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Abstract: Background: Despite advancements in vaccination, early treatments, and understanding of
SARS-CoV-2, its impact remains significant worldwide. Many patients require intensive care due
to severe COVID-19. Remdesivir, a key treatment option among viral RNA polymerase inhibitors,
lacks comprehensive studies on factors associated with its effectiveness. Methods: We conducted
a retrospective study in 2022, analyzing data from 252 hospitalized COVID-19 patients treated
with remdesivir. Six machine learning algorithms were compared to predict factors influencing
remdesivir’s clinical benefits regarding mortality and hospital stay. Results: The extreme gradient
boost (XGB) method showed the highest accuracy for both mortality (95.45%) and hospital stay
(94.24%). Factors associated with worse outcomes in terms of mortality included limitations in life
support, ventilatory support needs, lymphopenia, low albumin and hemoglobin levels, flu and/or
coinfection, and cough. For hospital stay, factors included vaccine doses, lung density, pulmonary
radiological status, comorbidities, oxygen therapy, troponin, lactate dehydrogenase levels, and
asthenia. Conclusions: These findings underscore XGB’s effectiveness in accurately categorizing
COVID-19 patients undergoing remdesivir treatment.
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1. Introduction

The Coronavirus Disease 2019 (COVID-19) pandemic began in late December 2019 in
Wuhan, China, and was caused by a new beta-coronavirus called Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2) [1]. According to the World Health Organization
(WHO), as of 13 December 2023, the pandemic has led to nearly 7 million deaths world-
wide [2]. The Omicron variant emerged at the end of 2021, replacing the Delta variant.
This variant appears to be less clinically severe than earlier ones, likely due to widespread
vaccination [3]. Additionally, various treatments have helped reduce hospitalization and
mortality rates [4,5].

COVID-19 is a highly contagious disease that poses significant risks of severe illness
and death. It can result in bilateral pneumonia, severe respiratory failure requiring invasive
mechanical ventilation (IMV), and damage to multiple organs, sometimes resulting in
tragic outcomes [6].

SARS-CoV-2 affects various organs, as observed in autopsy findings, including the
kidneys, heart, intestines, liver, and brain. However, it primarily targets the respiratory
system [7]. Most infected individuals will have symptoms like cough, fever, fatigue,
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and muscle pain. However, a small percentage may develop severe inflammation in the
lungs, leading to acute respiratory distress syndrome (ARDS) [8]. Additionally, it can
cause complications such as kidney problems, coagulation disorders, or shock, resulting in
mortality rates of over 30% [9].

The virus enters cells using structures like angiotensin-converting enzyme 2 and
transmembrane serine protease 2, which are present in the respiratory tract, cornea, and
gastrointestinal cells [10].

In COVID-19, factors contributing to the severity and progression of the infection
include advanced age, various health conditions, and changes in lab results. Elevated levels
of certain markers like C-reactive protein (CRP); lactate dehydrogenase (LDH); ferritin;
procalcitonin; and proinflammatory cytokines such as interleukin (IL)-6, IL-2, IL-1β, TNF-
α, and G-CSF have been identified as significant indicators [11]. Moreover, in severe
COVID-19 cases, the ratio of neutrophils to lymphocytes is often high [12].

Currently, widespread vaccination is the most effective public health measure in the
ongoing fight against SARS-CoV-2. While only a handful of drugs are effective in treating
severe cases of COVID-19, early diagnosis and prompt treatment initiation, along with
nutritional and organ support, can significantly improve outcomes.

Remdesivir is a bioactive molecule that has demonstrated in vitro activity against
SARS-CoV-2, along with prophylactic and therapeutic efficacy in non-clinical models of
other viruses, such as SARS-CoV, MERS-CoV, and Ebola [12]. In October 2020, it became the
inaugural drug authorized by the Food and Drug Administration (FDA) for the treatment
of COVID-19. Based on various clinical trials, its use was approved for adults and pediatric
patients aged 12 and older, weighing at least 40 kg, for the treatment of COVID-19 requiring
hospitalization [13–15].

The preliminary findings from the WHO-funded Solidarity trial revealed that lopinavir,
hydroxychloroquine, interferon (IFN)-β1a, and remdesivir had little to no effect on hos-
pitalized COVID-19 patients, as indicated by overall mortality, initiation of ventilation,
and hospital stay duration [16]. The final results highlight the ineffectiveness of the drugs
under investigation, except for remdesivir. While it does not significantly impact COVID-19
patients already on ventilation, it does show a modest effect on mortality or progression to
ventilation (or both) in other hospitalized patients [17].

Currently, little is known about the predictive factors linked to poor outcomes in
hospitalized COVID-19 patients treated with antivirals in general and specifically with
remdesivir in clinical practice.

The goal of our study is to use machine learning (ML) models to categorize hospitalized
COVID-19 patients undergoing remdesivir treatment based on the risk of mortality and/or
hospital stay duration. ML, a subset of artificial intelligence (AI), employs statistical and
mathematical algorithms to extract patterns from the data, aiding in making complex
decisions [18]. Unlike classical statistical models created for inferences about variable
relationships, these models are created to accurately predict outcomes using data from
various factors.

AI tools have been implemented in various areas to combat COVID-19, including drug
and vaccine discovery or repurposing [19,20].

To our knowledge, this is the first study to develop, compare, and validate six super-
vised ML models predicting factors associated with a high risk of mortality and/or hospital
stay duration in patients with SARS-CoV-2 infection undergoing treatment with remdesivir.

2. Materials and Methods
2.1. Data Source

Patient information was systematically gathered from various internal hospital chan-
nels, utilizing two primary sources: (1) the electronic medical records (EMR) system,
equipped with specialized modules for documenting clinical analysis results, radiological
imaging findings, and electronic medical prescriptions, and (2) the intensive care unit (ICU)
electronic prescription program. This comprehensive approach facilitated the synthesis
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of extensive data, enabling the methodical development of a personalized data collection
questionnaire (DCQ) for each individual patient.

2.2. Study Design and Population

A retrospective observational study was conducted at a high-complexity tertiary hos-
pital. Initially, 285 patients began remdesivir treatment, but 33 were excluded for not
reaching the minimum required dose. Exclusions were based on various criteria, including
a glomerular filtration rate < 30 mL/min, mortality or hospital discharge, clinical deci-
sion, symptom onset beyond 7 days of starting remdesivir, and a negative diagnostic test.
Ultimately, the study focused on 252 patients (58.3% male) admitted with microbiolog-
ically confirmed SARS-CoV-2 between 1 January and 31 December 2022, using reverse
transcription-polymerase chain reaction (RT-PCR) from nasopharyngeal swabs.

