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Abstract: It has been well established that arterial hypertension is considered as a predominant risk
factor for the development of cardiovascular diseases. Despite the link between arterial hypertension
and cardiovascular diseases, arterial hypertension may directly affect cardiac function, leading to
heart failure, mostly with preserved ejection fraction (HFpEF). There are echocardiographic findings
indicating hypertensive heart disease (HHD), defined as altered cardiac morphology (left ventricular
concentric hypertrophy, left atrium dilatation) and function (systolic or diastolic dysfunction) in
patients with persistent arterial hypertension irrespective of the cardiac pathologies to which it
contributes, such as coronary artery disease and kidney function impairment. In addition to the
classical echocardiographic parameters, novel indices, like speckle tracking of the left ventricle and
left atrium, 3D volume evaluation, and myocardial work in echocardiography, may provide more
accurate and reproducible diagnostic and prognostic data in patients with arterial hypertension.
However, their use is still underappreciated. Early detection of and prompt therapy for HHD
will greatly improve the prognosis. Hence, in the present review, we shed light on the role of
echocardiography in the contemporary diagnostic and prognostic approaches to HHD.
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1. Introduction

Arterial hypertension (AH) is a very common disease worldwide and a strong risk
factor for cardiovascular diseases or conditions, including atrial fibrillation (AF), periopera-
tive ischemia, coronary artery disease (CAD), cardiac-related rehospitalization, valvular
diseases, and acute aortic syndromes (aortic dissection, intramural hematoma, or aortic
ulcer) [1]. Although the cutoff criteria for AH vary between the American and European
guidelines, there is substantial similarity in most recommendations for the management
of AH and its complications [2–4]. Among AH-derived complications, hypertensive heart
disease (HHD) has been widely recognized and refers to disturbed cardiac structure and
function, affecting the left ventricle (LV), left atrium (LA), and coronary arteries as a result
of prolonged exposition to high blood pressure (BP) [5]. Nevertheless, there is no uni-
versal consensus on the definition of HHD. Therefore, the diagnosis of HHD is based on
clinical history, imaging modalities like echocardiography, and functional or anatomical
tests for myocardial ischemia, to identify all the possible changes in the myocardium and
coronary arteries.

From the pathophysiological perspective, unmanaged high BP induces high afterload
and high LV filling pressures, leading to structural changes such as left ventricular hypertro-
phy (LVH) and fibrosis, and LA enlargement [6]. Besides this, HHD relates to systolic and
diastolic LV dysfunction or a combination of them. AH stands out as a primary risk factor
for heart failure (HF) development. Recent evidence suggests the co-existence of AH in 76%
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of newly diagnosed HF cases [7], and individuals with AH have an almost twofold higher
lifetime risk of HF development compared to those with normal BP [8]. AH stands out
as the predominant and highly impactful morbidity factor in heart failure with preserved
ejection fraction (HFpEF), with a prevalence of 80% in the Get with the Guidelines (GWTG)
initiative. The most formidable challenge in the diagnosis and management of HfpEF lies
within its high incidence, affecting a high percentage of individuals [9,10]. Moreover, nu-
merous epidemiological studies have unveiled the link between AH and CAD, a significant
HF risk factor3. Individuals with HHD face an elevated risk of developing CAD affecting
both the large and small arteries (microvascular disease). Notably, the INTERHEART study
demonstrated that 25% of the population-attributable risk for myocardial infarction can be
ascribed to AH [11].

Despite the interplay between AH and CAD, one of the most frequent challenges in
clinical practice is to diagnose HHD in patients without underlying CAD. Echocardiography
is an easily performed, cheap, repeatable, and immediately available modality to estimate
the cardiac structure and function [12]. During the working-up diagnosis of HHD, several
classic echocardiographic indices (e.g., LVH) have been proposed. Besides this, novel
echocardiographic parameters (e.g., speckle tracking) may be useful to identify cardiac
changes due to HHD at an early stage. It is also worth noting that the search for markers
of subclinical dysfunction of the cardiovascular system is gaining increasing interest,
and random measurement of biomarkers like cardiac troponin may be useful in this
regard [13]. Prompt therapy may inhibit cardiac remodeling and attenuate cardiovascular
risk [14]. Most importantly, imaging modalities have been proposed for individuals’ risk
stratification in the context of precision medicine [15]. Thereby, the echocardiographic
indices may not only help with diagnosis, but they may also give an impression of patients’
prognosis or their response to therapy. High-risk patients should receive more intensive
therapy compared to low-risk patients [16]. Therefore, there are multiple benefits from
echocardiography’s application in HHD.

The purpose of this paper is to provide an overview of the classic and novel echocar-
diographic findings and their role in the diagnosis and prognosis of HHD without CAD.
An objective knowledge of the potentiality and challenges of this imaging modality might
promptly detect HHD, prevent its progression to HF, or even reverse HF.

