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Abstract: Metabolic Associated Fatty Liver Disease (MASLD) is a condition that is often present
in patients with a history of cholecystectomy. This is because both situations share interconnected
metabolic pathways. This study aimed to establish a predictive model that allows for the identification
of patients at risk of developing hepatic fibrosis following this surgery, with potential implications for
surgical decision-making. A retrospective cross-sectional analysis was conducted in four hospitals
using a database of 211 patients with MASLD who underwent cholecystectomy. MASLD diagnosis
was established through liver biopsy or FibroScan, and non-invasive test scores were included for
analysis. Various Machine Learning (ML) methods were employed, with the Adaptive Boosting
(Adaboost) system selected to build the predictive model. Platelet level emerged as the most crucial
variable in the predictive model, followed by dyslipidemia and type-2 diabetes mellitus. FIB-4
score proved to be the most reliable non-invasive test. The Adaboost algorithm improved the results
compared to the other methods, excelling in both accuracy and area under the curve (AUC). Moreover,
this system holds promise for implementation in hospitals as a valuable diagnostic support tool. In
conclusion, platelet level (<150,000/dL), dyslipidemia, and type-2 diabetes mellitus were identified
as primary risk factors for liver fibrosis in MASLD patients following cholecystectomy. FIB-4 score is
recommended for decision-making, particularly when the indication for surgery is uncertain. This
predictive model offers valuable insights into risk stratification and personalized patient management
in post-cholecystectomy MASLD cases.

Keywords: liver fibrosis; cholecystectomy; adaboost; machine learning

1. Introduction

Metabolic-associated steatotic liver disease (MASLD) is a newly coined term to up-
date the definition of non-alcoholic fatty liver disease (NAFLD). The new term aims to
encompass the disease’s heterogeneity and the diversity of patients it affects. It also seeks
to remove the negative connotation of the word “alcoholic” and the ambiguity of the term
“non” from the patient’s perspective. Moreover, it emphasizes the significance of metabolic
dysfunction and the various components of metabolic syndrome [1]. MASLD is the most
prevalent chronic liver disease, impacting nearly 30% of the global population, although
with geographic variations [2,3]. Besides the cardiovascular risk and liver fibrosis progression,
the significance of diagnosing MASLD resides in the potential development of hepatocellular
carcinoma without cirrhosis, although the underlying mechanisms remain unclear [4,5].
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In the context of cholecystectomy, it is noteworthy as one of the most frequently
performed surgical procedures worldwide. Between 150 and 200 procedures are performed
per 100,000 inhabitants in Europe and the United States annually [6]. The main indication
for cholecystectomy is gallstone disease, in any of its various presentations [7]. Additionally,
it is associated with metabolic syndrome and serves as the primary biliary manifestation
in patients diagnosed with MASLD [8,9]. While most published studies focus on post-
surgery complications [10,11], there is evidence suggesting that cholecystectomy may also
have metabolic effects, particularly in patients with NAFLD [12,13]. Although the exact
pathophysiological mechanisms are not fully understood, it is thought that cholecystectomy
can lead to alterations in the regulation of biliary acids within the enterohepatic circulation,
mediated by pathways involving the Farnesoid X receptor (FXR) [14,15] and the Fibroblast
Growth Factor 19 (FGF19) [16]. Insulin resistance (IR) also has a substantial impact on this
process [17,18]. These changes have the potential to trigger the development of MASLD
de novo or contribute to the progression of liver fibrosis.

To address this knowledge gap, machine learning (ML) techniques can prove highly
valuable. These methods are currently employed in numerous pathologies for the analysis
of variables using various mathematical algorithms, aiming to detect patterns and draw
conclusions from these data [19]. Some of the methods employed in the field of medicine in-
clude K-Nearest Neighbor (KNN) [20], Bayesian Linear Discriminant Analysis (BLDA) [21],
Support Vector Machines (SVM) [22], Decision Tree (DT) [23] and Ensamble [24]. By lever-
aging these ML techniques, we can gain valuable insights into the potential risk of liver
fibrosis following cholecystectomy in patients with MASLD, helping improve diagnostic
accuracy and personalized patient management.

