer treatments and growth differences between the two
years/locations. There were no significant statistical differences in analyses comparing
the two wheat varieties, so all data were aggregated, and no further discussion of varietal
differences is included. Fertilizer treatment had a strong impact on yield, but the effect was
strikingly adjusted by year/location of experimental trials. In 2017, mean yield varied from
6.9 t ha−1 at 0 kg N ha−1 to 10.6 t ha−1 at 200 kg N ha−1. In 2018 the variation was from
2.7–8.9 t ha−1 across these treatments. Thus, in 2017 the fertilization increased yield by up
to 153%, while in 2018 by up to 328% Figure 2. Generally, these inter-annual differences
in the yield were lessened with the higher N treatments from 4.2 t ha−1 at 0 kg N ha−1

to 1.7 t ha−1 at 0 kg N ha−1. The response to fertilization was saturating, with effects
becoming insignificant at >150 kg N ha−1 in 2017 (Tukey’s honestly significant difference
(HSD) test, p = 0.34).

The 2017 harvest field had spring soil mineral N (SMN) of 63 kg N ha−1, and post-
harvest SMN was 91 kg N ha−1. For the 2018 harvest experiment, spring SMN was
36 kg N ha−1, and post-harvest SMN was 16 kg N ha−1. April to July mean temperatures
were similar for both years (12.6 ◦C in 2017 and 13.0 ◦C in 2018). The development
period in 2018 was sunnier (17.4 MJ m−2 d−1 incident short-wave radiation) than 2017
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(15.7 MJ m−2 d−1), but 2018 was also a drier spring and summer (mean daily precipitation
1.9 mm d−1) than 2017 (2.8 mm d−1).

LAI increased approximately linearly at each fertilizer treatment level over time,
with R2 ranging from 33–72% across treatments in 2017 and 22–46% in 2018, based on
linear regression Figure 3. The rate of increase was proportional to fertilization, rising
approximately 3-fold over the N treatments. In 2017 the rate of increase in LAI was
0.014 d−1 with no fertilization and 0.039 d−1 at 200 kg N ha−1. In 2018, the rate of LAI
increase with time varied from 0.08 d−1 at no fertilization to 0.026 d−1 at 200 kg N ha−1.
In 2018 there were similar initial rates of LAI increase, and sensitivity to fertilization, but
LAI peaked and declined in late June in all cases. Mean LAI varied among treatments and
years; in 2017 from 2.2 in the 0 kg N ha−1 treatment to 3.9 in the 200 kg N ha−1 treatment;
and in 2018 from 1.2 to 3.0 over the same range. In 2017 fertilization increased mean LAI
by up to 1.8-fold, and in 2018 by up to 2.6-fold.

Figure 3. Variation in leaf area index (LAI, Left panels), height (Centre panels) and SPAD (a measure of leaf chlorophyll,
Right panels) over two years (2017, black; 2018, red) under five different fertiliser treatments (rows, from 0–200 kg N ha−1).
Points show individual trials plots (n = 10 per time period) and lines connect the mean values of the trials at each time
period. Day of year 1 = 1st January.

Height increased strongly with time Figure 3, with effect sizes (R2) for each treatment
ranging from 81–86% in 2017 and 78–84% in 2018. The rate of change of height increased
with fertilizer treatment, by 12% (2017) or 61% (2018) depending on the year/location of
the experiment. The change in height ranged from 0.40–0.65 cm d−1 in 2018 and from
0.58–0.65 cm d−1 in 2017 over fertilizer treatment from 0–200 kg N ha−1. There was clear
indication of height reaching peak values by the final measurement periods in 2017, and
even evidence of some decline in height at the final measurement period in 2018. Mean
height varied among treatments and years; in 2017 from 0.55 m in 0 kg N ha−1 to 0.65 in
200 kg N ha−1; and in 2018 from 0.40–0.58 m over the same range. In 2017 fertilization
increased height by up to 1.2-fold, and in 2018 by up to 1.5-fold.

