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Abstract: Cellular senescence can be activated by several stimuli, including ultraviolet radiation
and air pollutants. This study aimed to evaluate the protective effect of marine algae compound
3-bromo-4,5-dihydroxybenzaldehyde (3-BDB) on particulate matter 2.5 (PM2.5)-induced skin cell
damage in vitro and in vivo. The human HaCaT keratinocyte was pre-treated with 3-BDB and
then with PM2.5. PM2.5-induced reactive oxygen species (ROS) generation, lipid peroxidation,
mitochondrial dysfunction, DNA damage, cell cycle arrest, apoptotic protein expression, and cellular
senescence were measured using confocal microscopy, flow cytometry, and Western blot. The present
study exhibited PM2.5-generated ROS, DNA damage, inflammation, and senescence. However,
3-BDB ameliorated PM2.5-induced ROS generation, mitochondria dysfunction, and DNA damage.
Furthermore, 3-BDB reversed the PM2.5-induced cell cycle arrest and apoptosis, reduced cellular
inflammation, and mitigated cellular senescence in vitro and in vivo. Moreover, the mitogen-activated
protein kinase signaling pathway and activator protein 1 activated by PM2.5 were inhibited by 3-BDB.
Thus, 3-BDB suppressed skin damage induced by PM2.5.

Keywords: particulate matter 2.5; 3-bromo-4,5-dihydroxybenzaldehyde; reactive oxygen species;
skin damage

1. Introduction

Fine particulate matter 2.5 (PM2.5) causes air pollution from various sources, such as
coal burning, transport, and anthropogenic emissions [1]. Approximately 90% of human
beings face health risks from pollution, which violates the WHO Air Quality Guidelines [2].
PM2.5 induces damage in vitro and in vivo to the bronchial epithelium, human endothelial
cells, and macrophage-like cells [3–9]. The effects of air pollutants on the human skin
have become a global concern recently [10]. Moreover, skin directly exposed to PM2.5
can result in acute and chronic reactions. Recently, many studies, including ours, have
outlined the potential mechanism by which PM2.5 triggers excessive formation of reactive
oxidative species (ROS), leading to skin inflammation and senescence [11–15]. PM2.5
induces ROS generation, inflammatory cytokines, and apoptosis, and it promotes skin
aging by interacting with p53, nuclear factor kappa B (NF-κB), interleukin-1 beta (IL-1β),
IL-6, and caspase-3 [14,16,17].

3-Bromo-4,5-dihydroxybenzaldehyde (3-BDB), a natural marine compound from red
algae (Rhodomela confervoides, Polysiphonia morrowii, and Polysiphonia urceolata), is known to
have free radical scavenging, anticancer, and antibacterial properties [18–20]. We previously
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demonstrated that 3-BDB exerted antioxidant effects in keratinocytes by regulating nuclear
factor and erythroid 2-like 2 (Nrf2) pathways. It also protects skin cells from ultraviolet B
by inhibiting the generation of ROS [21–23]. Moreover, it inhibits macrophage infiltration,
thereby improving cardiac function, preventing myocardial ischemia, and suppressing
allergic inflammation [24–26]. However, little is known about the effects of 3-BDB on skin
damage (senescence and apoptosis) caused by PM2.5.

Therefore, we aimed to elucidate the effect of 3-BDB on PM2.5-induced ROS generation,
macromolecular damage, apoptosis, and senescence of skin cells in vitro and in vivo.

2. Materials and Methods
2.1. Sample Preparation

3-Bromo-4,5-dihydroxybenzaldehyde (3-BDB) was obtained from Matrix Scientific
(Columbia, SC, USA). PM2.5 (NIST particulate matter SRM 1650b) was purchased from
Sigma-Aldrich Co., Ltd. (St. Louis, MO, USA). 3-BDB and PM2.5 were dissolved in dimethyl
sulfoxide (DMSO), and the DMSO concentration in the cell medium during treatment was
maintained at <0.1%.