In this study, inclusion criteria involved patients ≥ 12 years old and weighing ≥ 40 kg,
admitted to the hospital with a COVID-19 diagnosis. Selected patients met specific re-
quirements for remdesivir administration according to the hospital’s internal protocol
at the study’s outset. These criteria included symptom onset ≤ 7 days before the first
remdesivir dose, no need for oxygen therapy or low-flow oxygen therapy, and meeting
at least two of the following three conditions: (1) respiratory rate (RR) ≥ 24 breaths per
minute; (2) baseline oxygen saturation (SpO2) < 94% in ambient air; and (3) PAFI index
(PaO2/FIO2) < 300 mmHg. Patients were required to have received a minimum of three
doses of the drug. The approved remdesivir regimen consisted of an initial 200 mg loading
dose administered intravenously over 30–120 min in 100–250 mL of sterile, pyrogen-free
0.9% sodium chloride solution, followed by maintenance doses of 100 mg for a duration
ranging from 5 to 10 days, depending on the patient’s level of immunosuppression. Partic-
ipants agreed to take part in the study after being informed about it, and the study was
approved by the Ethics Committee of the General University Hospital of Valencia.

2.3. Study Data

The DCQ collected information on demographic, clinical, and laboratory data, orga-
nized into 8 sections:

1. Patient profile: This section covered demographic factors like age and sex, as well as
clinical aspects including:

(a) Weight and height or body mass index.
(b) Presence of comorbidities, such as smoking, obesity, hypertension, diabetes

mellitus (DM), chronic obstructive pulmonary disease (COPD), asthma, and
other chronic respiratory conditions. Details on other serious underlying
conditions are provided in an open-text section. The number of comorbidities
was categorized (1, 2, 3, and >3).

(c) Pre-admission pharmacological treatment: This included the use of angiotensin-
converting enzyme inhibitors/angiotensin receptor blockers, non-steroidal
anti-inflammatory drugs, antihistamines, and/or montelukast, as well as infor-
mation on the type of COVID-19 vaccine received and the number of doses
administered.

(d) COVID-19 Symptoms: A detailed list of symptoms was recorded, including
fever, cough, dyspnea, fatigue, loss of taste or smell, headache, myalgia, sore
throat, nasal congestion, rhinorrhea, conjunctivitis, rash, nausea, vomiting,
and diarrhea.

2. Initial hospitalization details:

- Date of admission to the emergency department.
- Date of admission to the hospital.
- Date of symptom onset.
- Date of microbiological confirmation of SARS-CoV-2 infection.
- Any life support limitations and date implemented.
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- Whether the patient needed ICU admission.

3. ICU admission details:

- ICU admission date.
- Mortality risk assessed by the CURB-65 scale.
- Level of consciousness evaluated using the Glasgow Coma Scale.
- Other clinical variables in the first 24 h: fever (≥38 ◦C), RR > 24 breaths/minute,

systolic blood pressure < 90 mmHg, SpO2, and number of lung quadrants affected
in imaging tests (ranging from 1 to 4).

- Severity of illness assessed using the APACHE II scale within the first 24 h of
admission

- Patient’s condition evaluated using the SOFA scale during their ICU stay.

4. Analytical and radiological data overview:

This section covers laboratory tests completed just after hospital admission (in the
emergency department or upon admission) before starting remdesivir treatment, as well as
those performed after completing the remdesivir treatment.

The included laboratory parameters were the PAFI index; FIO2; SpO2; leukocytes;
neutrophils; lymphocytes; monocytes: platelets; mean corpuscular volume; hemoglobin;
erythrocyte sedimentation rate; CRP; aspartate aminotransferase; alanine aminotransferase;
LDH; blood urea nitrogen; serum creatinine; albumin and/or total proteins; total cholesterol;
procalcitonin; lactic acid, bicarbonate, and pH; creatine phosphokinase and/or troponin;
and D-dimer and ferritin.

Additionally, the determination of cycle threshold (Ct) values from the virus RT-PCR
at the start of treatment (or the closest available) is included. Ct is a semi-quantitative value
inversely related to the amount of RNA in the sample. The SARS-CoV-2 antigenic variant
is also identified.

A classification of pulmonary radiological status was included:

- Affected side (bilateral or unilateral);
- Type of lung injury (ground-glass opacity, consolidation, or mixed);
- Density pattern (patchy, confluent, or mixed).

5. Pharmacological treatment during hospitalization:

The medications considered included drugs that modulate inflammation and the
immune system, such as IL-6 receptor antagonists (e.g., tocilizumab and sarilumab), IL-1
receptor antagonist (anakinra), Janus kinase inhibitors (e.g., baricitinib and tofacitinib), or
Bruton’s tyrosine kinase inhibitors (e.g., ibrutinib and acalabrutinib). Additionally, other
medications like immunosuppressants (e.g., corticosteroids, cyclosporine, and tacrolimus)
or immunoglobulins were considered. Antibiotics, vasopressors, and low-molecular-weight
heparin at prophylactic doses were also part of the treatment plan. For each medication,
the dosage and duration of treatment were recorded.

The patient’s initial condition upon starting remdesivir therapy was categorized into
two groups: (a) patients not needing extra oxygen and (b) patients requiring low-flow
oxygen. The patient’s clinical status on days 7 and 14 after the first dose of remdesivir was
documented as follows: (a) discharged from the hospital and resumed normal activities; (b)
discharged from the hospital but with difficulties resuming normal activities; (c) hospital-
ized without needing extra oxygen; (d) hospitalized needing extra oxygen but not IMV; (e)
hospitalized needing IMV; and (f) deceased.

6. Microbiological testing:

We considered the isolated microorganism in every case. Tests included tracheal
aspirates, blood cultures, detection of influenza and/or coinfection, as well as tests for
pneumococcal and legionella antigens in urine.

7. Medical procedures during hospitalization:

The included procedures were as follows:
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- Hemodialysis/hemofiltration;
- Oxygen therapy;
- Non-invasive ventilation (NIV);
- IMV;
- Extracorporeal membrane oxygenation;
- Prone ventilation.

8. Patients’ final outcomes:

Complications during hospitalization were noted, including ARDS, sepsis, septic
shock, nosocomial pneumonia (non-COVID-19), other nosocomial infections (non-COVID-
19, non-pneumonia), acute renal failure, and acute hepatic failure.

The clinical benefit consisted of symptom improvement (fever, cough, etc.), along with
improved radiological findings and/or a PAFI index ≥ 300 mmHg or SpO2 > 93 without
oxygen support within the first 5, 14, or 28 days, depending on the length of hospitalization.

Time taken to clear SARS-CoV-2 was considered, and outcomes were divided into
hospital discharge or mortality. Collected data included length of hospital stay and date of
ICU discharge. Any rehospitalizations within 7 days post-discharge were also documented.

To evaluate remdesivir’s effectiveness, information on overall in-hospital mortality
and duration of hospitalization was recorded. Length of hospital stay was defined as the
period from admission to death or discharge.

2.4. Method
2.4.1. Model Development

In this study, the extreme gradient boost (XGB) method was used as the reference
algorithm, thanks to its notable features, such as fast execution, scalability, and high
processing capability through parallel computing [21,22]. XGB consistently outperforms
other algorithms in accurately solving various data science problems [22–24]. Additionally,
a comparative analysis was conducted with other supervised ML systems.