Given the evidence of the risk of hepatic fibrosis following cholecystectomy in these
patients, this study aims to develop a tool to identify patients who can be candidates
for surgery without metabolic consequences. When cholecystectomy is unavoidable, the
algorithm will assist in identifying which patients will require monitoring to prevent long-
term hepatic adverse effects. It will also help prevent unnecessary surgeries when the
indication is uncertain. To achieve this, Machine Learning (ML) techniques will be utilized
to analyze this database and assess various variables associated with liver fibrosis [25]. In
this study, an algorithm based on Adaptive Boosting (Adaboost) has been proposed due to
its scalability and parallel computing capabilities. The results demonstrate the superior
performance of this method compared to other ML approaches, accurately classifying liver
fibrosis detection in previously diagnosed MASLD patients undergoing cholecystectomy.
Hence, this method exhibits significant potential to enhance the diagnostic process and the
precision of identifying the stated objective in this research.

The document is structured into distinct sections to present the study’s comprehensive
findings. Section 2 outlines the materials utilized in the research and provides a detailed
description of the proposed method. Section 3 presents the results obtained from the study.
In Sections 4 and 5, a thorough discussion and conclusion are presented, respectively, where
the findings are analyzed in-depth, and the overall results of the study are summarized.
These sections aim to provide a clear and cohesive presentation of the research outcomes
and their implications.

2. Materials and Methods
2.1. Study Design and Population

This study analyzes a database compiled by four Mexican hospitals from January
2014 to December 2020, which has been deposited in the Harvard Dataverse [26]. The
hospitals that participated in the development of this database were: General Hospital
of Mexico “Dr Eduardo Liceaga”, Star Médica Hospital, Central Military Hospital, and
Medica Sur Clinic and Foundation. The ethical committee of the latter hospital approved this
retrospective multicenter cross-sectional study, ensuring compliance with ethical guidelines for
human research.
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The data retrieval process was carried out in each hospital to identify eligible patients
of both genders who were aged 18 years or older and had a diagnosis of MASLD or
steatohepatitis with a history of cholecystectomy. The diagnosis was confirmed through
either transient elastography (FibroScan) or liver biopsy. The FibroScan technique was
performed by experts at each hospital, employing specific cut-offs validated for each
equipment: F0–F1 (<6.2 kPa), F2 (6.2–7.8 kPa), F3 (8.2–12.5 kPa), and F4 (9.5–16.1 kPa) [27].
When results were uncertain between the two stages, the hepatologist in charge of the
test determined the staging based on the value closest to each fibrosis group. To simplify,
patients were divided into two groups: one group composed of those with no or only mild
fibrosis (F0-F1) and a second group consisting of those with significant or advanced fibrosis
(F2-F4). The histological classification was performed using the validated scoring system
by Kleiner et al. [28].

To ensure clarity and prevent any potential overlap between diseases, all patients who
met diagnostic criteria for any other chronic liver disease were excluded from the study.
This primarily included individuals with viral hepatitis (primarily hepatitis B and C), high
alcohol consumption (more than 4 UBE per day for men or more than 2 UBE per day for
women), and patients with levels of transferrin saturation > 50%.

For the study’s analysis, the patients were divided into two distinct groups. The first
group consisted of patients who received a diagnosis of MASLD at least 6 months after
their cholecystectomy being previously free disease. The second group comprised patients
who were diagnosed with MASLD at the time of their cholecystectomy. This categorization
aimed to differentiate between those with pre-existing MASLD and those who developed
the condition following cholecystectomy.