2. Pathophysiology

Chronic AH triggers pathological processes, leading to structural and functional
disturbances in the myocardium, like hypertrophy, fibrosis, and ischemia [6,17]. Chronic or
sustained AH leads to pressure overload of the left cardiac cavities, induces change in gene
expression, and confers simultaneous changes in the extracellular matrix and myocytes
hypertrophy. Structurally, the LV walls become thicker, with or without a simultaneous
increase in absolute myocardial mass, as a compensatory mechanism to pressure overload.
Depending on whether there is LV dilation, four patterns of hypertrophy are distinguished:
eccentric non-dilated, eccentric dilated, concentric non-dilated, and concentric dilated [18].
This is a classification from the pathophysiology and anatomy perspective, which differs
from that based on the echocardiography findings mentioned in the next section. Non-
hemodynamic factors, such as the renin–angiotensin–aldosterone system, demographic
factors (gender and ethnicity), obesity, and genetics, play a significant role in myocardial
thickening. It is worth noting that it is not fully understood why patients with HHD
develop a specific LVH pattern.

Another integral element of HHD is myocardial fibrosis [19], either interstitial (reactive,
diffuse) or replacement (reparative). Myocardial reactive fibrosis involves the accumulation
of fibrous connective tissue in the interstitial and perivascular spaces, without a significant
loss of myocardial cells. Replacement fibrosis, on the other hand, consists of scar tissue
formed due to the loss of myocardial cells and their replacement by connective tissue
following myocardial infarction or myocardial death from other causes [20]. It is still
unclear whether those two types of myocardial fibrosis represent distinct processes, as
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they may occur simultaneously6. Hemodynamic factors, such as chronic pressure overload
causing myocardial stress or injury, lead to increased collagen production (type I, type III)
in the myocardium as a reparative mechanism. Non-hemodynamic factors, such as the
renin–angiotensin–aldosterone system, also play a significant role in myocardial fibrosis6.

HHD eventually may progress towards HF, where the initial myocardial hypertrophy
and fibrosis result in myocardium stiffening and systolic and diastolic LV dysfunction.
Eccentric hypertrophy is more likely to lead to HF with reduced ejection fraction (HFrEF),
while concentric hypertrophy may lead to HF with preserved ejection fraction (HFpEF).
Additionally, changes in the LA morphology begin in the early stages of HHD despite the
normal-sized LV18. In particular, microstructural changes (LA wall changes) precede macro-
scopic alterations (LA dilatation), resulting in a functionally impaired atrium despite its
normal size. LA remodeling in HHD is once again the result of both hemodynamic factors
(increased afterload) and non-hemodynamic factors (neurohormonal activation) [21]. The
increased LV afterload leads to elevated filling pressures within the LA, consequently in-
creasing its wall tension. As an adaptation, the LA may reshape, affecting first its contractil-
ity. Non-hemodynamic factors, such as the activation of the renin–angiotensin–aldosterone
system, the release of natriuretic peptides, and endothelin-1, also play a significant role.
Those factors trigger inflammatory cell accumulation, leading to fibrosis and further re-
modeling of the LA. Additionally, there is an increase in sympathetic nervous system
activation due to neurohormonal activation. In the context of HHD, the involvement of
norepinephrine plays a pivotal role in the pathophysiological cascade. The sequence begins
with increased sympathetic nerve activity, particularly in young hypertensive individuals,
leading to elevated heart rate, cardiac output, renal vascular resistance, and blood pres-
sure. Norepinephrine, along with other humoral factors like angiotensin II, contributes
to a hemodynamic profile that induces adaptive changes in cardiac structure, ultimately
culminating in hypertensive LVH. The significance of norepinephrine becomes apparent
as its high levels or interactions with humoral factors potentiate structural changes in the
heart [22].

Despite the acknowledged importance of norepinephrine in the development of LVH,
there exists a notable discrepancy in the effects of antiadrenergic drugs on regression. While
α1-adrenergic blockers, such as doxazosin, demonstrate favorable effects on reversing LVH,
the clinical consequences may be not always beneficial with reducing LA mass, as evidenced
by an increased risk of HF incidence during treatment [23].

AF is frequently observed not only in patients with a dilated LA, but also when atrial
fibrosis is present. Speckle tracking and cardiac magnetic resonance (CMR) have clarified
this point [24]. It is worth mentioning that several mechanisms have been proposed to
explain how systemic AH leads to remodeling of the right ventricle (RV), and fewer have
been proposed for the right atrium (RA). However, the whole process is not yet fully
understood. The same pathophysiological steps present in the left cavities are involved
in the right cavities as well: hypertrophy of myocardial cells, fibrosis, and alterations in
the composition of the extracellular matrix. The RV myocardium becomes thicker and
dilated, accompanied by RA dysfunction22. Finally, persistent AH leads to arteriosclerosis
of the vessels in circulation, as well as microvascular rarefaction. The co-existence of
hypertrophic myocardium and arterial stiffness increases the LV afterload and precipitates
LV remodeling, affecting the overall systolic and diastolic function of the heart.