Considering a dataset S = xj, yj, the XGB model was formulated using the following
equation:

ŷj =
P

∑
p=1

tp
(
xj
)

(1)

where xj stands for the input vector with m time variables, ŷj denotes the predicted output,
yj shows the output, tp represents a tree with leaf weight wp and structure up, j = 1; 2; . . .; n,
and P is the total number of trees.

The formulated objective function for the proposed method is expressed in Equation (2).
Employing a second-order Taylor expansion is integral to improving prediction accuracy
in approximating the XGB objective function [21].

R = ∑
j

r
(
ŷj, yj

)
+ ∑

p
Ψ
(
tp
)

(2)

In Equation (3), fp stands for the number of leaves on the tree. The function R()
penalizes method complexity. The learning rate is represented by λ, and wp is the leaf score
vector. To control system complexity weight, a parameter γ is used. The goal is to optimize
Equation (2) [22].

Ψ
(
tp
)
= λ fp +

1
2

γ
∥∥ωp

∥∥2 (3)

In this study, we tested several ML algorithms to evaluate the performance of our
proposed method. We chose the top-performing five algorithms from those widely recog-
nized in the scientific community. These include decision trees (DT) [25], Gaussian naive
Bayes (GNB) [26], Bayesian linear discriminant analysis (BLDA) [27], K-nearest neighbors
(KNN) [28], and support vector machines (SVM) [29]. We built the models using the Mat-
Lab Statistical and Machine Learning Toolbox (MatLab 2022a; The MathWorks, Natick, MA,
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USA). The dataset was split into two parts, with 70% used for training and the remaining
30% for testing, ensuring that patient information was not shared between the sets. To
validate the results and prevent overfitting, we conducted 5-fold cross-validation.

Optimizing the ML algorithms involves adjusting various hyperparameters during
the training phase. Bayesian techniques were employed in this study to determine optimal
hyperparameter values. This optimization method significantly improves the outcomes of
the developed methods.

Throughout all simulations, 100 iterations were executed to derive mean and standard
deviation values in a uniformly random manner. This systematic approach mitigates the
impact of noise, facilitating the calculation of relevant values and ensuring the attainment of
statistically valid results [30]. The procedural phases employed in this study are delineated
in Figure 1. Initially, subjects for study were selected, followed by the implementation of
the database and subsequent training and validation of ML methods.
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Figure 1. This figure illustrates the framework employed in the training and testing processes of
this study.

2.4.2. Performance Evaluation

In this study, various methods were compared using the following metrics: specificity,
precision (positive predictive value), recall (sensitivity), balanced accuracy, degenerate
Youden index (DYI), F1 score, Matthew’s correlation coefficient (MCC), Cohen’s Kappa
index (CKI), receiver operating characteristic (ROC), and area under the curve (AUC) [30].
The F1 score is defined as

F1 score = 2
Precision·Recall

Precision + Recall
(4)

MCC was additionally employed to evaluate the performance of the ML methods,
and it is defined as

MCC =
TP·TN − FP·FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(5)
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where TP denotes the number of true positives, TN represents the number of true negatives,
FP is the number of false positives, and FN corresponds to the number of false negatives.
CKI was used to assess the overall performance of the system [31].

3. Results

In this section, we discuss the results obtained from patient records used for training
and validation to identify predictors of increased in-hospital mortality and hospital stay
in COVID-19 patients treated with remdesivir. We compare the performance of our pro-
posed system with various supervised ML classification methods widely accepted in the
scientific community.

Table 1 presents the performance outcomes regarding the mortality associated with
various classification methods, including DT, BLDA, GNB, KNN, SVM, and our novel XGB
system. It is noteworthy that GNB and BLDA-based approaches demonstrate a relatively
lower balanced accuracy, falling short of the 82% benchmark. Conversely, DT and SVM
techniques exhibit superior classification prowess, nearing a balanced accuracy of 90%,
surpassing the effectiveness of GNB and BLDA. In contrast, the KNN method achieves
a result that is closest to the proposed XGB method, resulting in improved predictive
capabilities. Particularly, the XGB system achieves an outstanding score surpassing 95%,
showcasing remarkable performance in classification tasks.

Table 1. Summary of the mean values and standard deviation of balanced accuracy, recall, precision,
F1 score, AUC, MCC, DYI, and Kappa index of the machine learning models and the novel method
proposed in this study for determining mortality.

Methods Balanced Accuracy Recall Precision F1 Score

SVM 84.80 ± 0.75 84.90 ± 0.73 84.20 ± 0.74 84.55 ± 0.73

BLDA 81.61 ± 0.84 81.70 ± 0.81 81.03 ± 0.82 81.36 ± 0.81

DT 86.25 ± 0.71 86.35 ± 0.70 85.63 ± 0.71 85.99 ± 0.70

GNB 76.80 ± 0.94 76.89 ± 0.93 76.25 ± 0.95 76.57 ± 0.94

KNN 89.43 ± 0.60 89.54 ± 0.58 88.79 ± 0.59 89.16 ± 0.58

XGB 95.45 ± 0.46 95.56 ± 0.45 94.77 ± 0.47 95.17 ± 0.44

Methods AUC MCC DYI Kappa

SVM 0.84 ± 0.02 75.25 ± 0.75 84.80 ± 0.73 75.49 ± 0.74

BLDA 0.81 ± 0.03 72.41 ± 0.82 81.61 ± 0.81 72.65 ± 0.81

DT 0.86 ± 0.02 76.53 ± 0.71 86.25 ± 0.71 76.78 ± 0.72

GNB 0.76 ± 0.03 68.15 ± 0.95 76.80 ± 0.94 68.37 ± 0.94

KNN 0.89 ± 0.02 79.35 ± 0.57 89.43 ± 0.58 79.62 ± 0.58

XGB 0.95 ± 0.02 84.70 ± 0.42 95.45 ± 0.46 84.98 ± 0.43
Abbreviations: AUC: area under curve; BLDA: Bayesian linear discriminant analysis; DT: decision tree; DYI:
degenerated Younden index; GNB: Gaussian naïve Bayes; KNN: K-nearest neighbor; MCC: Matthew’s correlation
coefficient; SVM: support vector machine; XGB: extreme gradient boost.

Table 2 presents the performance results for the hospital stay variable using the same
classification methods. As can be observed, the outcomes are similar to those of the
mortality variable, with XGB achieving a balanced accuracy exceeding 94%.

KNN and DT stand out as the algorithms that come closest to XGB in terms of
precision and recall values, surpassing SVM and notably outperforming BLDA and GNB
in results. Furthermore, this trend is evident in Tables 1 and 2, particularly regarding the
F1 score parameter, where XGB demonstrates notably high values, indicating enhanced
classification performance.
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Table 2. Summary of the mean values and standard deviation of balanced accuracy, recall, precision,
F1 score, AUC, MCC, DYI, and Kappa index of the machine learning models and the novel method
proposed in this study for the hospital stay.