2.2. Data Collection

The data collection can be divided into two groups. The first of these is the analytical
variables, which are summarized in Table 1. Laboratory data were collected at the time of
MASLD diagnosis or within 30 days of the diagnosis. These laboratory data can be divided into
variables related to hematology and coagulation (hemoglobin (g/dL), platelet count (103/µL),
the international normalized ratio (INR)); general biochemistry (glucose (mg/dL), and lactate
dehydrogenase (LDH) (U/L)); lipid profile (total cholesterol (mg/dL), high-density lipoprotein
(HDL) (mg/dL), low-density lipoprotein (LDL) (mg/dL), triglycerides (TG) (mg/dL)) and
liver function (albumin (g/dL), total bilirubin (mg/dL), alanine aminotransferase (ALT) (U/L),
aspartate aminotransferase (AST) (U/L), alkaline phosphatase (ALP) (U/L), gamma-glutamyl
transferase (GGT) (U/L)). Other patient data were also collected, including age, gender, Body
Mass Index (BMI) (kg/m2), which encompasses height (m) and weight (kg), hypertension,
type 2 diabetes mellitus (T2DM), and dyslipidemia (DL).

Table 1. Overview of participant baseline data. Data are also provided by groups. BMI: Body
Mass Index; INR: International Normalized Ratio; LDH: lactate dehydrogenase; HDL; High-density
lipoprotein; LDL: Low-density lipoprotein; ALT: alanine aminotransferase; AST: aspartate amino-
transferase; ALP: alkaline phosphatase; GGT: gamma-glutamyl transferase; APRI: AST to Platelet
Ratio Index; FIB-4: Fibrosis-4; NFS: NAFLD Fibrosis Score.

Global Population
(Mean and Standard Deviation)

Patients Diagnosed at least 6
Months after Cholecystectomy.

(Mean and Standard Deviation)

Patients Diagnosed at the Moment
of Cholecystectomy.

(Mean and Standard Deviation)

Sample (n) 211 70 141
Age (years) 49.06 ± 15.15 53.15 ± 13.19 47.03 ± 15.69
BMI (Kg/m2) 29.19 ± 5.48 30.54 ± 5.37 28.52 ± 5.42
Hemoglobin (g/dL) 13.94 ± 1.88 13.64 ± 1.69 14.09 ± 1.95
Platelet count (103/dL) 256.61 ± 97.24 236.23 ± 110.19 266.72 ± 88.82
INR 1.07 ± 0.17 1.07 ± 0.17 1.08 ± 0.17
Glucose (mg/dL) 116.22 ± 67.76 115.37 ± 54.21 116.64 ± 69.59
LDH (U/L) 244.42 ± 112.03 197.36 ± 101.35 269.76 ± 109.62
Cholesterol (mg/dL) 188.17 ± 52.09 185.89 ± 49.23 189.4 ± 53.71
HDL (mg/dL) 39.6 ± 8.47 43.21 ± 9.49 37.65 ± 7.18
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Table 1. Cont.

Global Population
(Mean and Standard Deviation)

Patients Diagnosed at least 6
Months after Cholecystectomy.

(Mean and Standard Deviation)

Patients Diagnosed at the Moment
of Cholecystectomy.

(Mean and Standard Deviation)

LDL (mg/dL) 102.23 ± 32.54 105.77 ± 32.67 100.33 ± 32.44
Triglycerides (mg/dL) 160.77 ± 77.37 164.56 ± 78.3 158.73 ± 77.09
Albumin (mg/dL) 3.96 ± 0.66 4.08 ± 0.57 3.9 ± 0.69
ALT (U/L) 82.63 ± 143.63 57.51 ± 71.46 95.09 ± 167.20
AST (U/L) 77.81 ± 151.36 77.46 ± 118.58 77.99 ± 165.64
Total bilirubin (mg/dL) 1.4 ± 1.68 1.27 ± 1.65 1.46 ± 1.69
ALP (U/L) 135.97 ± 104.78 121.59 ± 72.23 143.72 ± 117.24
GGT (U/L) 95.31 ± 87.64 107.67 ± 114.14 88.65 ± 68.95
APRI 2.11 ± 1.53 1.08 ± 1.57 0.89 ± 1.52
FIB-4 2.11 ± 3.35 3 ± 4.92 1.66 ± 2.07
NFS 0.42 ± 4.39 0.97 ± 3.73 0.15 ± 4.67