3. Classical Echocardiographic Indices

Echocardiography plays a pivotal role in identifying structural changes in individuals
with AH, leading to the development of HHD. Table 1 summarizes the echocardiographic
parameters, the challenges and their prognostic value.
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Table 1. Classical and novel echocardiographic indices of hypertensive heart disease.

Variable Indices Challenges Indices with Prognostic Value

LVH

(1) IVSd
(2) RWT
(3) LVMI
(4) LVEDD

• Moderator band
• Sites of IVS measurements
• Wall thickness at the

papillary muscles
• BSA or height indexing

IVS
LVMI
LVH pattern

LV systolic function
(1) LVEF
(2) FS

• Regional WMAs
• Geometrical assumptions
• Foreshortened views
• Endocardial delineation

LVEF

LA

(1) LA dimension
(2) LAVI
(3) LAVmin

• Suboptimal or angled
views

• Poor endocardial
definition

• Foreshortening

LA dimension
LAVI
LAVmin

Diastolic dysfunction

(3) MV inflow pattern
(4) Septal E′, lateral E′

(5) Average E/e′

(6) Pulmonary venous flow
pattern

• Alignment of the
ultrasound beam

• Limited mitral annulus
movement

• Pulmonary vein flow
infrequently obtainable

E/A > 2
E/E′ ratio
Pulmonary venous S/D ratio

RV systolic function

(7) TAPSE,
(8) Tricupid S′

(9) RVEF or FAC
(10) PASP

• Variations in RV load
• Angle of ultrasound beam
• Longitudinal function of

basal RV free wall
• Absent TR
• Severe TR
• Manual tracings of the RV

endocardial edge
• Trans-tricuspid pressure

gradient

TAPSE
RVEF
PASP

Diastolic stress echo
(1) E/e′

(2) TRVmax
• TR detection
• Validation for HFpEF

diagnosis

Stress E/E′ (?)
Stress TRVmax (?)

Speckle tracking LV
(1) GLS
(2) Myocardial work index

• GLS is load-dependent
• Unknown cut-off values of

myocardial work index
GLS

Speckle tracking LA
(1) LASr
(2) Contraction strain

• Optimal views of all LA
walls

LASr (?)

LASr, left atrium strain reservoir; LAVmin, minimal left atrial volume; LAVI, left atrial volume index; LVEDD, left
ventricular end-diastolic diameter; LVEF, left ventricular ejection fraction; LVMI, left ventricular mass index; MV,
mitral valve; PASP, pulmonary artery systolic pressure; PSAX, parasternal short-axis; RV, right ventricle; RVEF,
right ventricular ejection fraction; RWT, relative wall thickness; S′, systolic velocity of the tissue doppler of the
tricuspid valve; TAPSE, tricuspid annular plane systolic excursion; TR, tricuspid regurgitation; TRVmax, tricuspid
regurgitant maximum velocity; WMAs, wall motion abnormalities.

3.1. Left Ventricular Hypertrophy

LVH is a common manifestation of HDD and defined as LV thickening (≥12 mm)
or increased LV mass (LVM) [25]. LVH has long been used as a risk factor in individuals
without known cardiovascular disease. Hence, its detection stratifies the cardiovascular risk
of patients with and without HHD and has considerable impact on patients’ management
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and prognosis. Both LV thickening and increased LV mass rely on linear measurements of
LV dimensions on 2-dimensional (2D) images, while LV mass calculation uses geometric
assumptions regarding the LV shape [26]. The echocardiography image quality is of
paramount importance for measurements. Moreover, there is a high intra-observer and
interobserver variability, even with high image resolution 2D echocardiography. The
presence of a moderator band, different sites for dimension measurements in the parasternal
long-axis (PLAX) and parasternal short-axis (PSAX) views, and the miscalculation of wall
thickness at the papillary muscles’ origin may attenuate the reliability of measurements.
Thus, the 2D echocardiographic assessment of LV mass has significant drawbacks and
tends to overestimate LV mass in comparison to CMR imaging [27]. This is the case
when image quality is suboptimal. The recent advances in 3D echocardiography may
compensate for the abovementioned limitations, with less overestimation of LV mass
than in CMR [28]. However, an optimal 2D image quality is a prerequisite for valid 3D
echocardiography, while it is difficult to detect changes in LV mass over time. Therefore, a
technically perfect echocardiographic examination from an experienced operator is deemed
necessary. Another echocardiographic index of LVH is the calculated relative wall thickness
(RWT) based on the formula 2PWT/LVDd (PWT, posterior wall thickness; LVDd, left
ventricular diastolic diameter).

Three main patterns of LVH based on echocardiography, which differ from the patho-
physiological classification, have been first described: (a) concentric hypertrophy, (b) ec-
centric hypertrophy, and (c) concentric remodeling6. This classification is commonly used
in echocardiography labs. The first two, concentric and eccentric LVH, are the two main
patterns of LVH. That classification is based on the following three parameters with their
cut-off values: (1) the relative wall thickness (RWT) ≥ 0.42, (2) a left ventricular mass index
(LVMI) ≥ 95 g/m2 in females or ≥115 g/m2 in males, and (3) an end-diastolic diameter
(LVEDD) ≥ 5.3 cm in females or ≥5.8 cm in males in hypertensive individuals; these
parameters enhance clinical understanding and guide appropriate interventions. Adding
the end-diastolic volume refines the classification of LVH in four distinct patterns: eccentric
non-dilated, eccentric dilated, concentric non-dilated, and concentric dilated hypertrophy
(Figure 1).