Methods Balanced Accuracy Recall Precision F1 Score

SVM 83.80 ± 0.77 83.89 ± 0.76 83.20 ± 0.78 83.54 ± 0.76

BLDA 80.54 ± 0.85 80.64 ± 0.84 79.94 ± 0.86 80.30 ± 0.85

DT 85.67 ± 0.73 85.61 ± 0.72 84.90 ± 0.75 85.25 ± 0.74

GNB 75.41 ± 0.98 75.50 ± 0.95 74.86 ± 0.96 75.18 ± 0.97

KNN 88.53 ± 0.66 88.61 ± 0.64 87.85 ± 0.67 88.24 ± 0.68

XGB 94.24 ± 0.48 94.35 ± 0.44 93.57 ± 0.46 93.96 ± 0.47

Methods AUC MCC DYI Kappa

SVM 0.83 ± 0.02 74.35 ± 0.74 83.80 ± 0.77 74.60 ± 0.73

BLDA 0.80 ± 0.03 71.47 ± 0.83 80.54 ± 0.85 71.71 ± 0.84

DT 0.85 ± 0.03 75.89 ± 0.71 85.51 ± 0.73 76.13 ± 0.71

GNB 0.75 ± 0.03 66.91 ± 0.92 75.43 ± 0.95 67.15 ± 0.93

KNN 0.88 ± 0.02 78.53 ± 0.63 88.51 ± 0.66 78.79 ± 0.64

XGB 0.94 ± 0.02 83.62 ± 0.41 94.24 ± 0.45 83.90 ± 0.42
Abbreviations: AUC: area under curve; BLDA: Bayesian linear discriminant analysis; DT: decision tree; DYI:
degenerated Younden index; GNB: Gaussian naïve Bayes; KNN: K-nearest neighbor; MCC: Matthew’s correlation
coefficient; SVM: support vector machine; XGB: extreme gradient boost.

To evaluate how well the suggested XGB system categorizes COVID-19 patients
treated with remdesivir, identifying those with a higher risk of mortality and/or extended
hospital stay, we computed several common parameters from the literature. These include
AUC, MCC, DYI, and the kappa index. MCC stands out as particularly reliable, as it
provides a high score only when predictions are accurate across all four categories of the
confusion matrix.

The outcomes of these four categories (true positives, true negatives, false positives,
and false negatives) are directly impacted by the proportion of positive and negative in-
stances in the dataset. As shown in Tables 1 and 2, the XGB method achieved MCC values of
84.70% and 83.62%, respectively, clearly surpassing the values obtained by other methods.

In the same vein, when analyzing the kappa index, XGB reached nearly 85% for the
final variable of mortality, marking a significant advancement over KNN and DT by 5.4%
and 8.2%, respectively. As for the final variable of hospital stay, XGB approached about 84%.
This trend persists when considering the AUC and DYI parameters, where XGB surpasses
the rest of the methods with higher values. These findings emphasize the superior ability
of XGB to accurately categorize COVID-19 patients treated with remdesivir in terms of
mortality and/or hospital stay.

Figures 2 and 3 provide a comprehensive analysis, comparing the performance of
the XGB method with alternative classifiers across a variety of essential metrics, for both
mortality and hospital stay, respectively. These metrics include balanced accuracy, recall,
specificity, precision, F1 score, CKI, MCC, AUC, and DYI.
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Figure 2. Graphic representation of different metrics for each of the machine learning models used,
in percentage. Training phase (above) and test phase (below) for predicting mortality in COVID-19
patients undergoing remdesivir treatment. Abbreviations: AUC: area under curve; BLDA: Bayesian
linear discriminant analysis; DT: decision tree; DYI: degenerated Younden index; GNB: Gaussian
naïve Bayes; KNN: K-nearest neighbor; MCC: Matthew’s correlation coefficient; SVM: support vector
machine; XGB: extreme gradient boost.
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Figure 3. Graphic representation of different metrics for each of the machine learning models used, in
percentage. Training phase (above) and test phase (below) for predicting hospital stay in COVID-19
patients undergoing remdesivir treatment. Abbreviations: AUC: area under curve; BLDA: Bayesian
linear discriminant analysis; DT: decision tree; DYI: degenerated Younden index; GNB: Gaussian
naïve Bayes; KNN: K-nearest neighbor; MCC: Matthew’s correlation coefficient; SVM: support vector
machine; XGB: extreme gradient boost.

Furthermore, the ROC curve is a crucial tool used for assessing and comparing how
effectively the proposed system classifies compared to other machine learning methods.
It is constructed by plotting sensitivity against specificity across various threshold values.
Figure 4 depicts the outcomes of different classification systems, aligning with the primary
goal of categorizing patients in the study.
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Figure 4. ROC curves for mortality (above) and hospital stay (below) for the six assessed machine
learning predictors. Abbreviations: BLDA: Bayesian linear discriminant analysis; DT: decision tree;
GNB: Gaussian naïve Bayes; KNN: K-nearest neighbor; ROC: receiver operating characteristic; SVM:
support vector machine; XGB: extreme gradient boost.

In particular, the XGB method exhibits a significantly larger area under the ROC curve,
indicating its enhanced ability to accurately classify the two distinct classes, both in terms
of mortality and hospital stay. This is further supported by the specific numerical values
provided in Tables 1 and 2.

For better clarity, we have arranged all metrics for each dataset—both training and
validation—and represented them in a radar plot (Figures 5 and 6). In an ideal situation
where the model performs exceptionally well in all metrics, the plot would create a circle
covering the entire grid. In our study, the training sets consistently show higher scores
across all metrics, whereas the validation sets generally display lower scores.

The radar plots give us a quick look at the model’s performance. A bigger circle on
the validation set suggests a better predictive method. Figure 5 shows that our suggested
XGB system is a good example of a well-balanced model. Importantly, both the training
and validation sets have similar radar plots, indicating neither overfitting nor underfit-
ting. This boosts the model’s ability to work well with new inputs, delivering accurate
results effectively.

On the flip side, the GNB method consistently comes in as the least effective performer
in all metrics. Based on these findings, we can confidently state that our proposed XGB
system excels at categorizing patients in line with the study’s goals. It provides high
accuracy and automation, making it a valuable tool for clinical practice.

With the proposed XGB method, the predictive factors linked to a poorer outcome in
COVID-19 patients treated with remdesivir, in terms of mortality, include limitation of life
support treatment, a need for ventilatory support (especially IMV) on day 14 after the first
dose of remdesivir, lymphopenia, low levels of albumin and hemoglobin, the presence of
flu and/or coinfection, and cough. Factors associated with a worse outcome of remdesivir
use in terms of hospital stay include the number of doses of the COVID-19 vaccine, patchy
lung density, bilateral pulmonary radiological status, the number of comorbidities, oxygen
therapy, troponin and LDH levels, and asthenia. Figure 7 shows a bar graph displaying the
weights of predictive variables that notably improve the classification accuracy of different
ML methods.
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Figure 5. Radar plot depicting the training phase (above) and test phase (below) for predicting
mortality in COVID-19 patients undergoing remdesivir treatment. AUC: area under curve; BLDA:
Bayesian linear discriminant analysis; DT: decision tree; DYI: degenerated Younden index; GNB:
Gaussian naïve Bayes; KNN: K-nearest neighbor; MCC: Matthew’s correlation coefficient; SVM:
support vector machine; XGB: extreme gradient boost.
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Figure 6. Radar plot depicting the training phase (above) and test phase (below) for predicting
hospital stay in COVID-19 patients undergoing remdesivir treatment. AUC: area under curve; BLDA:
Bayesian linear discriminant analysis; DT: decision tree; DYI: degenerated Younden index; GNB:
Gaussian naïve Bayes; KNN: K-nearest neighbor; MCC: Matthew’s correlation coefficient; SVM:
support vector machine; XGB: extreme gradient boost.