Chlorophyll content had the weakest consistent variations over time of the three
properties investigated Figure 3, with effect sizes (R2) for treatments across years ranging
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from 2–13% in 2017 and 7–29% in 2018. In 2018 SPAD readings declined slightly over time,
with rates of change ranging from −0.2 d−1 at no fertilization (a significant difference from
0 at p < 0.001) to −0.05 at 200 kg N ha−1 (no significant difference from 0). In 2017 only
one of the treatment slopes was significant (150 kg N ha−1), suggesting no change in SPAD
over time in nearly all cases.

3.2. Canopy Property Relationships with Yield

Individual linear models of yield against LAI, SPAD and height generated for each
measurement time, across both years, indicated clear differences in strengths of relation-
ships based on their relative effect sizes Table 1. LAI and height were more strongly related
to final yield at each time period and overall (higher R2 and lower RMSE) than was SPAD.
There was also a clear trend for R2 to increase and for RMSE to decline with reduced
antecedence, i.e., time before harvest for LAI and height—while the pattern was less clear
for SPAD Table 1.

For the variables with strong effects (LAI, height), linear models relating these to
yield for all time periods and treatments clearly varied with time Figure 4. For both
LAI and height, the intercept of the relevant linear model (yield~LAI, yield~HEIGHT)
decreased with time, consistent with the increase in these canopy parameters Figure 3.
There was a clear change in the slope and intercept of the linear models between years for
LAI. For height there was less evidence of such an inter-annual change, with consistent
slopes and intercepts particularly during later growth stages. A yield model calibrated at
one time on height or LAI will, therefore, be biased in application to other times, due to
crop development. Therefore, to develop yield models that operate across the growing
season, a time variable (e.g., DOY) derived from the date of the canopy observation must
be introduced into the model. The time variable allows yield relationships to canopy
properties to change temporally.

Figure 4. Relationships between yield and height (Left) and yield and LAI (Right) during different days of the growing
season (symbols) vary in different years (2017, black; 2018, red). Regression lines are shown for linear models fitted to
individual days. The date of measurement is indicated by symbols and shown in the legend (format YYYYMMDD).

3.3. Predicting Yield Relationships Using Linear Models and Canopy Properties

The 10-fold cross-validation approach indicated that LAI and height were the strongest
individual predictors of yield, with validation R2 of 0.64 and 0.65. SPAD was clearly a
weaker predictor, with an R2 of 0.48 and an RMSE 20% larger. The inter-year validation
indicated that height and SPAD had relatively poor outcomes, with divergences across
years. Thus, the model Yield~HEIGHT*DOY explained 51% of yield variation in 2018
when fit on 2017 data, but only 19% of yield variation in 2017 when fit on 2018 data. RMSE
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differed also in the test pairings, but by a smaller ratio than R2; for the height model R2

varied by 268% between years, while RMSE varied by 7%. The LAI model was the most
robust between years, with the highest and most consistent R2 values (53%, 48%). RMSE
values for the LAI model validation were similar to the height model on average, so that
prediction errors were similar despite the LAI model being better able to explain variation
in yield. For the LAI*DOY model, MAPE was 12% for 2017 harvest yield using a fit on 2018
data, and 44% vice versa.

Combining LAI, height and time provided further model improvement for the 10-fold
cross-validation Figure 5 and adding chlorophyll to these added more power Table 2. How-
ever, the inter-year validation showed limited or no improvements to the yield prediction
with the more complex linear models. The LAI and height model had divergent validation
R2 between years (0.63, 0.25), with a mean R2 less than the LAI model. The mean validation
RMSE of the LAI model was slightly lower than that of the LAI and height model, suggest-
ing no gains in forecast error for the additional variable. The linear model combining LAI,
height and SPAD had similar problems, with no clear improvement in forecasts compared
to the LAI model Table 2.

The GPR machine learning approach in the cross-validation explained a greater frac-
tion of yield variability, with R2 values exceeding the corresponding linear model, and
lower RMSE values in nearly all cases Table 2. However, in the validation across years/sites,
the proportion of variability explained by GPR was lower in all but one case than the linear
models. The RMSE values for GPR were similar in magnitude to those from linear models.
The best GPR model used all available data (LAI, height, SPAD).