2.2. Cell Culture

The human HaCaT keratinocyte cell line was provided by Cell Lines Service (Heidelberg,
Germany). They were cultured in Dulbecco’s modified Eagle’s medium (Life Technologies
Co., Ltd., Grand Island, NY, USA), containing 10% heat-inactivated fetal calf serum (Life
Technologies Co., Ltd.), and 1% antibiotic-antimycotic (Life Technologies Co., Ltd.) in a
37 ◦C incubator with a humidified atmosphere containing 5% CO2.

2.3. Animal Experiment

We used HR-1 hairless male mice (OrientBio, Seongnam, Republic of Korea) for in vivo
experiments following guidelines of the Jeju National University (Jeju, Republic of Korea)
(permit number: 2017-0026). Moreover, mice were divided into four groups (n = 4 per
group): phosphate buffered saline, PM2.5 (100 µg/mL), 3-BDB (0.3 mM) + PM2.5, and
3-BDB (3 mM) + PM2.5. The dorsal portion of the skin of the mice was exposed to 3-BDB
(0.3 mM or 3 mM) for 30 min before exposing them to PM2.5. Then, they were covered
with the nonwoven polyethylene pad (over a 1 cm2 area), which dispersed PM2.5 daily
for 7 consecutive days. Finally, on day 7, the skin tissues were dissected for Western blot
analysis [12].

2.4. ROS Scavenging Ability

We used 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA; Molecular Probes,
Eugene, OR, USA) to measure the inhibition of PM2.5-induced ROS by 3-BDB. Cells
(1.0 × 105 cells/mL) were seeded into a 6-well plate. Cells were added to 10, 20, and
30 µM of 3-BDB or 1 mM of N-acetyl cysteine (NAC) for 1 h and then exposed to 50 µg/mL
of PM2.5 for 30 min. Cells were stained with H2DCFDA (25 µM), and stained cells were
detected using a FACSCalibur flow cytometer (Becton Dickinson, Mountain View, CA,
USA). Similarly, cells were seeded into the chamber slides, and 30 µM of 3-BDB were
treated for 1 h and then treated with PM2.5 (50 µg/mL) for 30 min. Cells stained with
H2DCFDA were observed using an FV1200 laser scanning confocal microscope (Olympus,
Tokyo, Japan).

2.5. Lipid Peroxidation Assay

We detected the suppression of PM2.5-induced oxidation of lipids by 3-BDB using a
diphenyl-1-pyrenylphosphine probe (DPPP, 2 µM; Molecular Probes). Cells were seeded
into chamber slides, treated with 30 µM of 3-BDB for 1 h, and exposed to 50 µg/mL of
PM2.5 for another 24 h. Lipid peroxidation fluorescence was detected using a confocal
microscope after DPPP staining.
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2.6. Analysis of Mitochondria Function

We explored the mitochondrial calcium level and cell potential to access the inhibitory
effect of 3-BDB on PM2.5-induced mitochondrial dysfunction. For mitochondrial calcium
detection, cells were treated with 30 µM of 3-BDB for 1 h and exposed to 50 µg/mL of
PM2.5 for another 24 h. The harvested cells were stained with Rhod-2 acetoxymethyl ester
(Rhod-2 AM, 5 µM; Molecular Probes) and subjected to flow cytometry. We harvested
cells stained with 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine io-
dide (JC-1, 2 µM; Invitrogen, Carlsbad, CA, USA) to detect the mitochondrial membrane
potential, and we captured the fluorescence using a flow cytometer or confocal microscope.

2.7. Detection of 8-Oxoguanine (8-OxoG)

8-OxoG is the most significant biomarker for oxidative DNA damage [27]. To detect
8-oxoG levels, we used avidin-tetramethylrhodamine isothiocyanate (TRITC) conjugate
fluorescent dye (Sigma-Aldrich Co., Ltd.), which has an affinity to 8-oxoG [28]. Harvest
cells in the chamber slide were treated with 30 µM of 3-BDB for 1 h and 50 µg/mL of
PM2.5 for another 24 h. Then, cells were stained with avidin-TRITC conjugate, and their
fluorescence intensity was estimated using a 1.8.0 software program of image J under the
confocal microscope [12].