In addition to biopsy and FibroScan, non-invasive tests (NITs) were integrated into
the original database to supplement the decision-making process. The study incorporated
AST to Platelet Ratio Index (APRI), Fibrosis-4 (FIB-4) and NAFLD Fibrosis Score (NFS) as
they are widely used worldwide for assessing liver fibrosis in MASLD patients [29,30].

2.3. Model Development

The primary outcome of this study is to develop a predictive tool based on the Ad-
aboost method to identify patients at risk of developing hepatic fibrosis following chole-
cystectomy in patients with MASLD. This will aid in assessing the indication for surgery
in these patients, potentially avoiding unnecessary surgeries or those with a high risk of
long-term metabolic complications. In cases where cholecystectomy is deemed essential,
it will help identify patients who require long-term monitoring to prevent potential liver-
related complications. As secondary objectives, this study aims to assess the risk factors
that may contribute to the development and progression of liver fibrosis in these patients.
For the analysis, the Adaboost method was proposed as the primary reference system to
develop the predictive model. This decision was based on its scalability, fast execution
speed, and overall efficiency [31]. Adaboost is known for its parallel tree reinforcement,
which enables rapid and accurate solutions to various data science problems. To assess its
performance, several other ML algorithms were also tested, including logistic regression
(LR) [32], BLDA [33], SVM [34], DT [35] and KNN [36]. The models were designed using
Machine Learning Toolbox and MatLab Statistical (The MathWorks, Natick, MA, USA;
MatLab R2023a).

In this study, the ML algorithms were fine-tuned by adjusting their respective hyper-
parameters. For the SVM method, a Gaussian kernel function was selected, with C = 1.2,
sigma = 0.5, numerical tolerance = 0.001, and an iteration limit of 100. BLDA utilized the
Bayesian kernel for optimization. In the DT method, the parameters were set as follows:
maximum number of splits = 20, learning rate = 0.1, and number of learners = 50.

The KNN algorithm employed the Euclidean distance metric and utilized 25 neighbors
for each prediction. As for our proposed method, Adaboost, the hyperparameters were op-
timized with the following values: eta = 0.2, gamma = 0.3, alpha = 0.6, maximum depth = 7,
lambda = 0.3, column sample by tree = 0.7 and maximum delta step = 3. These parameter
adjustments aimed to enhance the performance and accuracy of each ML algorithm in
predicting liver fibrosis in MASLD patients after cholecystectomy.

Figure 1 illustrates the step-by-step ML process followed in this study. To evaluate
the algorithm performance, 5-fold cross-validation was employed. This method involved
dividing the patient data into five subsets, where 70% of the patients were used for training,
and the remaining 30% were used for testing and validation. Each fold represented a
different combination of training and testing sets, ensuring that patient data were utilized
exclusively in either the training or testing group to avoid any overlap.
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Figure 1. Explanation of the development of the Machine Learning system.

Once the database was fully prepared, the ML methods underwent training and
validation. The models were trained using the training data, and their performance was
assessed and validated using separate testing data. This process allowed for a robust
evaluation of each ML algorithm’s predictive capabilities for identifying liver fibrosis in
MASLD patients after cholecystectomy. The proposed system met the two objectives set, on
the one hand, to obtain a high accuracy in the predictive model and on the other to obtain
the predictor variables.

3. Results

Results from the analysis of available data for training and validation aimed to identify
the most significant variables in predicting liver fibrosis after cholecystectomy in MASLD
patients. The performance of the Adaboost system was compared with other ML methods
commonly used in the scientific community.