Figure 5. Measured yield (t ha−1) plotted against predicted yield (t ha−1) from a linear model fit to LAI, height and time (day
of year). The left panel shows the results using a 10-fold cross-validation. The symbols show the independent validation
comparison against 10% of the data for 10 model fits on the remaining 90% of the data. The symbols indicate the date
(YYYYMMDD) of data collection for LAI and height for each individual validation. The right panel shows the results of a
validation using one year/location for calibration and the other for validation. The red symbols are for the model fit on
2017 data and validated on 2018; the black symbols show the validation on 2017 data using a fit on 2018 data. Dashed lines
are 1:1.
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Table 2. Statistical analysis of linear modelling (LM) and machine learning (GPR) predictions of yield as a function of
combined (shown with “*”) factors with two different calibration/validation schemes. Statistics include variance explained
(R2) and root-mean-square error of predictions (RMSE). The first scheme used a 10-fold cross-validation where statistics
were derived using repeated (n = 3) cross-validation having randomly split all data into 10 subsets (folds), with fitting on
9 and testing on 1, repeated to ensure each of the 10 subsets serves as the test set. The second scheme used a validation
between years, with models calibrated on one year and location of data and tested on the other year-location. Two validation
results are reported for the alternate calibration and validation pairs (first reported is fit on 2017 and validated on 2018).
DOY is day of year (time) and SPAD is an in situ measure of leaf chlorophyll. Growth stages during field sampling spanned
30–83 in 2017 and 30–81 in 2018.

Factors
10-Fold Cross-
Validation R2

10-Fold Cross-Validation
RMSE (t ha−1)

Validation R2

between Years
Validation RMSE (t ha−1)

between Years

LM GPR LM GPR LM GPR LM GPR

Height*DOY 0.64 0.66 1.44 1.54 0.51, 0.19 0.16, 0.36 1.78, 1.91 1.59, 2.00
SPAD*DOY 0.48 0.95 1.73 1.16 0.13, 0.47 0.06, 0.04 2.27, 2.64 2.30, 3.29
LAI*DOY 0.65 0.91 1.42 0.83 0.53, 0.48 0.29, 0.38 1.55, 2.16 2.13, 2.42

LAI*Height*DOY 0.78 0.93 1.12 0.63 0.63, 0.25 0.19, 0.48 1.46, 2.52 1.55, 1.81
LAI*Height* DOY*SPAD 0.83 0.96 1.00 0.65 0.63, 0.19 0.33, 0.59 1.46, 2.11 1.33, 1.68

Validation tests investigated model quality and over-fitting, using data independent
from calibration. The most challenging validation involved using data from a different
year and field location Figure 4. Compared to the cross-validation, the inter-year validation
had a mean 48% greater prediction error for the five linear models using canopy properties
as inputs. The validation error from between the year comparisons was inflated even
more strongly in the five models using the GPR calibration, more than doubling (108%
increase) Table 2. Thus, while the GPR approach had a smaller prediction error than linear
models in the cross-validation, the GPR and LM approaches had a similar mean RMSE in
the inter-year validation (mean of ~2 t ha−1 across the five models, Table 2). Overall, the
linear models produced more consistent predictions in both tests compared to GPR. We
conclude that the GPR machine learning method was over-fitting in the cross-validation
and, therefore, underestimating the prediction errors.