2.8. Comet Assay

We performed a comet assay to assess the effect of 3-BDB on PM2.5-induced DNA
strand breaks. Cells (0.8 × 105 cells/mL) were seeded into the microtubes and treated with
3-BDB and/or PM2.5 for 30 min. Harvested cells were fixed on the slides with 0.7% of
agarose gel, immersed in lysis buffer (2.5 M NaCl, 100 mM Na2-EDTA, 10 mM Tris, and
1% N-lauroylsarcosinate, pH 10) for 1 h, electrophoresed for 20 min, and then dried. Images
of total fluorescence and the change in DNA tail length were recorded using ethidium
bromide (10 µg/mL) under a fluorescence microscope equipped with Komet 5.5 software
program of image analysis (Kinetic Imaging, Liverpool, UK). Fifty cells were counted
per slide.

2.9. Detection of IL-1β and IL-6

The IL-1β and IL-6 concentrations in the culture medium were measured using a
human Quantikine ELISA kit (R&D Systems, Minneapolis, MN, USA). Cells were treated
with 30 µM of 3-BDB for 1 h. Then, they were incubated for 24 h with 50 µg/mL of PM2.5
and then centrifuged at 3000 rpm for 15 min in the culture media. Cell-free supernatant
was added to a 96-well plate coated with the primary antibodies against IL-1β and IL-6.
The HRP-conjugated detection antibodies (100 µL) were then added and incubated for
1 h at 37 ◦C. After washing three times, the substrates were incubated for another 20 min.
Finally, the stop solution was added to each well, and the absorbance of concentrations
was measured at 450 nm using a SpectraMax i3x microplate reader (Molecular Devices,
San Jose, CA, USA), which was performed immediately.

2.10. Western Blot

Cells were treated with 30 µM of 3-BDB for 1 h and then with 50 µg/mL PM2.5 for
24 h, and mice skin tissues were treated with 3-BDB and PM2.5 according to the above
animal experiment method. Protein lysis buffers from the cells and mouse skin were
loaded into a separating gel containing SDS-PAGE electrophoresis buffer. The target
proteins were transferred onto membranes and shaken with primary and secondary anti-
bodies sequentially. Finally, protein bands were obtained using the Amersham enhanced
chemiluminescence, plus a Western blotting detection system (GE Healthcare, Bucking-
hamshire, UK). The primary antibodies used were as follows: actin (Sigma-Aldrich Co.,
Ltd.), c-Jun N-terminal kinase (JNK), p38 (Genetex Inc., Irvine, CA, USA), phospho-H2A.X,
phospho-p53, caspase-9, caspase-3, mitogen-activated protein kinase kinases (MEK)1/2,
phospho-MEK, phospho-extracellular regulated kinase (ERK), stress-activated ERK kinase
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(SEK)1, phospho-SEK, phospho-JNK, phospho-p38, c-Fos, c-Jun, phospho-c-Jun (Cell Sig-
naling Technology, Danvers, MA, USA), B-cell lymphoma protein (Bcl)-2, Bcl-2 associated X
(Bax), ERK2 (Santa Cruz Biotechnology, Dallas, TX, USA), IL-1β, matrix metalloproteinase
(MMP)-2, MMP-9 (Abcam, Cambridge, MA, USA), p53, IL-6 (Invitrogen), MMP-1 (Cusabio,
Houston, TX, USA).

2.11. Cell Cycle Analysis

We performed a cell cycle analysis to evaluate the effect of 3-BDB on PM2.5-induced
cell cycle arrest. Cells were seeded into a 6-well plate, treated with 30 µM of 3-BDB for 1 h,
and then with 50 µg/mL PM2.5 for 24 h. Propidium iodide and RNase A (1:1000) were used
to bind to cellular DNA. This analysis was performed using a flow cytometer.