Since LV mass relates to body size, indexing its values to body surface area (BSA) has
been used in population-based studies for reference values. LV mass indexed to BSA un-
derestimates the prevalence of LVH in obese patients [29]. An alternative to traditional BSA
indexing is using height alone for adjusting cardiac parameter measurements, particularly
relevant in HHD assessments. This method aims to provide a more nuanced evaluation by
considering an individual’s height as the sole determinant, addressing variations in body
size not fully captured by BSA. Height indexing enhances precision in evaluating cardiac
structure and function, providing a more individualized assessment of dimensions. Utiliz-
ing height as a reference in obese patients acknowledges the significance of differentiating
between overall body size and its composition. This approach enhances the ability to gain
a more accurate understanding of cardiac health within this specific population [30,31].
The cutoff values, based on height alone, for the left ventricular mass index are established
at equal to or greater than 45 g/m2.7 in females and equal to or greater than 49 g/m2.7

in males.
The prognostic value of LVH is unambiguous. The pattern of increased LV mass has

an added value to LVH in general and to the hypertensive population [32,33]. Since the
1990s, it has been demonstrated that LVH is a strong factor for cardiovascular mortality [34].
Ten-year follow-ups of hypertensive patients have outlined the prognostic power of LVH
and ventricular arrhythmias [35]. An indexed LV mass has better prognostic ability and
may be preferred instead of absolute values of LVH. However, the question of whether
to use BSA or height for LV mass indexing is the subject of debate. Another proof of
the prognostic impact of LVH derives from studies using anti-hypertensive medications.
Targeted LVH regression has been accompanied by cardiovascular benefits [36].
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3.2. Left Ventricular Systolic Function

The conventional assessment of left ventricular systolic function relies on metrics like
the LV ejection fraction (LVEF) and endocardial fractional shortening (FS). However, their
application, primarily at the endocardial surface, sparks concern about their relevance in
the context of LVH. It becomes apparent that these measurements may tend to overstate LV
systolic function [37,38].

An increasingly embraced metric is stress-corrected midwall fractional shortening.
This can provide a more nuanced reflection of systolic function, particularly beneficial
in cases of LVH. Unlike left ventricular endocardial FS, this parameter paints a more
accurate picture [39]. The LV systolic function assessment may face challenges, especially
in patients with inadequate quality of acoustic windows, like obese individuals or those
with chronic obstructive pulmonary disease. Unfortunately, being overweight or obese
are common predisposition factors of HHD, preventing early echocardiographic diagnosis.
Moreover, regional wall motion abnormalities (WMAs) may blur the systolic function
assessment. Simpson’s biplane technique is the most reliable, but it is still based on
geometrical assumptions and faces important limitations. [40]. All echocardiographic
methods rely on good acoustic windows for clear delineation of the blood/endocardial
border, vital for accurate measurement/tracing. The alternative administration of contrast
agents has proven effective in improving LVEF determination in patients with challenging
acoustic windows [41].

Additionally, in terms of accuracy, studies have consistently shown that echocardiog-
raphy tends to underestimate the LVEF when compared to the more advanced imaging
capabilities of CMR [42]. A reduced LVEF, or even a low normal LVEF, has been long
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associated with poor prognosis in HHD, which underscores the necessity for accurate
measurements and intensive therapy. In the context of HFrEF, the prognosis is reduced
proportionally to the degree of LV systolic impairment [43].

3.3. Left Atrium Dilatation

In the context of HHD, LA enlargement signifies an early and prevalent structural
change. Interestingly, the specific geometric pattern of LVH does not affect the size of the
LA in the initial stages of essential AH, whether expressed in terms of diameter or volume.
What emerges as a critical determinant of LA enlargement, independent of potential
confounding factors, is the left ventricular mass index (LVMI) [44]. The greatest anterior–
posterior dimension at the level of the aortic root of the LA has long been discussed as an
unambiguous index of LA enlargement and it is highly dependent on the perpendicularity
of the axis. Suboptimal views, angled views, or bad visualization of the posterior wall may
lead to miscalculation of the LA dimensions.

To quantify LA volume, methods such as area–length or modified Simpson’s are
employed, typically normalized for BSA and presented as the left atrial volume index
(LAVI) in ml/m2. The normal range of the LAVI extends up to 34 mL/m2 [45]. Ensuring the
avoidance of foreshortening in the long axis of the LA is critical for maintaining precision
in the evaluation process [46,47].

Comparative studies between transthoracic echocardiography (TTE) and CMR have
consistently demonstrated the underestimation of both LA and RA volumes in TTE. Dis-
crepancies between imaging modalities may stem from poor endocardial definition and
foreshortening in echocardiography, particularly evident in standard apical views, impact-
ing the lateral atrial walls [48].