Based on the 10-fold cross-validation output, there was a broadly linear decline in
forecast error with progress in time through the growing season Figure 5. Thus, the closer
to harvest, the smaller the forecast error in both years Figure 6. Errors declined linearly
with time, from ~2 t ha−1 at the start of May (MAPE = 26%) to ~0.5 t ha−1 (MAPE = 4%)
by the start of July. The slope of the regression line is –0.02 t ha−1 d−1. There was one
exception to the pattern, the final measurement period in 2018. Predictions made with
canopy properties derived at this time had errors nearly as large as those made at the
earliest measurement period. A similar antecedence analysis using the inter-year/site
validation outputs produced much poorer results, with clear differences between years
consistent with the full analysis Table 2. Errors were similar to the 10-fold cross-validation
at the start of May but declined more slowly with reduced antecedence (slope of the
regression line is –0.01 t ha−1 d−1). Errors ranged from ~2.5 t ha−1 at the start of May to
~1.5 t ha−1 by the start of July. There was one clear outlier for the final prediction in 2018.
The MAPE was 17–20% for predictions in 2017; and 11–43% for predictions in 2017, with a
clear outlier for the final prediction in 2018.
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Figure 6. Yield prediction error (t ha−1) from the 3-factor linear model (Yield~HEIGHT*LAI*DOY) and its variation with
antecedence (time of canopy observation, day of year; 120 = 30 April, 180 = 29 June). Left panel: Predictions derived from
10-fold cross-validation using 90% of all available data for fitting in each fold. The regression line is fitted to all data except
the outlier on day of year 185, 2018. The adjusted r2 is 0.74. Right panel: Predictions are derived from a calibration on one
year/site and a test on the other year/site. The red symbols are for the model fit on 2017 data and validated on 2018; the
black symbols show the validation on 2017 data using a fit on 2018 data. The line shows a linear model fitted to all data
except the outlier on day 191, 2017. The adjusted r2 is 0.30.

4. Discussions
4.1. How Accurately can Individual Crop Growth Measures Be Used to Predict Final Yields

At individual sampling times there were stronger and more consistent correlations for
yield with LAI and height than for yield with SPAD data. For prediction models generated
across all sampling periods SPAD data also performed least well in all validation studies.
So further discussion on yield prediction focuses most on using LAI and height data, rather
than SPAD data.

The two validation approaches provided an envelope for prediction skill. The 10-fold
cross-validation is a ‘best case’, where calibration data are available that span the natural
variability in weather and soils for the prediction fields. The inter-year/site validation
is a ‘worse case’, where the model is used out of the conditions of the calibration. Crop
yield is strongly influenced by climate and inter-annual variation in yield linked to weather
is a major challenge for prediction. There were clear differences in fertilizer sensitivities
between the two years and fields studied, indicating the nature of the prediction challenge
Figure 2. The growing conditions for the 2017 harvest experiment benefited from almost
double the spring soil mineral N than the 2018 harvest experiment; and the spring and
summer of 2017 had 67% more rainfall than 2018. Scottish Government harvest survey
estimates for wheat were 8.12 t ha−1 in 2017 and 6.82 t ha−1 in 2018. Weather differences,
probably linked to spring and summer precipitation, were therefore important effects on
yield difference (1.3 t ha−1) between years. The mean difference between yields for the
two sites/years was 2.8 t ha−1, more than twice the national difference between years.
Therefore, the difference in soil mineral N between fields is likely another important factor
that reduced yield in the 2018 harvest experiment.

A yield model constructed with a single year of data has major error inflation, with a
potential doubling of error in predictions for other growing seasons. For the best case the
linear model with LAI and height was able to make predictions with RMSE of 1.1 t ha−1

Table 2. For the inter-year/site validation the errors were inflated to 1.5–2.5 t ha−1. To
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support precision agricultural management, we suggest that validation accuracy should be
of a lower magnitude than the inter-annual difference in yield for the different experimental
N treatments, which varied from 1.7–4.2 t ha−1 Figure 2. On this basis the best-case
validation achieves this challenge, but the level of model accuracy in the inter-year test will
fail to identify important weather- and location-driven differences in yield.

These results confirm the complex challenge of modelling interactions Figure 3 be-
tween growing season conditions, crop and canopy development, and yield noted in other
studies [34,35]. The independent error inflation found for both LAI and height models
shows that neither of these variables is immune from complex weather-site effects. Further
experimental data collected over different conditions would allow more robust model
development and error characterisation. Thus, it would be valuable to collect canopy data
(e.g., LAI) routinely at sub-field scale or during crop trials to explore the role of weather vari-
ation, differences in soils and varieties on canopy property-yield interactions. For broader
applications and model development, drone-mounted instruments can record crop canopy
properties remotely at very high spatial resolutions [25] for evaluation against harvest data
collected at sub-field scales. Predictive models can be developed from these co-located
data to describe field-based variations in yield. Process-based crop modelling [36,37], as
opposed to the empirical modelling or machine learning used here, may also provide in-
sights by linking production, developmental stage and allocation to rates of photosynthesis
determined by conditions, LAI and leaf chlorophyll [35].