J. Clin. Med. 2024, 13, x FOR PEER REVIEW 13 of 25 
 

 

Figure 6. Radar plot depicting the training phase (above) and test phase (below) for predicting hos-

pital stay in COVID-19 patients undergoing remdesivir treatment. AUC: area under curve; BLDA: 

Bayesian linear discriminant analysis; DT: decision tree; DYI: degenerated Younden index; GNB: 

Gaussian naïve Bayes; KNN: K-nearest neighbor; MCC: Matthew’s correlation coefficient; SVM: 

support vector machine; XGB: extreme gradient boost. 

The radar plots give us a quick look at the model’s performance. A bigger circle on 

the validation set suggests a better predictive method. Figure 5 shows that our suggested 

XGB system is a good example of a well-balanced model. Importantly, both the training 

and validation sets have similar radar plots, indicating neither overfitting nor underfitting. 

This boosts the model’s ability to work well with new inputs, delivering accurate results 

effectively. 

On the flip side, the GNB method consistently comes in as the least effective per-

former in all metrics. Based on these findings, we can confidently state that our proposed 

XGB system excels at categorizing patients in line with the study’s goals. It provides high 

accuracy and automation, making it a valuable tool for clinical practice. 

With the proposed XGB method, the predictive factors linked to a poorer outcome in 

COVID-19 patients treated with remdesivir, in terms of mortality, include limitation of 

life support treatment, a need for ventilatory support (especially IMV) on day 14 after the 

first dose of remdesivir, lymphopenia, low levels of albumin and hemoglobin, the pres-

ence of flu and/or coinfection, and cough. Factors associated with a worse outcome of 

remdesivir use in terms of hospital stay include the number of doses of the COVID-19 

vaccine, patchy lung density, bilateral pulmonary radiological status, the number of 

comorbidities, oxygen therapy, troponin and LDH levels, and asthenia. Figure 7 shows a 

bar graph displaying the weights of predictive variables that notably improve the classi-

fication accuracy of different ML methods. 

 

Figure 7. Cont.



J. Clin. Med. 2024, 13, 1837 14 of 25J. Clin. Med. 2024, 13, x FOR PEER REVIEW 14 of 25 
 

 

 

Figure 7. Graphical representation of the predictive variables with the most significant impact on 

classifying COVID-19 patients undergoing remdesivir treatment in terms of mortality (above) and 

hospital stay (below). 

The main baseline clinical data of the 252 patients included in the study are presented 

in Table 3. 

Table 3. Main basal clinical data of patients. Data are n (%) or median (IQR), unless otherwise stated. 

Variable Cohort 

Number of patients 252 

Age (years) (IQR) 77 (66.7–85.2) 

Male, n (yes %) 147 (58.3) 

Hospital admission (days) after remdesivir administration (IQR) 8 (5–12) 

Exitus, n (yes %) 34 (13.5) 

Patients with duration of remdesivir treatment for 4–5 days, n (yes %) 194 (76.9) 

Patients with duration of remdesivir treatment > 5 days, n (yes %) 14 (5.6) 

Duration (days) from onset of symptoms to microbiological 

confirmation (IQR) 
2 (1–4) 

Oxygen therapy, n (yes %) 188 (74.6) 

Patients who need admission to the ICU, n (yes %) 14 (5.6) 

Limitation of life support treatment, n (yes %) 47 (18.6) 

0 1 2 3 4 5 6 7

Age

Hemoglobin

Duration of treatment with remdesivir > 5 days

Limitation of life support treatment (LLST)

Body Mass Index (BMI)

Acute Respiratory Distress Syndrome (ARDS)

Dyspnea

Sex

Ct (Cycle Threshold)

Patients requires admission to the intensive Care Unit (ICU)

Baseline condition at the start of remdesivir requiring oxygen…

Chronic neurological or neurodegenerative disease

Glutamate pyruvate transaminase (GPT)

Non-invasive ventilation (NIV)

Treatment with tocilizumab

Flu and/or co-infection

Diarrhea

Active oncologic or hematologic neoplasia

Diabetes

Treatment with baricitinib

Ground-Glass Opacity Lung Lesion

Lactate dehydrogenase (LDH)

Oxygen therapy

Number of comorbidities

Bilateral pulmonary radiological status

Troponin

Patchy lung density

Asthenia

Number of doses of COVID-19 vaccine

Figure 7. Graphical representation of the predictive variables with the most significant impact on
classifying COVID-19 patients undergoing remdesivir treatment in terms of mortality (above) and
hospital stay (below).

The main baseline clinical data of the 252 patients included in the study are presented
in Table 3.

Table 3. Main basal clinical data of patients. Data are n (%) or median (IQR), unless otherwise stated.

Variable Cohort

Number of patients 252

Age (years) (IQR) 77 (66.7–85.2)

Male, n (yes %) 147 (58.3)

Hospital admission (days) after remdesivir administration (IQR) 8 (5–12)

Exitus, n (yes %) 34 (13.5)

Patients with duration of remdesivir treatment for 4–5 days, n (yes %) 194 (76.9)

Patients with duration of remdesivir treatment > 5 days, n (yes %) 14 (5.6)

Duration (days) from onset of symptoms to microbiological confirmation (IQR) 2 (1–4)

Oxygen therapy, n (yes %) 188 (74.6)

Patients who need admission to the ICU, n (yes %) 14 (5.6)

Limitation of life support treatment, n (yes %) 47 (18.6)

IMV, n (yes %) 10 (3.9)

Baseline situation at the start of remdesivir:

- Patient does not require supplementary oxygen, n (yes %)
- Patient requires low-flow oxygen therapy, n (yes %)

96 (38.1)

156 (61.9)
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Table 3. Cont.

