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Abstract: Ursolic acid (UA) is a well-studied natural pentacyclic triterpenoid found in herbs, fruit
and a number of traditional Chinese medicinal plants. UA has a broad range of biological activities
and numerous potential health benefits. In this review, we summarize the current data on the
bioavailability and pharmacokinetics of UA and review the literature on the biological activities of
UA and its closest analogues in the context of inflammation, metabolic diseases, including liver and
kidney diseases, obesity and diabetes, cardiovascular diseases, cancer, and neurological disorders.
We end with a brief overview of UA’s main analogues with a special focus on a newly discovered
naturally occurring analogue with intriguing biological properties and potential health benefits,
23-hydroxy ursolic acid.

Keywords: botanicals; nutraceutical; antioxidants; inflammation; metabolic diseases; atherosclero-
sis; cancer

1. Introduction

There is substantial evidence supporting the role of phytochemicals, which are cat-
egorized as secondary plant metabolites, as major contributors to the health benefits of
diets rich in fruits and vegetables [1]. In contrast to primary metabolites, which are es-
sential nutrients needed for fundamental metabolic processes that comprise over 99% of
all metabolites in the plant, secondary metabolites are low in abundance and considered
non-essential. However, phytochemicals are used for adaptive defense systems against
environmental stresses [2,3], thereby providing an ecological advantage to optimize plant
interactions with other plants, microbes, and animals. Phytochemicals encompass a wide
range of compounds and are classified into three primary groups based on their biochemi-
cal origin and structural similarities: polyphenols, alkaloids, and terpenoids [2]. Terpenoids
are the largest group of phytochemicals and are comprised of both primary and secondary
metabolites [2].

Terpenoids are derived from one or more 5-carbon isoprenoid units and can be further
characterized by the number of isoprene units and carbon atoms (C10, C15, C20, C30,
C40) [2]. Hemiterpenoids (C5) and sesterpenoids (C25) are rarely found in nature [2].
Isoprenoids are synthesized in one of two ways: via the mevalonic acid (MVA) pathway
that originates from two acetyl-CoA molecules or the methylerythritol 4-phosphate (MEP)
pathway that originates from pyruvate and D-glyceraldehyde 3 phosphate [4]. The MVA
pathway is utilized in plants, algae, bacteria, and mammals for steroid hormone and
cholesterol synthesis. The MEP pathway, located in the plastid of the plant cell, is only
found in plants, algae, and some bacteria and forms mono-, di- and tetraterpenes [4] (MVA
and MEP pathways are reviewed here [5–9].
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Triterpenoids are composed of six isoprene units formed via the MVA pathway and
are in plant resin, cork, waxy coatings and frequently associated with polysaccharide
gums [10]. Triterpenoids occur naturally either unmodified or modified by glycosylation,
which are referred to as saponins. Non-glycosylated triterpenoids provide a protective
waterproofing layer found in plant cuticles, which provides a lipophilic membrane on
leaves, stems, and fruits [10]. Pentacyclic triterpenoids are the most common and widely
distributed triterpenoids and are intermediates in steroid hormone biosynthesis in both
plants and mammals [2]. Pentacyclic triterpenoids are categorized by four basic ring
skeletons: ursane (five six-member rings with one methyl at position 19 and 20), oleanane
(five six-member rings with two methyl groups at position 20), friedelane (five six-member
rings with methyl groups at C4, 5, 10, 8, 13), and lupine (four six-member rings and one
five-member ring) [10] (Figure 1). Five of the most studied terpenoids are ursolic acid (UA)
and asiatic acid (AA, ursane group), oleanolic acid (OA) and β-amyrin (oleanane group)
and betulin (lupine group) (Figure 2).
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Ursolic acid (UA) is a pentacyclic triterpenoid primarily synthesized through the
MVA pathway, similar to steroid hormones in plants and mammals [4]. UA is found in the
protective, waxy coating of apples and other fruits [11–13]. This review focuses on UA and
related analogues in the ursane and oleanane groups, as numerous studies suggest these
anti-inflammatory compounds may have significant health benefits and protect against
various diseases, including metabolic disorders and obesity, cardiovascular diseases, cancer,
and neurological disorders.
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2. Bioavailability and Pharmacokinetics