A total of 407 patients diagnosed with MASLD were identified. Among them,
196 patients were excluded due to the absence of a medical history of cholecystectomy,
leaving the remaining patients for analysis.

Figure 2 presents a summary of the importance of the primary variables resulting
from the developed predictive model. On the y-axis, the absolute importance of each
variable within the predictive model is represented with numerical values. Platelet count
emerged as the most crucial variable, followed by dyslipidemia (DL) and type 2 diabetes
mellitus (T2DM). Body Mass Index (BMI) and hypertension also exhibited some importance,
although to a lesser extent compared to the top variables. Notably, low levels of high-
density lipoprotein (HDL) and elevated bilirubin levels were found to be relevant factors as
well. Among the NITs studied, FIB-4 achieved the highest accuracy in predicting liver fibrosis.

In Table 2, the Adaboost algorithm outperforms all other proposed methods in terms
of specificity, F1 score, balanced accuracy and Matthews Correlation Coefficient (MCC).
Adaboost achieves a balanced accuracy of 93.53%, which is 9.08% higher than the nearest
method, KNN, and a specificity of 93.71%, representing a 9.34% difference in favor of Adaboost
compared to KNN. Similar trends are observed across all other evaluation metrics.
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Figure 2. Importance of variables in the predictive model. Abbreviations. HDL: High-Density
Lipoprotein cholesterol; APRI: AST to Platelet Ratio Index; BMI: Body Mass Index; T2DM: Type-2
Diabetes Mellitus; FIB-4: Fibrosis-4.

Table 2. Comparison of Results—Specificity, F1 Score, Balanced Accuracy, and MCC Kappa. Ab-
breviations. LR: logistic regression; BLDA: Bayesian Linear Discriminate Analysis; SVM: Support-
Vector Machine; DT: Decision Tree; KNN: K-Nearest Neighbor; Adaboost: Adaptive Boosting;
MCC: Matthews Correlation Coefficient.

Methods LR BLDA SVM DT KNN Adaboost

Specificity 75.23 ± 0.65 79.82 ± 0.94 82.29 ± 0.77 83.80 ± 0.73 84.37 ± 0.67 93.71 ± 0.48
F1 score 75.58 ± 0.67 79.67 ± 0.92 82.14 ± 0.75 83.68 ± 0.68 84.43 ± 0.64 92.95 ± 0.47
Balanced Accuracy 75.64 ± 0.68 79.92 ± 0.93 82.39 ± 0.78 83.89 ± 0.72 84.45 ± 0.65 93.53 ± 0.51
MCC 66.05 ± 0.67 70.91 ± 0.87 73.10 ± 0.74 74.50 ± 0.68 74.88 ± 0.64 84.69 ± 0.43

Notably, the LR method achieves the lowest classification accuracy with a value of
75.64%, representing a significant difference of 17.52% in favor of the Adaboost system.

These results demonstrate that the Adaboost algorithm provides superior perfor-
mance and accuracy in classifying liver fibrosis in MASLD patients after cholecystectomy
compared to the other ML methods considered in this study.

In Table 3, the Adaboost algorithm shows superior performance in all performance
metrics when compared to other proposed methods, including SVM, BLDA, DT, KNN, and
LR. Adaboost achieves a recall of 93.32% and an AUC of 0.93, representing an improvement
of 8.7% and 9.00% over the closest method, KNN, respectively. The Kappa index attains a
value of 83,98% for Adaboost, which is 8.93% higher than KNN.

Comparing the results with other methods, Adaboost significantly outperforms DT,
BLDA, SVM, and LR in all parameters evaluated. This demonstrates that Adaboost is the
most suitable system for implementing the predictive tool to identify liver fibrosis after
cholecystectomy in MASLD patients.

Overall, the superior performance of Adaboost in all metrics makes it the preferred
choice for accurate and reliable prediction of liver fibrosis in this context.