2.12. Hoechst 33342 Staining

We utilized Hoechst 33342 (BIOMOL GmbH, Hamburg, Germany) to visualize the
protection of PM2.5-induced nuclei degradation by 3-BDB. Cells were seeded into a 60 mm
culture dish and treated with 30 µM of 3-BDB for 1 h, followed by 50 µg/mL PM2.5 for
24 h. Then, the cells were immersed in a medium with Hoechst 33342, a DNA-specific
fluorescent dye (10 µM) for 15 min. Stained cells were visualized under a fluorescence
microscope (Olympus, Tokyo, Japan).

2.13. β-Galactosidase Staining Activity

We used a cellular senescence detection kit (SPiDER-β-Gal, Dojindo Laborato-
ries, Kumamoto, Japan) to detect the expression of the senescence-associated enzyme,
β-galactosidase (SA-β-gal) [29]. Cells were seeded into chamber slides and treated with
30 µM of 3-BDB for 1 h, followed by PM2.5 for another 24 h. After washing the chamber slides,
the cells were stained with SPiDER-β-Gal solution and viewed under a confocal microscope.

2.14. Statistical Analysis

We performed statistical analyses among multiple groups by analyzing variance and
Tukey’s tests using Systat 3.5 software (Systat Software Inc., San Jose, CA, USA). All
data are displayed as mean± standard error. The p-values less than 0.05 were considered
statistically significant.

3. Results
3.1. Antioxidant Effect of 3-BDB against PM2.5-Induced Intracellular ROS and Lipid Peroxidation

We confirmed the ROS scavenging effect of 3-BDB at 10, 20, or 30 µM, and NAC
(1 mM) was used as a positive control induced by PM2.5 (Figure 1a). The results proved that
30 µM of 3-BDB, such as NAC, significantly prevented cells from PM2.5-induced ROS. Next,
confocal images confirmed that cells treated with 30 µM of 3-BDB contained lower ROS than
the PM2.5 group (Figure 1b). Thus, in the following trials, we used 30 µM as the optimal
concentration of 3-BDB. Furthermore, to investigate ROS-induced lipid peroxidation, cells
were subjected to 3-BDB and/or PM2.5. Findings revealed that PM2.5 caused lipid damage,
whereas 3-BDB had an antagonistic effect (Figure 1c).

3.2. Preventive Effect of 3-BDB against PM2.5-Induced Mitochondrial Dysfunction

As shown in Figure 2a, PM2.5 increased mitochondrial calcium level, whereas the
treatment with 3-BDB and PM2.5 led to a decreased calcium level than PM2.5. The mito-
chondrial membrane potential was analyzed to further assess mitochondrial dysfunction.
The mitochondrial membrane potential depolarized by PM2.5 was reversed after treatment
with 3-BDB, as displayed by results from flow cytometry and confocal microscopic images
(Figure 2b,c).
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Figure 1. Inhibition of PM2.5-induced ROS generation and lipid peroxidation were performed by
3-BDB in keratinocytes. (a) Cells were added to 10, 20, and 30 µM of 3-BDB or 1 mM of N-acetyl
cysteine (NAC) for 1 h and then exposed to 50 µg/mL of PM2.5 for 30 min. ROS were measured by a
flow cytometer after H2DCFDA staining. (b) Depletion of PM2.5-induced ROS by 30 µM of 3-BDB
was visualized by a confocal microscope after H2DCFDA staining. (c) Prevention of PM2.5-induced
lipid peroxidation analysis by 3-BDB was performed using a confocal microscope after DPPP staining.
(a–c) * p < 0.05 and # p < 0.05 compared to control cells and PM2.5-exposed cells, respectively.
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Figure 2. Prevention of PM2.5-induced mitochondrial dysfunction was performed by 3-BDB in
keratinocytes. Cells were treated with 30 µM of 3-BDB for 1 h and then exposed to 50 µg/mL of
PM2.5 for 24 h. (a) Rhod-2 AM was used to detect the mitochondrial calcium. (b,c) The mitochondrial
membrane potential was obtained by (b) flow cytometry and (c) confocal microscopy by JC-1 staining.
(a–c) * p < 0.05 and # p < 0.05 compared to control cells and PM2.5-exposed cells, respectively.