The bioavailability and pharmacokinetics of UA have been characterized in both ro-
dents and humans. In the Biopharmaceutics Classification System (BCS), UA is considered
a class IV compound, exhibiting poor oral bioavailability, low solubility, and intestinal
permeability, yet UA demonstrates surprisingly strong pharmacodynamic properties and
bioactivities [14]. Several groups have quantified UA. Chen et al. measured plasma concen-
trations and tissue distributions of UA using liquid chromatography-mass spectrometry
(LC-MS) in Sprague-Dawley rats given an oral dose of UA and showed that UA plasma
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levels peaked at 1.1 ± 0.31 µg/mL approximately 30 min after exposure [15]. The highest
concentration of UA was found in the lung (1.5 µM) with decreasing concentrations found
in the spleen, liver, cerebrum, heart and kidney [15]. Similarly, Liao et al. measured UA
in plasma from rats fed Lu-Ying extract (80 mg UA/kg) and reported that plasma UA
peaked at 0.65 µM UA 1 h after administration and showed a half-life of 4.3 h [16]. Similar
concentrations of UA have been observed in mice, albeit with much slower kinetics. For
example, C57BL6 mice fed a diet supplemented with 0.5% UA showed no detectable levels
of UA after four weeks on the dietary regimen; but plasma levels reached 1.3 µM after
8 weeks [13]. In addition, UA as well as related triterpenes were found to remain intact in
tissues, with the highest concentration found in the liver [13]. These data suggest that the
biological effects of UA in vivo are a result of unmodified UA. In humans, plasma levels of
UA have primarily been assessed with liquid chromatography-tandem mass spectrometry
(LC/MS/MS). Hirsch et al. recently showed that a single oral dose of UA had very low
bioavailability [17]. Using a 100 mg dose, this group also showed that only 4 of 14 subjects
had detectable levels of UA. However, 9 of 14 subjects had detectable UA levels when
dosed at 1000 mg. These authors suggested that poor absorption and rapid clearance may
contribute to low levels of UA detected in these subjects. In support of this hypothesis, Zhu
and colleagues have shown that intravenous infusion of healthy volunteers with UA in
nanoliposomes at 98 mg/m2 resulted in plasma UA concentrations that peaked at 7.5 µM
after 4 h [18].

In addition to the pharmacokinetics of UA, several groups have studied the com-
pounds’ toxicity as well as that of many of its naturally occurring analogues. Our group
demonstrated in human THP-1 cells that at concentrations below 30 µM, UA and ten of its
naturally occurring analogues did not exhibit any significant toxicity [19]. Using a brine
shrimp bioassay, Somova et al. showed that UA had no toxic effects on mice when they ad-
ministered UA for 5 days at 60 mg/kg of body weight [20]. A recent repeated-dose toxicity
study evaluated the long-term toxic effect of UA on clinical chemistry, hematology, coagu-
lation, pathology/morphology, behavior, and motor skills in male and female Han-Wistar
rats [21]. The animals received daily doses of 1000 mg/kg/day via oral gavage for 90 days.
The solution was administered to both male and female Han-Wistar rats for 90 consecutive
days. The authors found that this regime does not lead to toxic effects at any of the doses
tested and they concluded that the no-observed-adverse-effect-level (NOAEL) for UA is
likely to be higher than 1000 mg/kg/day. A clinical pharmacokinetic and safety study in
healthy adult volunteers of UA at single oral doses up to 1000 mg also found no serious
adverse event [17]. However, the authors observed low and variable bioavailability, which
they attributed to low intestinal absorption due to poor water solubility, rapid elimination,
and/or metabolism by the gut wall and liver. In addition to the numerous rodent studies
that have found a wide range of beneficial effects of UA, even at high doses, (Table 1),
these findings suggest that UA has low toxicity in both rodents and humans. Nevertheless,
despite the UA’s low bioavailability, it is possible that UA is stored and accumulates in
tissues, including brain, liver, kidney, heart, lung, bladder, colon, and the spleen. Possible
long-term toxic effects in vivo have not been investigated and require further studies.