In Figure 3, the ROC curves of various ML methods are compared to Adaboost, the
proposed method. The curves represent the sensitivity and specificity of each method in
predicting liver fibrosis after cholecystectomy in MASLD patients.
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Table 3. Performance Metrics–Kappa, AUC, DYI, and Recall. Abbreviations. LR: logistic regres-
sion; BLDA: Bayesian Linear Discriminate Analysis; SVM: Support-Vector Machine; DT: Decision
Tree; KNN: K-Nearest Neighbor; Adaboost: Adaptive Boosting; AUC: Area Under the Curve;
DYI: Degenerated Younden’s Index.

Methods LR BLDA SVM DT KNN Adaboost

Kappa 66.54 ± 0.64 71.00 ± 0.93 72.57 ± 0.74 74.02 ± 0.69 75.05 ± 0.63 83.98 ± 0.38
AUC 0.75 ± 0.02 0.79 ± 0.02 0.82 ± 0.02 0.83 ± 0.02 0.84 ± 0.01 0.93 ± 0.01
DYI 75.48 ± 0.69 79.92 ± 0.92 82.39 ± 0.75 83.89 ± 0.71 84.49 ± 0.65 93.45 ± 0.47
Recall 75.86 ± 0.73 80.02 ± 0.91 82.48 ± 0.73 83.99 ± 0.67 84.62 ± 0.62 93.32 ± 0.46
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The Adaboost method exhibits the largest area under the curve (AUC) of 0.93, indi-
cating its superior performance in accurately predicting liver fibrosis. The KNN method
comes next with an AUC of 0.84. The larger AUC for Adaboost signifies that it has a
more accurate prediction ability, enabling better identification of MASLD patients at risk of
hepatic fibrosis following cholecystectomy.

The results from Figure 3 reinforce the conclusion that Adaboost is the most effective
ML method for the prediction of liver fibrosis in this study, providing valuable support in
clinical decision-making and patient management.

The radar plot in Figure 4 displays the performance metrics of different ML methods
in both the training and test phases. The left side of the figure represents the training phase,
while the right side represents the test phase. The area of the circle on the plot indicates the
performance of each method, with a larger area indicating better predictive capability.

The Adaboost algorithm demonstrated consistent and similar results in both the
training and test phases, indicating that it did not overestimate or underestimate. This
suggests that the Adaboost algorithm performed well and had good predictive performance,
demonstrating its ability to generalize effectively. On the other hand, the rest of the ML
methods exhibited smaller areas, indicating lower reliability for the purpose of the study.
These methods may not have performed as effectively in predicting liver fibrosis after
cholecystectomy in MASLD patients compared to Adaboost.
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In summary, the radar plot highlights the superiority of the Adaboost algorithm in
both training and test phases, making it the most suitable and reliable method for predicting
liver fibrosis in this study.

4. Discussion

MASLD and cholecystectomy are both prevalent conditions in the gastrointestinal tract,
and though they are often studied separately, there is evidence suggesting that cholecystec-
tomy could potentially worsen the progression of MASLD [12]. In fact, cholecystectomy
has been identified as an independent risk factor for MASLD [37].

Indeed, cholelithiasis is another highly prevalent disease worldwide, affecting approx-
imately 10–20% of the adult population [38]. This phenomenon is not only present in the
adult population but also in the pediatric population. Two studies conducted in Canadian
and Croatian populations demonstrate an increase in the number of cholecystectomies in
the pediatric population due to biliary pathology over the last 20 years [39,40]. This increase
correlates with the global rise in obesity, which is particularly concerning in this age group.
These data highlight the need for pediatricians and pediatric surgeons to become familiar
with these situations, as well as the necessity to develop more aggressive health policies to
prevent them.