3.3. Inhibitory Effect of 3-BDB against PM2.5-Induced DNA Damage

Cells treated with 3-BDB and PM2.5 possessed a lower level of 8-oxoG than those in
the PM2.5-treated group. This implies that 3-BDB inhibited PM2.5-induced DNA oxidation
(Figure 3a). Similar results confirmed that 3-BDB protected PM2.5-induced DNA damage
in the comet assay because 3-BDB reduced the DNA tail length induced by PM2.5 in cells
(Figure 3b). In addition, we detected phospho-H2A.X histone, a known indicator of DNA
double-strand break [30], and a significant increase in phosphorylation of H2A.X in the
PM2.5 group in vitro and in vivo was observed; however, in the 3-BDB and PM2.5 treatment
group, a significant decrease in phospho-H2A.X was observed (Figure 3c,d). ROS and
ROS-induced DNA damage activate p53, a known tumor suppressor [31]. There was an
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increase in the phosphorylation of p53 in the PM2.5 group; however, after treatment with
3-BDB, the level of activated p53 was lower in vitro and in vivo (Figure 3c,d). Furthermore,
p53 controls the fate of cells when subjected to DNA damage, probably by arresting cell
cycle progression [32,33]. Notably, the cell cycle analysis revealed that PM2.5 arrested the
cell cycle at the G1 phase; however, 3-BDB attenuated it (Figure 3e).
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3.4. Anti-Apoptotic Effect of 3-BDB against PM2.5-Induced Apoptosis

PM2.5 decreased the anti-apoptotic protein, Bcl-2, and increased the pro-apoptotic
protein, Bax; however, 3-BDB reversed these effects in vitro and in vivo (Figure 4a,b). 3-BDB
also reversed PM2.5-activated caspase-9 and caspase-3, the main markers of apoptosis-
mediated cell death, in vitro and in vivo (Figure 4c,d). Nuclei integrity was visualized
through Hoechst 33342 staining. Notably, PM2.5 increased apoptotic bodies, but 3-BDB
significantly decreased the number of apoptotic bodies (Figure 4e).
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Hoechst 33342 staining. The arrows indicate the apoptotic bodies. (a–e) * p < 0.05 and # p < 0.05
compared to control groups and PM2.5-exposed groups, respectively.

3.5. Inactivating Effect of 3-BDB against PM2.5-Induced Activator Protein (AP)-1 via Mitogen-
Activated Protein Kinase (MAPK) Signaling Pathway

AP-1 transcription factor is associated with MAPK-induced apoptosis [34]. Thus, we
checked the expression levels of MAPK-related proteins, MEK, ERK, SEK, JNK, and p38.
PM2.5 induced a high level of activated MEK1/2, ERK1/2, SEK1, JNK, and p38, which were
reversed by treatment with 3-BDB (Figure 5a). Besides, the transcription factor AP-1 (c-Jun
and c-Fos) was also activated by PM2.5, but it decreased in the 3-BDB- and PM2.5-treated
groups (Figure 5b).
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Figure 5. Inactivation of PM2.5-induced MAPK signaling pathway, the transcription factor AP-1
was performed by 3-BDB. (a,b) Cells were treated with 30 µM of 3-BDB for 1 h, and then the cells
were stimulated by PM2.5 for 24 h, the proteins were separated from cells, and (a) phospho-MEK1/2,
MEK1/2, phospho-ERK1/2, ERK2, phospho-SEK1, SEK1, phospho-JNK, JNK, phospho-p38, p38, as
well as (b) c-Fos, phospho-c-Jun, and c-Jun expressions were detected by Western blot. (a,b) * p < 0.05
and # p < 0.05 compared to control cells and PM2.5-exposed cells, respectively.