3. Inflammation

Inflammatory diseases have become major targets for drug development because their
effects are wide and debilitating [22]. Major molecular targets include pro-inflammatory
cytokines and their receptors, tumor necrosis factor (TNF-α), interleukin (IL)-1β, IL-2, in-
terferon (IFN)-γ, NF-κB, mitogen-activated protein kinases (MAPK), and c-Jun-N-terminal
kinases (JNK) [23]. Many plants in traditional medicine have been used to treat inflam-
mation, but in many cases, their potent bioactive constituents are still being investigated.
UA is credited with giving Calluna vulgaris or common heather, a plant used for treating
inflammatory conditions, its anti-inflammatory properties [24]. These authors reported that
treating rat macrophages with 1 µM UA decreased lipoxygenase product formation and
cyclooxygenase activity. Using UA and OA as building blocks, the group of Michael Sporn
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synthesized 60 triterpenoids as anti-inflammatory agents [25]. Many of their synthetic
compounds were potent inhibitors of LPS-induced COX-2 and iNOS expression in mouse
macrophages [26].

COX-2 is one of the many genes regulated by NF-κB, a family of transcription factors
that regulates the expression of genes involved in tumorigenesis, adhesion molecules,
chemokines, proinflammatory cytokines, and cell cycle genes [27]. NF-κB is negatively
regulated by the IκB proteins. Once phosphorylated, IκB is ubiquitinated and degraded
by the proteasome, releasing NF-κB to freely translocate to the nucleus. UA’s beneficial
effects have been linked to its ability to suppress genes associated with NF-κB activation.
Shishioda et al. found that UA suppressed NF-κB activation by inhibiting IκB kinase and
p65 phosphorylation in various tumorigenic cell lines, including Jurkat, HEK293, KBM-5,
H1299, and U937 [27]. NF-κB also regulates lipoxygenase, MMP-9, and iNOS [28], which
may explain the inhibitory effects of UA on iNOS expression [26]. UA also inhibits NF-κB,
activation in human intestinal epithelial cells and macrophages [29].

Checker et al. showed that UA’s effects on NF-κB, AP-1, and NF-AT are at least
partly responsible for its potent anti-inflammatory effects in mouse lymphocytes [30]. They
showed that UA addition to mouse splenic lymphocytes inhibits lymphocyte proliferation
in a dose-dependent manner, with maximal inhibition at 5 µM of UA. UA also inhibits
CD4+ and CD8+ T- and B-cell proliferation. The authors went on to show that UA inhibits
cytokine secretion by lymphocytes induced by Con A or anti-CD3/CD28 monoclonal
antibody addition. Treatment of Con A-stimulated lymphocytes with 5 µM UA completely
inhibits the secretion of IL-2, IL-4, IL-6, and IFNγ and suppressed MAPK, NF-κB, NF-AT,
and AP-1 activation.

Interestingly, UA appears to be an inhibitor of human neutrophil elastase (HNE),
an enzyme that regulates local inflammatory processes [31]. Feng et al. used an in vitro
HNE inhibition assay and a mouse model of smoke-induced lung inflammation to test
multiple pentacyclic triterpenoids and found that UA was the most potent compound
(IC50 = 5.5 µM) [31].

Finally, we would like to mention an important caveat in working with UA initially
reported by Ikeda et al. [32]. These authors found that aggregated UA—in their hands
UA aggregated in culture medium—enhances the release of IL-1β in cultured mouse
peritoneal macrophages. Pretreating cells with an anti-CD36 antibody reduces IL-1β release,
suggesting that aggregated UA interacts with the CD36 receptor, a scavenger receptor
that mediates the phagocytosis of apoptotic cells [33], and oxidized LDL, a mechanism
that protects macrophages from the cytotoxicity of OxLDL [34]. Interestingly, Ikeda and
colleagues also reported that intra-peritoneal injections of UA (50 mg/kg solubilized in
corn oil repeated for 8 days) increased IL-1β release as well [32], suggesting that the high
concentration of UA in the corn oil may have led to aggregate formation. This potential
artifact may explain the few reports of pro-inflammatory activities of UA as reviewed by
Ikeda and colleagues [4].

4. Metabolic Diseases

Studies highlighting UA’s anti-inflammatory and antioxidant properties have spurred
research focused on utilizing UA to either treat or prevent various metabolic diseases,
including obesity, hypertension, diabetes, cardiovascular disease, and liver and kidney
diseases, which are discussed below.