The Hispanic population exhibits one of the highest rates of NAFLD, estimated at
30%. When focusing on the Mexican population, both for MASLD and cholecystectomy,
they exhibit significantly elevated data. On one hand, the estimated prevalence of MASLD
is over 45%, one of the highest in the world. [41]. This issue is not limited to adults but
is also observed in children and adolescents [42]. This is related to a high prevalence
of metabolic conditions, primarily including obesity, T2DM, and metabolic syndrome.
Furthermore, the higher presence of the Patatin like phospholipase domain-containing
protein 3 (PNPLA3) polymorphism in this population contributes to more advanced degrees
of hepatic fibrosis [43]. On the other hand, the incidence of gallbladder disease is higher,
leading to a significant number of cholecystectomies performed in this population based
on available data [44]. Given the association between gallstone disease and MASLD, the
potential metabolic consequences of cholecystectomy become all the more relevant in this
context. It emphasizes the importance of identifying patients at risk of liver fibrosis after
cholecystectomy to better manage their long-term outcomes.

The relationship between cholecystectomy and MASLD involves several intercon-
nected pathways. The issue is that the pathophysiology of this relationship is not fully
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understood. One of these factors is the IR, which is also interconnected with metabolic
syndrome as it is a component of it [45]. Since the majority of gallstones are composed of
cholesterol, these are also considered part of the metabolic syndrome in some studies [46].
IR is also one of the primary risk factors for the development and progression of MASLD. It
also contributes to the formation of gallstones by creating lithogenic bile through increased
cholesterol in the bile and reduced bile acid (BA) synthesis [47]. Furthermore, it is known
that the mucosa of the gallbladder plays a role in the secretion and regulation of insulin.
When cholecystectomy is performed, it leads to an increase in insulin resistance, thus
contributing to MASLD. Patients who have undergone cholecystectomy also exhibit more
lipid metabolism abnormalities [48]. This situation worsens insulin resistance and the
patient’s metabolic health, which is associated with a potential deterioration of MASLD
and an increased risk of liver fibrosis.

Another pathway linking cholecystectomy and MASLD is mediated by various mech-
anisms that regulate bile composition. Among these, FGF-19 emerges as one of the most
relevant. This protein plays a crucial role in lipid metabolism, particularly in relation to
BA. One of its functions is to regulate the absorption of these in the terminal ileum [49].
While the gallbladder is present and stores bile inside, it can cause negative feedback when
it comes to bile acid reabsorption. After cholecystectomy, this feedback disappears, causing
an increase in FGF19 concentrations and alterations in the enterohepatic circulation of bile
acids, thereby exposing the liver to higher amounts of various lipids that may lead to the
development of MASLD [50]. These findings were confirmed in animal models, although
the exact mechanisms remain incompletely understood [51].

In addition to FGF-19, there are other pathways such as pregnane X receptor (PXR)
or G-protein-coupled bile acid receptor-1 (TGR5) that play a role in BA metabolism and
are associated with the development and progression of MASLD by influencing regulatory
mechanisms of IR and intestinal microbiome homeostasis [52,53]. The complex interplay of
these mechanisms, where cholecystectomy reduces the elimination of excess cholesterol
and exposes the liver to higher concentrations of BAs, combined with other pathways, can
contribute to the onset or progression of liver fibrosis in MASLD patients [37].

The study’s conclusion highlights the importance of platelet levels as the most signifi-
cant risk factor to consider in MASLD patients for predicting liver fibrosis when cholecystec-
tomy is performed. Low platelet levels could serve as an early indication of advanced liver
fibrosis or cirrhosis, which warrants further investigation [54]. Furthermore, patients with
poorly controlled LDL and T2DM require special attention, particularly when referring to
this first variable. These findings can be explained by the excess cholesterol and bile acids
to which the liver is exposed after cholecystectomy. Other important variables, although
not at the same level, were high BMI, poorly controlled hypertension, and advanced age.

To aid decision-making, the study included two of the most commonly used NITs that
could be calculated with the available data. The inclusion of NITs was essential to detect
undiagnosed patients with advanced liver fibrosis, so it can be used as a useful screening
tool. FIB-4 emerged as the most reliable and valuable in assisting the decision-making pro-
cess, especially when there are uncertainties regarding the indication for cholecystectomy
Since it is used at the initial stage, it can also be valuable in monitoring these patients to
assess fibrosis progression and intervene before hepatic decompensation occurs [55].