These results do not suggest added value from combining multiple canopy properties in
making predictions Table 2. Strong correlations amongst canopy data (e.g., LAI and height)
leads to limited returns on model accuracy improvement with additional data or even
reductions in performance. More complex models (e.g., Yield~LAI*HEIGHT*DOY*SPAD)
require more inputs than simple ones (e.g., Yield~LAI*DOY). If there is no increase in
model validity Table 2 such complexity is not justified. We conclude that simpler models,
such as using just LAI, or LAI and height, are more useful and reliable.

GPR does not provide any clear advantages over linear models as prediction tools.
This result is linked to over-fitting in the machine learning method. The validation tests
using between-years data showed similar or more robust predictions using linear models.
Due to their greater simplicity and utility, the linear models should be favored especially for
predictions under conditions (e.g., soil N supply, weather) outside those in the calibration.

Targeting the broader goal of yield prediction from Earth observation (EO) data on
canopy properties requires further steps. It is important to test how well models work
for sites and years where calibration data are not available. The between-years validation
shows that prediction error can be strongly inflated under altered conditions. Variables
must be available at intended time for prediction, i.e., before harvest, which will depend on
cloud cover and satellite properties. Long gaps in canopy data will degrade forecasts. The
statistical model here is built on the assumption that N availability drives yield variation
and was calibrated against N treatments. Therefore, there is a need to test how well yield
variation is explained when factors other than N cause within-field variation in yield, for
instance soil moisture variation. Finally, there is a need to test how well the models work
with remotely sensed data, given errors in these approaches.

In this last case there is supporting evidence that remote sensing can produce robust
estimates of canopy properties with appropriate calibration [25,38]. LAI derived from
optical measurements, and crop height estimates from radar measurements, could be
combined to produce a constrained estimate of yield that reduces the likelihood of bias.
Instrumental bias should be mitigated by combining different sensors and observations into
the modelling. These studies showed that relative variation in observed LAI is greater than
in height. Dependent on the uncertainty in LAI and height retrievals from remote sensing,
these may inform the most suitable observation and model to use for yield prediction and
identify risks of bias.
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4.2. How Does the Accuracy of Prediction Vary through the Growth Season and across
Different Seasons?

The smaller the gap in time between canopy measurement and harvest (i.e., low
antecedence), the smaller the error on the predicted yield Figure 6. Amplification of errors
with forecast lead time is typical for any forecast system, but longer lead times are more
valuable by allowing earlier and more effective management interventions [39]. There is a
well understood trade-off between forecast error and antecedence that has implications for
forecast utilisation. The specific quantification of error evolution can support forecasting.
The cross-validation prediction RMSE values and their decline with reduced antecedence
were similar to a yield prediction system developed over England using machine learning,
satellite optical data, and field data on harvest yield for a single year [40]. However, the
final set of measurements in 2018 generated much poorer yield estimates (large error)
compared to expectations. In 2018, unlike 2017, there was evidence of decline in canopy
height and LAI before harvest. Maturation and subsequent early senescence of the canopy
in 2018 may be responsible for the breakdown in the yield forecast. This result suggests
caution is required in using data close to the harvest—evidence of canopy senescence
should be used to screen late season observations for input to yield forecasting. A further
caution arises from the predictions made out of the calibration domain, with major error
inflation in the inter-year validation Figure 5. Even close to harvest (early July), the inter-
year validation shows yield prediction errors from 1–4 t ha−1 (the high value here arising
from an outlier in the validation for one of the sites-years). Models must be calibrated
across variations in soils, management, and weather to provide robust outputs and a focus
on forecast error is critical.

Models built using a single year of data produce biased predictions for other years.
Even with the same fertiliser, management, and crop variety the environment generates
clearly different crop phenotypes Figure 3. The out-of-sample-year increase in prediction
error ranged from 30–130%, which has major implications for extrapolation and near-real
time yield prediction. It is vital that models are calibrated over multiple years to sample
the variation in crop phenotype and yields if used to extrapolate to other growing seasons.