4.1. Liver Disease

UA has hepatoprotective properties that were first discovered in the mid to late 1980s
using traditional Chinese medicine preparations to protect against carbon tetrachloride
(CCl4)-induced liver injury [35]. Many triterpenoid compounds similar in structure to UA
show this same liver protection in mice [36]. Using CCL4-treated mice, UA prevented
liver damage and protected against oxidative stress and inflammation by decreasing the
activation of MAPK pathways, including JNK, p38 MAPK, and ERK and NF-κB [37]. In
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addition, using a rodent model of chronic ethanol-induced liver damage, both UA isolated
from Eucalyptus tereticornis [38] or pure UA (10, 20, or 40 mg/kg/day) improved liver
function as measured by aspartate aminotransferase (AST) and alanine aminotransferase
(ALT) plasma concentrations, and increased circulating antioxidant plasma levels (glu-
tathione, α-tocopherol, and ascorbic acid) [39]. Furthermore, UA protects the liver from
HFD-induced hepatic steatosis [40–43]. The mechanisms underlying UA’s hepatic protec-
tive properties are still unclear, but possible mechanisms have been proposed, including
inhibition of cytochrome P450 (CP450) [35,44], the induction of apoptosis in liver-damaging
hepatic stellate cells [45], reduction of oxidative stress through activation of LKB1-AMPK
signaling [46], activation of proliferator-activated receptor alpha (PPARα) to regulate lipid
metabolism [47], and reduced inflammatory cytokine production in response to IL-6 [48].

4.2. Obesity and Diabetes

One of the first studies conducted with UA in regards to metabolic diseases found
that after 6 weeks of intraperitoneal (i.p.) injections with UA, Dahl salt-sensitive rats
showed reduced hypertension, lower blood glucose and total cholesterol levels, and in-
creased expression of two key antioxidant enzymes, glutathione peroxidase (GPx), and
superoxide dismutase (SOD) in of UA [20]. In subsequent studies conducted utilizing a
mouse model of diet-induced obesity (C57BL/6 mice fed a HFD) and a mouse model of
streptozotocin (STZ)-induced hyperglycemia to mimic diabetes, UA supplemented in a
HFD or the drinking water or administered i.p., has consistently shown benefits, including
a reduction in fat mass, increased skeletal muscle mass, improved glucose control, and
reduced plasma lipid levels [40–42,49–52] (see Table 1 for details). In addition to UA’s
ability to preserve antioxidant enzyme activity [20], an additional mechanism underlying
the improved metabolic profile observed in animal studies may include UA’s ability to
modulate adipogenesis and lipolysis. UA was found to attenuate adipogenesis via the
LKB1/AMPK pathway [53] and stimulate lipolysis by upregulation of adipose triglyceride
lipase in primary rat adipocytes [54], indicating another potential anti-obesity mechanism
for UA. UA has also been reported to modulate mTORC1 signaling in muscle, although
the directionality of that effect appears to be context-dependent. In C2C13 myotubules, UA
inhibited the activation of mTOR by leucine [55] through suppression of mTOR lysosomal
localization. On the other hand, UA administered to exercised Sprague-Dawley rats, was
able to sustain exercise-induced mTORC1 activity [56].

Table 1. UA in animal disease models.

Disease UA Delivery Model Outcome References

CVD 60 mg/kg body
weight IP

Dahl
salt-sensitive rat

model
↓ HTN, BG, and TC; ↑ GPx and SOD [20]

CVD 85 mg/kg body
weight subq IP Windsor rats against ISO-induced MI, ↓ CK-MB, LDH,

LDL, TG, and FFA [57]

CVD 85 mg/kg body
weight subq IP Windsor rats

↑ Bcl-2, Bcl-xl and ↓ of Bax, caspase-3, -8,
and -9, cytochrome c, TNF-alpha, and FAS.
↓ lipid peroxidation markers and ↑
antioxidant enzymes and non-antioxidant
enzymes in the plasma and heart tissue of
ISO-induced MI

[58]

CVD 50 mg/kg oral gavage STZ-Diabetic
mice ↓ aortic damage, RAGE, P22, and NFkB [59]

CVD 0.05% HFD LDLR-KO mice ↓atherosclerotic plaque size and weight gain [19]

CVD 0.20% HFD STZ-treated
LDLR-KO, mice

↓ atherosclerosis lesion formation, fewer
infiltrating macrophages, ↓ BG, Alb/Crt
ratio, inflammatory blood monocytes, ↑ low
inflammatory blood monocytes

[60]
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Table 1. Cont.