3.6. Antagonizing Effect of 3-BDB against PM2.5-Induced Senescence

We mainly examined pro-inflammatory cytokines, senescence-related proteins, and
markers. The levels of the pro-inflammatory cytokines IL-1β (Figure 6a) and IL-6 (Figure 6b)
were induced in PM2.5-exposed cells, while 3-BDB reduced levels of IL-1β and IL-6
(Figure 6a,b). Moreover, IL-1β and IL-6 protein levels were also higher in the PM2.5 group
than in the 3-BDB + PM2.5-treated group in vitro and in vivo (Figure 6c,d). PM2.5 also
induced MMP-1, MMP-2, and MMP-9 expression; however, these effects were reversed
by 3-BDB both in vitro and in vivo (Figure 6e,f). Finally, we examined senescent cells
through staining with SA-β-gal [13]. The results showed that PM2.5 generates higher
fluorescence than the control group; however, 3-BDB notably inhibited the fluorescence
intensity induced by PM2.5 (Figure 6g).
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Figure 6. Inhibition of PM2.5-induced pro-inflammatory cytokines and matrix metalloproteinases was
performed by 3-BDB in vitro and in vivo. Cells were treated with 30 µM of 3-BDB for 1 h and then
were exposed to 50 µg/mL of PM2.5 for 24 h. Mice skin was treated with 3-BDB and PM2.5 according
to the animal experiment in Materials and Methods. (a,b) IL-1β and IL-6 concentrations in HaCaT
cells were assessed using a human IL-1β and IL-6 ELISA kits, respectively. (c–f) From the proteins
of (c,e) cells and (d,f) tissues, IL-1β, IL-6, MMP-1, MMP-2, and MMP-9 were examined by Western
blot. (g) Senescence cells were available to visualize under a confocal microscope. (a–g) * p < 0.05 and
# p < 0.05 compared to control groups and PM2.5-exposed groups, respectively.

4. Discussion

Particulate matter (PM2.5) is a strong matter of interest nowadays, as research is ongoing
to determine its effect on human bodies. PM2.5 possesses a different degree of toxicity,
confirming that diesel engine combustion was more severe than biomass burning in the same
mass [35]. One of the main organic components (polycyclic aromatic hydrocarbons, PAHs)
from engine exhaust generates ROS, resulting in DNA damage [36]. Therefore, in this study,
we used the recommended PM2.5, mainly from diesel particulate matter, including PAHs and
nitro-PAHs. Although, the skin can deal with different sources of ROS through a specific
antioxidant mechanism; PM2.5 overloaded it with high concentrations of ROS [37]. For ROS
scavenging, we focused on the antioxidant compound 3-BDB, obtained from red algae, as it
possesses a strong ability to protect against oxidative stress-related cell damage, including
inflammation [21–24]. We previously showed that there was no cytotoxicity of 3-BDB at
concentrations ranging from 10–30 µM in human HaCaT keratinocytes, and 3-BDB inhibited
UVB-caused oxidative stress at 30 µM concentration [38]. In addition, PM2.5 generated
ROS [12–15]. Moreover, lipid peroxidation is vital for initiating the process of cell damage
because lipids are prime targets of free radicals [39]. As shown in Figure 1, 3-BDB pretreatment
alleviates both PM2.5-induced cellular ROS generation and lipid peroxidation.

ROS are mainly generated from mitochondria, which are closely related to proton
leaks [40]. However, oxidative stress via excessive ROS induces mitochondrial dysfunction
associated with DNA damage via depolarization of mitochondrial membrane potential [41].
Mitochondrial calcium homeostasis is vital for proper mitochondrial function, but Ca2+

can also trigger the mitochondrial apoptosis pathway [42]. The increased ROS by PM2.5
decreases mitochondrial action potential, causing apoptosis [12]. Furthermore, changes in
the mitochondria are necessary for the senescence phenotype [43]. Thus, we examined mi-
tochondrial calcium levels and membrane potential. Since 3-BDB inhibits ROS formation, it
exerts protective effects on the mitochondria from calcium- and membrane-depolarization-
induced dysfunction.