Variable Cohort

Hypertension, n (yes %) 158 (62.7)

Diabetes, n (yes %) 89 (35.3)

Dyslipemia, n (yes %) 112 (44.4)

Smoker, n (yes %) 55 (21.8)

Obesity, n (yes %) 45 (17.8)

COPD, n (yes %) 35 (13.9)

Heart failure, n (yes %) 51 (20.2)

Ischemic heart disease, n (yes %) 46 (18.2)

Chronic kidney disease, n (yes %) 26 (10.3)

Chronic neurological or neurodegenerative disease, n (yes %) 62 (24.6)

Mental health disorder, n (yes %) 60 (23.8)

Active hematological or oncological neoplasia, n (yes %) 63 (25.0)

Patients with ≥3 comorbidities, n (yes %) 193 (76.6)

Fever, n (yes %) 148 (58.7)

Cough, n (yes %) 156 (61.9)

Dyspnea, n (yes %) 158 (62.7)

Asthenia, n (yes %) 106 (42.1)

Presence of flu and/or coinfection, n (yes %) 29 (11.5)

Angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, n (yes %) 109 (43.2)

Antibiotics, n (yes %) 234 (92.8)

Immunosuppressants and/or immunomodulators, n (yes %)

- Corticoides, n (yes %)
- Tocilizumab, n (yes %)
- Baricitinib, n (yes %)

197 (78.2)

124 (49.2)

33 (13.1)

32 (12.7)

Albumin (g/dL) (IQR) 3.4 (2.9–3.6)

Hemoglobin (g/dL) (IQR) 12.4 (10.9–13.7)

Troponin (ng/mL) (IQR) 12 (7–27)

CRP (mg/dL) (IQR) 6.9 (2.4–14.1)

LDH (U/L) (IQR) 463 (359.5–609.5)

Ferritin (µg/L) (IQR) 413 (193–782)

D-dimer (ng/mL) (IQR) 878 (499.7–1534.2)

Creatinina (mg/dL) (IQR) 0.8 (0.6–1.1)

CK (U/L) (IQR) 98.5 (51.0–192.0)

PAFI (IQR) 323.8 (257.0–368.0)

Lymphocytes (109/L) (IQR) 0.8 (0.6–1.2)

Bilateral lung radiological status, n (yes %) 98 (38.9)

Ground-glass opacity lung injury, n (yes %) 69 (27.4)

Patchy lung density, n (yes %) 64 (25.4)

Patients with ≥3 doses of COVID-19 vaccine, n (yes %) 199 (78.9)

Acute Respiratory Distress Syndrome, n (yes %) 56 (22.2)

Clinical status on day 14 after the first administration of remdesivir

- Hospitalized and requires supplementary oxygen but not IMV, n (yes %)
- Hospitalized and requires IMV, n (yes %)

23 (9.1)

5 (1.9)
Abbreviations: CK: creatine kinase, COPD: chronic obstructive pulmonary disease, CRP: C-reactive protein, ICU:
intensive care unit, IQR: interquartile range, IMV: invasive mechanical ventilation, LDH: lactate dehydrogenase,
PAFI: ratio of arterial oxygen partial pressure (PaO2) to fractional inspired oxygen (FiO2).
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4. Discussion

Among the approved medications for COVID-19, remdesivir stands out as the pre-
ferred antiviral treatment for hospitalized patients infected with SARS-CoV-2. Additionally,
other drugs like tocilizumab and baricitinib show promise, particularly for severe cases,
including those requiring IMV [32]. While remdesivir can reduce viral levels and shorten
symptom duration, identifying the patients who benefit most from it remains uncertain.
This knowledge is crucial for minimizing unnecessary side effects and costs while optimiz-
ing resource use [33].

The European Medicines Agency (EMA) initially granted conditional approval for mar-
keting across the EU on 3 July 2020, which later transitioned to full marketing authorization
on 8 August 2022. This medication is approved for use in adults and children as young as
4 weeks old, weighing at least 3 kg, who have pneumonia and need supplemental oxygen
(either low- or high-flow oxygen or other non-invasive ventilation at the start of treatment).
Additionally, it can be used in adults and children weighing at least 40 kg who do not need
supplemental oxygen but are at higher risk of developing severe COVID-19 [34].

On the other hand, AI has been employed to identify genomic sequences of SARS-CoV-2,
including antigenic variants, as well as to develop drugs and vaccines for COVID-19 [35]. It
has also been used to discover drug combinations against COVID-19 [36].

Drug repurposing trials have aimed at finding potential treatments for COVID-19,
including antiviral therapies, anti-inflammatory drugs, antithrombotic agents, and im-
munomodulators [37]. In a study by Basit SA et al., a deep learning model was employed to
predict the effectiveness of different medications, identifying remdesivir as highly effective
against COVID-19 with a 95% positive score [38].

Understanding the physiopathology of COVID-19 can help scientists develop effective
antiviral drugs by uncovering unknown viral pathways and structures. With the advance-
ments in AI and ML, it is reasonable to use these methods to explore new candidates.
Various studies, like the one by Imtiaz F and Pasha MK, have focused on examining the
structure of the RNA-dependent RNA polymerase (RdRp) using ML techniques. RdRp
is crucial for virus replication and holds potential as a promising target for COVID-19
treatment [39]. Remdesivir, which transforms into an analog of adenosine triphosphate
during intracellular metabolism, works mainly by integrating into the developing RNA
chain by the RdRp. This disrupts viral replication, a key aspect of its antiviral activity [12].
Monitoring the impact of emerging mutations on viral replication and response to antiviral
drugs is essential. Remdesivir shows stability as an RdRp inhibitor compared to other
antivirals in the presence of mutations at this level of viral replication [40].

The WHO’s Solidarity trial was the first major study to show the limited clinical ef-
fectiveness, in terms of mortality, of three repurposed antivirals in hospitalized COVID-19
patients: lopinavir, hydroxychloroquine, and interferon (IFN)-β1a. The remdesivir arm
continued, with 4146 patients receiving remdesivir and 4129 assigned to the control group.
It was observed that remdesivir does not have a significant effect on COVID-19 patients
already on ventilation. Among other hospitalized patients, it has a minor impact on mortal-
ity or progression to ventilation [17]. Remdesivir may be beneficial in the clinical course for
both hospitalized and non-hospitalized patients, but certainty remains limited [41]. There
is evidence supporting the clinical benefit of a 5-day regimen of remdesivir in patients with
moderate COVID-19 infection (lung infiltrates and SpO2 in ambient air > 94%) [14]. For
patients with severe COVID-19 (SpO2 ≤ 94% while breathing ambient air and radiolog-
ical evidence of pneumonia) who do not require mechanical ventilation, there does not
seem to be a significant difference between a 5-day and a 10-day course of remdesivir [15].
Remdesivir significantly reduces hospitalization days and lowers inflammatory markers
compared to standard treatment in patients with moderate to severe COVID-19 [42]. Com-
pared to standard care, remdesivir quickly improves low oxygen levels (reducing the need
for ventilatory support) and reduces inflammation (lowering IL-6 levels), leading to a better
course of moderate to severe COVID-19 [43]. Patients treated with remdesivir spend less
time in the ICU and have better survival rates [44].
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Recent meta-analyses confirm that the use of remdesivir can help reduce mortality in
COVID-19 patients and shorten the time to clinical improvement [32,45]. Observational
studies have demonstrated benefits in hospital mortality with remdesivir therapy [46,47].

Remdesivir appears to lower mortality rates in hospitalized COVID-19 patients who
do not require oxygen support or only need standard oxygen therapy. However, it does
not seem to help patients on mechanical ventilation [48]. A recent meta-analysis by Huang
C et al. found that hospitalized adult COVID-19 patients who did not need extra oxygen
or only required low-flow oxygen and were treated with remdesivir had a lower risk of
death. However, those needing high-flow oxygen or IMV did not see the same benefit [49].
Remdesivir also seems to speed up recovery, reduce complications, and might slightly
decrease the need for ventilation [32,50,51]. Additionally, a 5-day treatment course appears
to provide more benefits with fewer side effects and lower costs for non-ventilated patients
compared to a 10-day course [50].