4.3. The Value of Yield Mapping from Ecological Variables

Modern technology in observation and analysis provides a means to forecast yield. At
its simplest, yield data can be linked to surface observations like reflectance using black-box
approaches of machine learning [12,40]. We chose a more ecological approach of yield fore-
casting using plant variables that can be observed remotely, such as LAI and canopy height.
The connection of the forecast model to ecological variables makes use of satellite products
of these quantities. For example, LAI products are generated operationally and freely pro-
vided to the community at sub-field resolutions and up to weekly cadence (e.g., Sentinel-2,
Moderate Resolution Imaging Spectroradiometer (MODIS)). Ecological variables provide
context for understanding the state of the crop, for instance whether senescence has begun
Figure 3, which has implications for model validity. Ecological variables like LAI are state
variables in typical crop process-based models, so understanding how ecological variables
link to yield can support model testing and improvement, advancing understanding of
process–structure interactions.

The analysis here identifies the challenge of predicting inter-annual and spatial varia-
tions in yield. There are opportunities to tackle this challenge by linking EO-derived LAI
and crop height with climate data and within-field harvest yield data. EO provides the
potential for vastly increasing the information available for model calibration and testing.
This opportunity is valid for improving process models, machine learning, statistical mod-
els, and developing operational farm-scale decision support systems. The combination of
model and data should better resolve the interactions among weather, soil and manage-
ment on yield. The early part of the growing season offers a key window of opportunity
to make spatially resolved management interventions, such as fertilization, irrigation, or
pest management. Such interventions must balance the need to increase productivity while
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minimizing environmental impacts. Being able to make accurate predictions of yield at
early stages would be a key precision agricultural tool to aid in this decision making. We
show the potential for early season predictions but note the quantified inflation in error
with antecedence, and challenges associated with variable weather and soils. A key next
step towards creating a precision yield forecasting system would include an extension of
our approach across broader regions using drone or satellite estimates of crop parameters
calibrated against within-field harvest yield data.

The potential for robust wheat yield prediction and, therefore, precision agricultural
responses, is challenged by variability in N availability, resulting from management, fer-
tilizer application, and soil N supply, and other limiting factors such as soil moisture.
The validation errors in this study show the importance of taking account of spatial and
temporal variation in crop growth, and the weaknesses of empirical model approaches
used here. Model errors Figure 5 are of similar magnitude to variations in yield between
years/sites under similar fertilizer inputs Figure 2. The statistical models used in this study
lack any crop process representation, and yield forecasts here were made using a single
point of canopy observations. There are opportunities to extract more information from
the data time series of LAI, and for using them to calibrate and validate a process model
of crop growth [41,42]. Process modelling connects climate to photosynthesis and crop
development and represents the dynamic feedbacks between these, reducing the likelihood
of over-fitting. Model calibration using time series of canopy observations means that
model dynamics can be evaluated, and their forecast errors propagated [37]. For crop
yields a key test is whether process model-data assimilation can explain yield variability
mechanistically, for instance through differences in foliar traits such a leaf N content linked
to soil N availability.

5. Conclusions

At our test sites, the most robust empirical approach for generating wheat yield
forecasts before harvest used linear modelling to combine data on canopy LAI, height and
time. The results show that remotely observable properties, including LAI and crop canopy
height, provide information to support robust forecasts of yield but have important limits.
LAI and height data were more useful than chlorophyll data. Machine learning had no
clear advantages over simpler linear models due to over-fitting. Crop phenotypic variation
is important for yield forecast errors, and so models need to be calibrated across multiple
growing seasons and variations in soil mineral N supply to sample phenotypic variation.
We quantify a reduction in forecast error closer to harvest. But we note that predictive
uncertainty was strongly amplified when models were applied in different years from their
calibration, indicating that canopy property data need to be interpreted in the context of
crop development.

Supplementary Materials: The following are available online at https://www.mdpi.com/2077-0
472/11/3/258/s1, Table S1: Gaussian processes regression (GPR) model hyperparameter values
used for predicting yield as a function of specific factors when calibrated for each year/season.
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