Notably, the LAVI has been related to mortality risk, regardless of the left ventricular
geometry, in a substantial cohort of patients exhibiting preserved LV systolic function [49,50].
LA enlargement has been considered as a bad prognostic factor in patients with HHD
and HFrEF [51]. On the other hand, it may be a consequence of HFpEF, which interplays
with AF occurrence and other co-morbidities [52]. Recent studies indicate that measuring
minimal left atrial volume (LAVmin) at LV end-diastole, when the left atrium is directly
exposed to LV end-diastolic pressure, may offer a closer correlation to LV filling pressure
and clinical outcomes compared to maximal left atrial volume (LAVmax) [53,54].

This suggests that LAVmin could be a more effective marker for LA structural remod-
eling. It is noteworthy that, while the prognostic value of LAVmax in patients with HFpEF
is contentious, there are limited data on the prognostic value of LAVmin in HfpEF patients,
necessitating further research [55–58]. The adaptation to BSA leads to the calculation of the
LAVmin index (LAVImin), whose power to predict HF hospitalization appears to be notably
stronger for individuals without a history of AF compared to those with AF, especially
when juxtaposed with LAVImax58.

3.4. Diastolic Dysfunction

Mitral inflow measurements play a crucial role in assessing diastolic function. Param-
eters such as E and A velocity, their ratio (E/A), the deceleration time of E velocity, and the
isovolumic relaxation time provide valuable insights. Notably, in hypertensive individuals,
a normal in-treatment transmitral flow pattern serves as an indicator of a lower risk for
HF, irrespective of BP levels. Although the implementation of antihypertensive therapy
in patients with LVH improves mitral inflow patterns, this has not been correlated with a
reduction in cardiovascular morbidity and mortality [59]. On the other hand, a high E/A
ratio (>2) has been associated with grade III diastolic dysfunction, indicating high LV filling
pressures and poor prognosis, especially when HF has been already developed [60,61].

The main limitation of echocardiography in diastolic dysfunction assessment is the
clustering of numerous parameters and inaccuracy in blood flow calculation. The proper
alignment of the ultrasound beam is pivotal; color flow echocardiography may guide the
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alignment of sample volume parallel to flow [62]. Using the lowest filter setting is advised
to capture the full velocity profile [63].

The pulsed tissue Doppler-derived E′ velocity of the mitral annulus is an essential
component in the evaluation of cardiac diastolic function. A decline in the septal (<7 cm/s)
and lateral e′ (<10 cm/s) and an increased average ratio (E/e′ ≥14) signal compromised LV
relaxation. It is worth emphasizing the predictive capability of the E/E′ ratio for primary
cardiac events in a hypertensive population without established cardiac disease [64]. The
additional assessment of late (atrial) diastolic velocity (A′), may be influenced by LA
function and LV end-diastolic pressure, but its diagnostic and prognostic values have not
been established.

The evaluation of pulmonary venous flow pattern, when obtainable, has been impli-
cated as an independent diagnostic criterion and a valid predictor of cardiovascular events
in essential AH. A high S/D ratio per se is independently associated with an increased
cardiovascular disease risk in hypertensive patients [65]. Furthermore, the concomitant
high pulmonary venous systolic-to-diastolic wave ratio (S/D, normal values: male < 1.51,
female < 1.66) and a low E/A ratio exert predictive value in HHD65. In TTE, the S,D flow
data are usually acquired from the orifice of the right upper pulmonary vein in the apical
four-chamber view. Color flow Doppler should be employed to accurately place the sample
volume 1 to 2 cm into the pulmonary vein, acknowledging that the far-field nature of
the structure may limit the quality of the recording [66]. Overall, the echocardiographic
assessment of diastolic function has several limitations, including dependence on the num-
ber of Doppler measurements, potential interobserver variability, and acoustic window
challenges in the hypertensive population. In contrast, CMR has the advantages of precise
volumetric measurements and tissue velocity mapping, independent of acoustic window
quality [67] (Figure 2).
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3.5. RV Systolic Function

RV systolic dysfunction is not only a recognized marker of adverse prognosis in HF
but is also linked to poor prognosis in HHD [68]. All the following parameters have been
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associated with negative prognosis in the whole spectrum of cardiac diseases. On the other
hand, RV measurements are usually influenced by volume load or are based on geometrical
assumptions that attenuate the accuracy of RV systolic function estimation.

Echocardiographic evaluation of the RV systolic function in HHD involves a compre-
hensive assessment of the following various parameters of the right cavities: tricuspid
annular plane systolic excursion (TAPSE), systolic velocity of the tissue Doppler of the
tricuspid valve (TV) annulus, right ventricular ejection fraction (RVEF), Fractional Area
Change (FAC), pulmonary artery systolic pressure (PASP), size of RV, and right ventricular
systolic pressure (RVSP). A comprehensive echocardiographic assessment and early detec-
tion of right cavity dysfunction may contribute to risk stratification and tailored clinical
management of individuals with HHD [69].