Remdesivir is safe to use, but when combined with corticosteroids, it does not seem
to offer extra clinical benefits [45]. However, when paired with baricitinib, it is not only
safe but also seems to be more effective than using remdesivir alone. This combination can
reduce recovery time and speed up clinical improvement in COVID-19 patients, particularly
those needing high-flow oxygen or NIV [52].

This study leads the way in developing, comparing, and evaluating six supervised
ML methods to predict factors that reduce the effectiveness of remdesivir in hospitalized
patients with SARS-CoV-2 pneumonia. We collected data on 133 demographic, clinical,
and laboratory variables. Among the ML algorithms tested, XGB stood out as the best
performer, achieving the highest balanced accuracy rates for predicting mortality (95.4%)
and hospital stay duration (94.2%).

When SARS-CoV-2 infects cells in the respiratory tract, it causes damage and triggers
the immune system to release proinflammatory substances like IFNγ, IL-1β, IL-6, and
TNF-α [53]. Among these, IL-6 is particularly crucial, as it escalates inflammation from
mild to severe states, such as cytokine release syndrome (CRS) and ARDS. These conditions
can be fatal for severely ill COVID-19 patients, with mortality rates surpassing 70% [8,54].

In our investigation, we observed a hospital mortality rate of 13.5%, with 3.9% of all
patients requiring IMV. These findings align with those of other studies [17,48,55]. The
median duration of hospitalization following the administration of remdesivir was 8 days
(Interquartile Range, IQR, 5–12).

Our analysis involved testing various ML classifiers, among which the XGB method
stood out as the most precise in identifying patients at higher risk of mortality and/or
prolonged hospital stay. After a thorough examination, we compared the XGB model
with several other supervised ML methods commonly found in the existing literature,
such as BLDA, GNB, DT, KNN, and SVM. It is important to note that in biomedical
scenarios, current ML classification techniques consistently outperform unsupervised
methods, achieving higher average accuracy rates for both regression and classification
tasks [56]. In our study, BLDA and GNB performed the poorest among the methods
examined, while KNN’s performance closely matched that of XGB. These findings align
with previous research on the predictive capabilities of supervised ML algorithms for
COVID-19 mortality and hospitalization durations [57,58].

In our study, we used a radar graph to assess the performance of ML models in
both the training and testing phases. The results indicate that the XGB model performs
exceptionally well, especially in managing large datasets without overfitting. It surpasses
other methods by achieving superior precision, recall, and overall accuracy. The reliable
performance of the XGB model makes it incredibly valuable, especially in biomedical
applications like predicting cancer stages for patients [59].

In our cohort, 58.3% were male, with a median age of 77 (IQR 66.7–85.2). We found
several factors linked to negative outcomes after receiving remdesivir, notably regarding
mortality and hospital stay. For mortality, adverse outcomes were associated with life
support limitations, the need for ventilatory support (particularly IMV) 14 days after the
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initial remdesivir dose, lymphopenia, low albumin and hemoglobin levels, flu and/or
coinfection, and cough. When it comes to hospital stay, factors associated with a worse
outcome with remdesivir use included the COVID-19 vaccine doses, patchy lung density,
bilateral pulmonary radiological status, comorbidity count, need for oxygen therapy, high
levels of troponin and LDH, and the presence of asthenia.

These identified factors provide valuable insights into the potential determinants
of adverse outcomes associated with remdesivir use. In the realm of research on factors
influencing the response to remdesivir in hospitalized patients with COVID-19, few studies
have been conducted [60–62].

Previous studies have identified factors that predict the severity and mortality of
COVID-19 patients, but these were conducted before standard treatment with remdesivir
was introduced. ML techniques have confirmed that demographic factors (like age); clinical
factors (such as comorbidities or symptoms); and analytical factors are associated with
the severity, mortality, and length of hospital stay of COVID-19 patients, regardless of the
specific treatment used [63,64]. Adamidi et al.’s systematic review also found predictors
of disease progression and mortality using ML techniques, similar to our study. They
emphasized that age, PCR and LDH levels, lymphopenia, and chest X-ray and CT scan
findings are commonly linked to adverse outcomes in COVID-19 patients [58]. Additionally,
other studies have highlighted the effectiveness of the XGB method in predicting adverse
outcomes in hospitalized COVID-19 patients [65].

In Choi YJ et al.’s study, multivariate analysis confirmed that a high National Early
Warning Score (NEWS) and Charlson Comorbidity Index (CCI) at admission, along with
dyspnea, were independent risk factors for 30-day mortality in COVID-19 pneumonia pa-
tients treated with remdesivir and dexamethasone [60]. NEWS is based on a scoring system
that combines six key physiological measurements (respiratory rate, SpO2, temperature,
systolic blood pressure, heart rate, and level of consciousness) upon hospital admission
or monitoring. This tool is highly sensitive and specific in predicting early mortality in
prehospital and emergency department settings [66]. It emphasizes that COVID-19 admis-
sions carry a significantly higher mortality risk compared to non-COVID-19 admissions,
highlighting the elevated baseline mortality risk associated with COVID-19 [67].

In our study, factors indicating a higher risk of mortality, similar to NEWS and short-
ness of breath, included the limitation of life support treatment and the need for ventilatory
support, especially IMV, 14 days after the initial dose of remdesivir. Regarding hospital stay,
a similar factor was the requirement for oxygen therapy. These respiratory parameters and
symptoms indicate respiratory failure and suggest a more severe decline in hospitalized
COVID-19 patients.

Several studies confirm that the main clinical symptoms in patients admitted with
COVID-19 are shortness of breath, cough, and fever [66]. In our study, cough was associated
with a higher risk of mortality, while asthenia was linked to prolonged hospital stay.

In the study conducted by Choi YJ et al., similar to our findings, the majority of
hospitalized cases of COVID-19 pneumonia occurred in adults aged ≥65 years; thus, there
were no significant differences in the prognosis based on age. Additionally, within the
laboratory parameters, low lymphocyte count, high levels of CRP, and elevated LDH
indicated an unfavorable prognosis [60]. In our study, we found that lymphopenia, along
with low levels of albumin and hemoglobin, was strongly linked to mortality in patients
treated with remdesivir. Lymphopenia indicates an impaired T-cell response and weakened
adaptive immunity. SARS-CoV-2 infection mainly impacts T lymphocytes, particularly
CD4+ and CD8+ T cells, resulting in decreased counts. Lymphopenia is more commonly
seen in severe cases [68]. Georgakopoulou VE et al. confirmed that low levels of albumin
and the C-reactive protein to albumin ratio were predictors of mortality, similar to our
findings [62]. For hospital stays, elevated troponin and LDH levels were the most relevant
predictors, along with observing bilateral lung involvement and patchy lung density
in imaging tests. In the study by Terkes V et al., advanced age, elevated CRP, and the
Computed Tomography (CT) score were identified as significant predictors of disease
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outcome [69]. However, the intense inflammatory response triggered by the infection can
lead to alterations in hemostasis and coagulation parameters [70]. In our research, platelet
count was not a significant predictor to influence the sought-after final outcome.