Oxidative stress leads to DNA oxidation and mutation, cancer, and senescence [29].
PM2.5-induced oxidative stress causes DNA damage, which leads to cell cycle arrest in skin
cells [44]. In this study, we noted less DNA damage in the 3-BDB and PM2.5 groups than
in the PM2.5 group (Figure 3). One way to induce senescence is by activating the tumor
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suppressor, p53, which can be activated by oxidative stress or DNA damage [33]. p53 is
a key factor for determining cell fate; under stress, it can maintain G1 arrest to accelerate
aging [31]. Our results were in agreement with the above explanation and demonstrated
that PM2.5 stimulated the activation of p53 and caused G1 arrest; however, these effects
were reversed by treatment with 3-BDB.

Our previous studies showed that PM2.5 leads to cell apoptosis via ROS [12,14,37,45],
and from the cell cycle analysis, PM2.5 could induce aging and apoptosis through cell cycle
arrest. Moreover, mitochondrial dysfunction is involved in apoptosis and aging [45,46].
We examined the effect of 3-BDB on PM2.5-induced apoptosis. The results shown in
Figure 4 show that 3-BDB reduces apoptotic bodies, as it inhibits ROS generation. Excessive
ROS induced MMPs via the MAPK-transcription factor AP-1 signaling pathway [47,48].
Furthermore, ROS increases the secretion of pro-inflammatory cytokines, which are secreted
at a high level in most senescent cells [49].

DNA damage has been regarded as an activator of the senescence-associated secre-
tory phenotype (SASP), which is related to cell cycle arrest [50]. Two key SASP factors,
IL-1β and IL-6, were detected at high levels in senescent cells [33]. Furthermore, we pre-
viously demonstrated that PM2.5 increases levels of IL-1β and IL-6 [14]. MAPK induces
the phosphorylation of NF-κB that promotes the secretion of pro-inflammatory cytokines
and regulates AP-1 [51]. Collagen degradation is probably related to the formation of
MMPs, especially in the epidermis and dermis [52]. Our previous study showed that
PM2.5 induces the production of MMPs (MMP-1, MMP-2, and MMP-9) and eventually
induces cell senescence [13]. In the present study, we observed that PM2.5 activated the
MAPK signaling pathway and transcription factors (Figure 5), followed by the secretion
of pro-inflammatory cytokines and MMPs; however, 3-BDB relieved cells from the stress
condition induced by PM2.5 (Figure 6). The senescence marker β-galactosidase is present
in aged cells [29]. As shown in Figure 6e, β-galactosidase activity cells were stimulated by
PM2.5, but they were decreased via pretreatment with 3-BDB.

5. Conclusions

In summary, the inhibition of ROS generation by 3-BDB in human HaCaT keratinocytes
and hairless mice reduces mitochondrial dysfunction and DNA damage response, which
inhibits activation of the tumor suppressor p53 and cell cycle arrest. In addition, 3-BDB
affects the inhibition of the MAPK signaling pathway and its regulated transcription factor,
AP-1, reversing the formation of pro-inflammatory cytokines and MMPs, thereby inhibiting
PM2.5-induced senescence by 3-BDB (Figure 7). Notably, 3-BDB had a protective effect
against PM2.5-induced cellular damage and could be used as a preventive agent against air
pollution-triggered skin damage.
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Figure 7. The schematic diagram for the protective effect of 3-BDB induced by PM2.5 was exhibited.
3-BDB inhibited ROS generation induced by PM2.5, which caused macromolecular damage, cell
cycle arrest, and apoptosis. In addition, 3-BDB inhibited inflammatory cytokines release and MMPs
expression through the MAPK signaling pathway, thus alleviating cell senescence through a complex
intracellular mechanism.
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