The TAPSE method stands out for its simplicity and reproducibility, but it is susceptible
to variations in load and angle. This technique involves measuring edge-to-edge the
excursion of the tricuspid annulus during systole with a swift sweep speed of ≤100 mm/s.
In cases of severe tricuspid regurgitation (TR), TAPSE may exhibit pseudo-normalization
due to volume overloading [70]. In parallel, the tissue Doppler RV systolic wave velocity
may assist in assessing the longitudinal function of the basal RV free wall, lacking a
comprehensive evaluation of global RV function. Similar to TAPSE, it is also angle- and
load-dependent, requiring precise alignment of the ultrasound beam with the lateral TV
annulus, essentially capturing only the longitudinal function of the RV base [71].

The assessment of RV size and systolic function through conventional echocardiogra-
phy should be conducted in all patients with HHD, considering RV loading conditions. It is
crucial to employ a multi-parametric approach and utilize various echocardiographic views
to ensure accurate evaluation, especially when there is a discrepancy between different
echocardiographic parameters [72]. This comprehensive approach enhances the precision
and reliability of the interpretation of findings related to RV size and function.

HFpEF is acknowledged as a contributor to pulmonary hypertension (PH) [73]. The
estimation of PH relies on the detection of the TR jet, to calculate the RA-RV gradient, and
leads to the calculation of RVSP through the simplified Bernoulli equation [74]. However, if
TR is absent, as is occasionally encountered, the assessment of RVSP becomes challenging
through conventional echocardiography. It is crucial to acknowledge that RVSP estimation
is subject to assumptions, such as the absence of right ventricular outflow tract obstruc-
tion and accurate assessment of RA pressure (RAP) [75]. The co-existence of RV systolic
dysfunction and PH leads to the underestimation of RVSP due to two important limita-
tions: the arbitrary set of RAP levels and the calculation of the trans-tricuspid pressure
gradient, which is usually severely attenuated in severe TR. Despite the great advantage
of echocardiography in easily estimating RVSP in a non-invasive way, this remains an
indirect measurement of pulmonary pressures, providing a likelihood of PH and not a firm
diagnosis. A detailed assessment often necessitates additional testing, particularly right
heart catheterization, to provide more accurate and comprehensive insights into pulmonary
hemodynamics [76].

Calculation of the RVEF and FAC is based on assumptions as well and demands
meticulous manual tracings of the RV endocardial edge at both end-systole and end-
diastole, and it should include the papillary muscles, trabeculations, and the moderator
band [77]. Moreover, 3D echocardiography has emerged as a solution to the inherent
limitations of 2D echocardiography. It surpasses these constraints in RVEF calculation,
and it is considered the gold standard for global RV function evaluation. Notably, the 3D
calculation of RVEF closely aligns to CMR relative measurements. It is worth mentioning
that the 3D evaluation of RVEF not only strongly correlates with RV systolic function
but also conclusively establishes it as an independent predictor of both cardiac mortality
and major adverse cardiovascular events. The 3D evaluation of the RV may considerably
contribute to this direction with potential application in patients with HHD [78]. It is crucial
to know that accurate 3D echocardiography is strongly dependent on high-quality imaging,
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invariable heart rates, and specialized and expensive software, and demands substantial
time and expertise [72].

3.6. Stress Echocardiography

The interplay between HFpEF and HHD is complex. Both are characterized by exer-
tional dyspnea and effort intolerance due to elevated LV filling pressure [76,79]. HFpEF
may not be clinically apparent, posing challenges to diagnosis based solely on symptoms
and standard evaluations. Diastolic dysfunction is the first manifestation of this pathologi-
cal process, discernible in early, mild AH even before the development of LVH. HFpEF is
not uncommon among patients with HHD, but, surprisingly, hypertensive medications
do not considerably alleviate symptoms or alter prognosis. Up to now, the diagnosis of
HFpEF has been challenging and most recently diastolic stress echocardiography (DSTE)
has been proposed in cases where diastolic dysfunction at rest is mild (grade I) [80]. On top
of the resting echocardiography parameters and natriuretic peptides levels, an abnormal re-
sponse during exercise testing is defined as E/e′ > 15 and an increase in TRVmax > 3.4 m/s.
According to the consensus statement, DSTE may be useful to confirm or reject HFpEF
diagnosis in patients at intermediate risk. However, recent questions have arisen about
the reliability and technical feasibility of using this parameter during physical activity [81].
The differentiation of dyspnea among elderly patients requires a non-invasive test for
HFpEF diagnosis, as patients without exercise-related diastolic dysfunction may not benefit
from specific treatments [82]. Despite DSTE’s potential, the absence of diagnostic and
prognostic validation, the limited expertise capacity, and the required equipment restrict its
widespread use [83].

A cardiopulmonary exercise test (CPET) evaluates the cardiopulmonary system by
observing how the cardiovascular and respiratory systems respond to the energy demands
of muscle contraction during physical exercise. The choice of exercise modalities, such as a
bicycle ergometer or treadmill, and specific protocols are personalized based on factors such
as the patient’s fitness level, health, weight, and age, under the guidance of the requesting
physician [84].