To assess the originality of the study, a literature review related to the article’s objec-
tives was conducted. No results were found for the application of ML techniques. Nor
were any results found for the definition of MASLD in the reviewed literature. When
the search was expanded to include the terms Metabolic-associated fatty liver disease
(MAFLD) and NAFLD, results were found, but they were not related to ML techniques.
Although some results were contradictory, the majority supported the relationship between
cholecystectomy and NAFLD.

Yun et al. conducted a study in 82 patients demonstrating the development of sig-
nificant hepatic steatosis three months after cholecystectomy [56]. Yue et al. conducted
a cross-sectional analysis of data involving 14,750 patients, concluding that the risk of
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developing NAFLD attributable to cholecystectomy was similar to central obesity but not
as significant as metabolic syndrome or insulin resistance [48]. A cohort study conducted
by Chang et al., which included nearly 300,000 patients, also demonstrated the association
between cholecystectomy and the development of incident NAFLD [57]. Finally, two exten-
sive meta-analyses conducted by Jaruvongvanich et al. [58], with 63,000 patients, and Luo
et al. [13], with over 27 million patients (specifically 233,537 NAFLD cases), also concluded
that cholecystectomy is a risk factor for the development of NAFLD. These are just some
examples from the literature found.

As no studies specifically involving ML were found, this research proceeded to employ
various ML methods widely used in the scientific and medical communities to determine
the most appropriate approach. The Adaboost system exhibited superior results across all
evaluated parameters, with almost all of them exceeding 90%. Adaboost demonstrated
its reliability in automatically classifying the study’s objective, and its performance was
consistent in both the training and test phases, indicating robust generalizability. Moreover,
Adaboost exhibited high scalability and execution speed, making it a valuable tool for
decision-making in routine clinical practice [59]. However, logistic regression (LR) showed
poorer results compared to the different ML methods utilized in this study. This could be
attributed to ML techniques’ superior efficiency and accuracy, particularly when dealing
with small sample sizes [59].

It is important to acknowledge certain limitations of this research. The sample was
drawn from a Mexican population with higher prevalence rates of MASLD and gallstones
compared to other populations [60]. The population also exhibits a higher prevalence of
obesity and metabolic conditions, such as dyslipidemia and T2DM [61,62]. Additionally,
the presence of the PNPLA3 polymorphism, a gene associated with liver fibrosis severity
in NAFLD patients, is more frequent in the Hispanic population [63]. The sample size
limitation was addressed by employing ML techniques with hyperparameter optimization
during the training phase to achieve statistically significant and robust results [64].

5. Conclusions

In conclusion, Adaboost has enabled the development of a useful tool for identifying
the primary risk factors for liver fibrosis following cholecystectomy in MASLD patients.
These variables were low platelet levels, poorly controlled dyslipidemia, and type 2 di-
abetes mellitus. Special caution is warranted in cases of elevated BMI and uncontrolled
hypertension, as these factors further increase the risk of liver fibrosis. Therefore, in patients
diagnosed with MASLD, the indication for cholecystectomy should be carefully evaluated
in these circumstances. As an additional variable, the presence of an elevated FIB-4 is also
useful when assessing surgery as an NIT for the decision-making process.

Among the various machine learning methods explored, the Adaboost algorithm
emerged as the most effective in identifying. Its superior performance and scalability make
it a promising tool for assisting in clinical decision-making.

Thanks to this predictive model, it is possible to provide personalized management for
these patients, potentially avoiding unnecessary surgeries or situations where the long-term
risk of complications outweighs the benefits. Furthermore, identifying patients who require
long-term monitoring when surgery is necessary can help prevent fibrosis progression and
the development of liver-related complications.
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