On the other hand, comorbidities themselves result from inflammation and can in-
duce a proinflammatory state. The CCI is a simple, easy-to-apply, and valid method for
classifying comorbidities and estimating mortality from COVID-19 [71].

Recent studies have taken into account the pre-existing health conditions (comorbidi-
ties) of patients infected with SARS-CoV-2 and their association with the progression of the
disease in terms of mortality and hospital stay [61].

Aging and pre-existing health conditions can create a state of meta-inflammation,
amplifying inflammation in COVID-19 and increasing the risk of mortality. Several studies
demonstrate a correlation in patients affected by COVID-19 between age, number of
comorbidities, and certain laboratory markers [72]. There appears to be a positive link
between inflammation biomarkers such as CRP, ferritin, and LDH and the number of
comorbidities in COVID-19 patients. The same pattern is observed in hematological
parameters like the neutrophil-to-lymphocyte ratio. Similar to these studies, in our research,
the number of comorbidities was associated with worse outcomes for patients and extended
hospital stays.

Chronic kidney disease, the incidence of acute kidney injury, and atrial fibrillation have
been shown to be comorbidities associated with reduced survival in patients hospitalized
for COVID-19 [73]. Other studies confirm that lymphopenia, often observed in cancer
patients, is associated with a higher risk of mortality [74]. Hematological disorders are
also seen as additional health conditions that can negatively impact the effectiveness of
antiviral treatments such as remdesivir [75]. In other studies, hypertension and type
2 diabetes, linked with obesity as metabolic syndrome, are considered significant risk
factors for adverse outcomes [76]. In our study, the presence of influenza and/or co-
infection constituted the comorbidity associated with higher mortality.

In the recent meta-analysis by Amstutz A et al., neither age, comorbidities, nor the
use of corticosteroids had an impact on the effectiveness of remdesivir in terms of mor-
tality [48]. Similarly, the need for increased respiratory support in patients has shown
limited effectiveness of remdesivir in reducing mortality, aligning with our own research
outcomes [17].

In our investigation, 22.2% of patients developed ARDS according to the latest defini-
tion [77]. ARDS is a clinical syndrome of acute hypoxemic respiratory failure due to lung
inflammation, not caused by cardiogenic pulmonary edema. Various studies using these
techniques have found that ARDS is associated with fatal outcomes in COVID-19 patients,
making ventilatory support essential, including IMV [58,64]. In our study, both IMV and
oxygen therapy were predictors of poor prognosis.

In contrast to Choi YJ et al.’s study, in ours, a lower number of COVID-19 vaccine
doses was linked to clinical deterioration and a longer hospital stay [60]. The study by
Georgakopoulou VE et al. confirmed that, regardless of vaccination status, pre-existing
comorbidities, age, and gender, patients with a combination of biomarkers indicating acute
inflammatory response, cell death, and hypercoagulability—specifically, CRP, LDH, and
fibrinogen—reflected the severity of COVID-19 [78]. More recently, Mikulska M et al.
demonstrated that receiving fewer doses of the COVID-19 vaccine was a predictive factor
for treatment failure with antivirals such as remdesivir [75]. Several studies consistently
show that individuals who are not vaccinated or receive fewer vaccine doses are more
likely to experience negative outcomes, including the need for mechanical ventilation or
death during hospitalization [79]. This aligns with our findings.

In the study by Shimizu H et al., the time intervals between symptom onset, diag-
nosis, and antiviral treatment were significant predictors of moderate illness [80]. In our
study, following the applied protocol, remdesivir treatment was supposed to commence
upon microbiological confirmation of SARS-CoV-2 infection and within 7 days of clinical
symptom onset.
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None of the drug treatments, including early antibiotic use, had a significant effect on
the final outcome, similar to findings in other studies [60].

Most current studies using ML techniques confirm that respiratory parameters like
SpO2 and the need for invasive ventilatory support are considered the most important
predictors for mortality in hospitalized COVID-19 patients treated with remdesivir. While
hypertension and worsening renal function are also considered mortality predictors in these
studies, they did not hold enough significance in our research [81,82]. Kuno T et al. devel-
oped a predictive model for in-hospital mortality using ML methods in COVID-19 patients
treated with steroids and remdesivir. Variables associated with mortality included age,
hypertension, SpO2, blood urea nitrogen, ICU admission, and endotracheal intubation [81].

On the other hand, evidence indicates the presence of different COVID-19 patient phe-
notypes showing diverse inflammatory and immune responses, mortality risks, and treat-
ment outcomes [83,84]. In a study by Chen H et al., two COVID-19 phenotypes emerged:
hypo-inflammatory and hyper-inflammatory, with the latter marked by heightened pro-
inflammatory cytokine levels and increased complication rates. Corticosteroid therapy
was linked to lower 28-day mortality (HR, 0.45; 95% CI, 0.25–0.80; p = 0.0062) in the hyper-
inflammatory type [84]. The lack of efficacy with remdesivir treatment may lend support to
this idea, underscoring the importance of identifying factors for personalized treatments.

Our study has both limitations and strengths. The main limitations come from its
retrospective, single-center design and limited sample size. Yet, these limitations are offset
by leveraging robust methodological tools such as ML. ML methods have the advantage
of being effective even with small datasets, resulting in simple and fast classification for
our proposed method. We have also used data-augmentation techniques to enhance our
analysis [30].

One strength of our study is its inclusion of a diverse patient population, covering
individuals with common health conditions often overlooked in standard clinical trials. This
broader representation allows our findings to be applicable to a wider range of patients. Our
methodology effectively identifies patients who could benefit from remdesivir, potentially
leading to better survival rates and shorter hospital stays. Additionally, similar research
using ML techniques has identified factors linked to worse outcomes in severe COVID-19
patients treated with tocilizumab [85]. Comparative studies suggest that ML methods may
offer greater accuracy and efficiency compared to traditional logistic regression analysis,
particularly with limited sample sizes.

The XGB method is a straightforward binary classification system that is user-friendly
and easy to train. As more data are collected, this algorithm improves its prediction accuracy.

5. Conclusions

Remdesivir has proven to be beneficial in patients with SARS-CoV-2 pneumonia,
especially in those without critical illness criteria. However, a significant number of patients
still die or require longer hospital stays despite treatment with remdesivir. Therefore, we
utilized ML techniques, which are increasingly important in predicting important events.
Out of the six supervised ML methods we tested, XGB demonstrated the highest accuracy
in predicting factors linked to poorer outcomes, such as mortality and hospital stay length,
in hospitalized COVID-19 patients treated with remdesivir. This tool can help healthcare
professionals make timely and impactful clinical decisions to optimize remdesivir treatment
for COVID-19 patients who meet specific clinical criteria.
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