The combined exercise stress echocardiography (ESE) and CPET constitute a diagnos-
tic approach aiming to unmask HFpEF in patients with AH. It is noteworthy that physical
exercise has the capacity to stress cardiopulmonary homeostasis and reveal pathological
hemodynamic changes that may not be apparent at rest. In addition to the aforementioned
changes during DSTE, lower peak values of oxygen consumption (VO2) and end-tidal
carbon dioxide (PetCO2), along with a higher ventilatory equivalent for carbon dioxide
(VE/VCO2) slope, are independent predictors of masked HFpEF [85,86] This compre-
hensive diagnostic approach enables timely intervention and personalized management
strategies [87,88]. Notably, CPET-ESE has recently demonstrated additional predictive
value in patients with subclinical HF compared to the two techniques used separately [89].
Among its limitations, CPET-ESE is a more time-intensive and expensive procedure, re-
quiring specialized equipment and trained personnel. Careful patient selection is critical,
guided by clinical judgment. Therefore, hypertensive individuals exhibiting symptoms
and signs indicative of HFpEF should initially undergo a comprehensive evaluation that
encompasses standard rest echocardiography, the measurement of natriuretic peptides,
and then, if it is medically deemed necessary, further exercise testing [90]. Overall, the
diagnosis of HFpEF in the context of HHD may require a multimodality imaging approach
to unmask symptoms and detect hemodynamic changes during exertion associated with
elevated LV filling pressures [91].

4. Novel Echocardiographic Indices
4.1. Speckle Tracking of Ventricles

Myocardial strain and its sensitive index of myocardial deformation, global longi-
tudinal strain (GLS), provides a widely accepted, accurate, repeatable evaluation of LV
systolic function [92]. The sub-endocardial layer of the LV supports predominantly the
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longitudinal mechanics, whereas the mid-wall and sub-epicardium contribute mostly to
the circumferential, rotational, and twisting motions. It is well known that AH severely
suppresses LV myocardial shortening in the longitudinal direction more than in the circum-
ferential direction [93]. Impaired myocardial deformation has long been associated with
HHD [94]. Moreover, speckle tracking has the potential to differentiate various types of
LVH diseases [95]. The adverse structural cardiac remodeling in HHD involves the expan-
sion of cardiomyocytes and accumulation of fibrosis in the extracellular matrix. Speckle
tracking in echocardiography has the advantage of detecting a decline in myocardial strain
in patients with HHD and normal LVEF before apparent structural changes, unraveling the
subtle impairment of systolic function [96]. A recent meta-analysis of six studies reported
the clinical value of GLS to detect subclinical cardiac damage in patients with masked
AH [97]. However, the myocardial strain is load dependent. Hence, an increase in afterload
may lead to a decreased GLS, thereby attenuating the accuracy of research results [98].
A growing number of studies suggests that speckle tracking performs better than LVEF,
since it may uncover subtle LV systolic dysfunction in hypertensive patients, before LVEF
starts declining [99]. A compensatory modality using myocardial strain with a limited
influence of blood pressure on its results is the myocardial work index [100]. This is a
recently proposed, non-invasive index, based on the speckle tracking technique, to assess
myocardial deformation incorporating the left ventricular pressure. Growing evidence
supports the potentiality of the myocardial work index to assist the diagnostic algorithm for
HHD [101,102]. The usage of specialized software is a prerequisite for the off-line analysis
of myocardial work index [103]. Up to now, limited data from small studies have reported
the advantages of the myocardial work index over classical echocardiographic parameters
to provide a better understanding of the LV response to high BP [104]. Therefore, the
combined assessment of myocardial deformation with hemodynamics could reflect all
pathophysiological changes observed in HHD [105]. On the other hand, the impact of
anti-hypertensive medications on this novel marker has not been fully investigated [106].
The prognostic value of alterations in myocardial work index is still unknown and requires
meticulous investigation.

In addition to the diagnostic value, the contribution of GLS to prognosis has been
proved in a wide spectrum of cardiomyopathies; however, its application in the risk
stratification of patients with HHD has not been validated [107]. Future studies will
assess the efficacy of speckle tracking to predict cardiac organ damage and determine the
anti-hypertensive regimen16. The introduction of 3D speckle tracking echocardiography
may further increase the sensitivity of echocardiography to detect regional alterations of
longitudinal strain and area strain. With optimal echocardiographic views, 3D speckle
tracking may assist in better quantifying the degree of myocardial damage [108]. It is a
promising technique that requires further investigation.

Most recently, there is a growing body of evidence about the clinical utility of the
speckle tracking of the RV [109]. It undergoes remodeling in many cardiac conditions,
among them HHD [24]. However, the detection and quantification of structural and
functional changes in RV is difficult, while echocardiographic images are commonly not
optimal for further analysis. CMR is more advantageous for assessing the impact of
hypertension on RV [110]. Under this scope, RV speckle tracking could be an alternative
to obtain a better assessment of RV deformation and dysfunction in HHD with good
correlation with CMR findings. Nevertheless, its clinical use remains limited, since the
acquisition of images is challenging, and the prognostic value remains to be proved in
large-scale studies [111].

4.2. Speckle Tracking of Left Atrium

Most recently, researchers have hypothesized LA dysfunction before structural changes
become evident, for example based on LA dilatation [112]. All three phases of LA function
(reservoir, conduit, and booster pump) functions have been found to be more significantly
impaired in AH patients than in healthy controls [113]. Classical (E/E′, LA size) and novel
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indices (reservoir strain, LASr, conduit strain, and contraction strain) of LA myocardial
deformation have been associated with AH [114]. Notably, LA reservoir and booster pump
strain seem to correlate with GLS in hypertensive patients. Changes in LA deformation
are more sensitive than other indices, since acute blood pressure lowering in patients with
hypertensive urgency promptly improves LA strain [115]. Without doubt, alterations in LA
mechanics emerge early in the course of HHD development [116]. Up to now, the evidence
of the diagnostic power and, to a lesser extent, of the prognostic value of LA strain in HHD
has not been robust [117]. More studies are required to verify the cut-off values of LA
strain. In all cases, good quality views of the LA are a prerequisite for speckle tracking
implementation in order to achieve accurate and repeatable measurements (Figure 3).
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Recently, both TTE and CMR have emerged stand indispensable tools for cardiac
evaluation, each presenting distinctive advantages. Echocardiography, with its real-time
imaging capabilities and widespread accessibility, emerges as a dynamic and cost-effective
option, capable of assessing valve function and chamber dimensions. Its bedside utility and
portability enhance its versatility in various clinical scenarios. Conversely, CMR, renowned
for superior spatial resolution and tissue characterization, offers unparalleled insights into
cardiac anatomy and function. Despite the higher costs and specialized requirements asso-
ciated with CMR, its ability to provide detailed information about myocardial tissue texture
and views of high imaging quality make it a valuable complement to echocardiography.
The selection between these modalities hinges on clinical nuances, specific diagnostic needs,
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and available resources, often prompting a synergistic integration for a comprehensive
cardiac assessment. The technological advances in echocardiography open new roads in its
clinical application and future research will clarify its diagnostic and prognostic power.

4.3. Therapeutic Implications

The clinical application of echocardiography cannot only be directed towards diag-
nostic or prognostic purposes but can be extended to follow up hypertensive patients.
Experimental data have strongly supported the favorable effects of anti-hypertensive medi-
cations on LVH [118]. Most importantly, large clinical studies have reported the association
between anti-hypertensive medications, like irbesartan, and LVH and LV morphological
changes [119]. The lack of LVH regression after the initiation of anti-hypertensive medi-
cations may be attributed to older age, inadequate BP control, obesity, kidney failure and
longer duration of AH with delayed commitment of treatment [120]. Regarding the rest of
the clinical echocardiographic parameters, the existing data are limited. Anti-hypertensive
medications may also reduce LA volume [121]. Such an effect could be of clinical impor-
tance, since it may improve prognosis in non-ischemic cardiomyopathies [122]. Speckle
tracking seems to provide an objective index of beneficial alterations in mechanics and
geometry of the LV at the early stage of anti-hypertensive regimen [123]. Without doubt,
more studies are required to demonstrate the favorable effects of anti-hypertensive med-
ications on echocardiographic parameters in the long-term and to link those effects to
clinical outcomes.

4.4. Gaps in Evidence and Future Perspectives

A global, widely accepted definition of non-ischemic HHD is pending. The diagnostic
role of echocardiography as a first-line modality is unambiguous. However, it remains to
be proved which of the proposed echocardiographic indices will cluster to set a definite
diagnosis and prognosis of HHD. Significant challenges and obstacles should be addressed
by echocardiographers in clinical practice to make echocardiography the gold standard
technique. The novel echocardiographic parameters may assist in this direction, but they
require validation. In addition to diagnostic accuracy, the relationship of echocardiography
with HHD patients’ prognosis can be a new research target of pending trials, which will
definitely alter the management of HHD.

5. Conclusions

HHD as a consequence of high-pressure overload on the heart has been increasingly
recognized, constituting an emerging cardiac disease. It presumably consists of a clinical
entity with unfavorable prognosis beyond CAD or kidney function impairment. Echocar-
diography is a first-line modality for HHD diagnosis, clustering a number of parameters of
cardiac morphology and function in patients with persistent AH. The absence of a single,
gold-standard diagnostic parameter has compromised all estimations of the incidence,
evolution, and prognosis of HHD. The addition of novel indices, like speckle tracking of
the left ventricle and left atrium, 3D volume evaluation, and myocardial work to classical
echocardiographic parameters may provide more accurate and reproducible diagnostic
and prognostic data in those patients. As of now, their use is still underappreciated, but
they have the potential to objectively define HHD and estimate its prognosis.
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