Disease UA Delivery Model Outcome References

Diabetes 0.05% HFD STZ-Diabetic
mice

Protects pancreatic islet cells and ↑
insulin secretion [61]

Diabetes 5 mg/kg HFD C57BL/6J mice
UA combined with rosiglitazone ↓ whole
BW gain, and can have profound responses
to rosiglitazone or metformin.

[62]

Diabetes 0.01% and
0.05%

AIN-76
semisynthetic

diet

STZ/NA-
Diabetic

mice

Significant improved diabetic outcomes and
stimulated T-lymphocytes in the thymus [52]

Diabetes 5 mg/kg HFD C57BL/6J mice
UA combined with rosiglitazone ↓ hepatic
marker enzyme activities and ↓ lipid
accumulation in liver

[63]

Kidney
Disease 0.01% Standard rat

chow
STZ-Diabetic

mice

↓ glomerular hypertrophy, collagen
accumulation, and suppressed activation of
STAT-3, ERK1/2, JNK and iNOS
overexpression

[64]

Kidney
Disease

0.05%, 0.1%
and 0.2%

64 g starch, 23 g
protein, 3.5 g fat,

5 g fiber,
1 vitamin

mixture and
3 salt mixtures

STZ-Diabetic
mice

↑ kidney function ↓ flux through the renal
polyol pathway, and ↓ AGEs formation
in urine

[65]

Kidney
Disease 0.2% Standard rat

chow
STZ-Diabetic

mice
↓ UAE, renal oxidative stress, NF-KB
activity, and P-selection expression [66]

Kidney
Disease

25 and
50 mg/kg oral gavage ICR mice

UA prevents CCl4-induced nephrotoxicity,
ROS, DNA damage, and proinflammatory
markers

[37]

Kidney
Disease

2, 5, and
10 mg/kg orally Wistar albino

rats
UA protected kidneys from
gentamicin-induced damage [67]

Kidney
Disease 0.2% in diet Standard rat

chow Wistar rats ↓ UAE, renal oxidative stress level, NF-κB
activity, and P-selectin expression. [42]

Liver
Disease 1–100 µM Incubation

medium
Human liver
microsomes

UA regulation of cytochrome P450 shows
hepatoprotective properties [44]

Liver
Disease 50 mg/kg IP Wistar rats

Induced apoptosis in liver-damaging
hepatic stellate cells while maintaining
normal hepatocyte function

[45]

Liver
Disease 50 mg/kg oral gavage C57/BL6 WT

mice
↓ oxidative stress through activation of
LKB1-AMPK signaling [46]

Liver
Disease

25 and
50 mg/kg intragastrically ICR mice

↓ CCl(4)-induced lipid peroxidation levels
and depleted TAC levels in liver. ↓ CYP2E1,
TNF-α, IL-1β and COX-2, JNK, p38 MAPK,
ERK, and inactivation of NF-κB

[37]

Liver
Disease

1, 10, and
100 µg/mL

cell culture UA
treatment

Albino
Druckery rats

UA isolated from Eucalyptus tereticornis
improved liver function measured by AST,
ALT, and ↑ glutathione, α-tocopherol, and
ascorbic acid

[38]

Liver
Disease

10, 20, and
40 mg/kg/day intragastrically Wistar albino

rats

Pure UA improved liver function measured
by AST, ALT, and ↑ glutathione,
α-tocopherol, and ascorbic acid

[39]

Liver
Disease

0.125%, 0.25%,
and 0.50% HFD

Sprague-
Dawley

rats

Significantly reversed HFD-induced hepatic
steatosis and liver injury [43]
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Table 1. Cont.

Disease UA Delivery Model Outcome References

Liver
Disease

5, 20, and
80 µM

cell culture UA
treatment

Cultured
HepG2 cells

↑ PPARα binding to its response element
but did not directly bind PPARα in the liver
hepatocyte cell line, HepG2 cells

[47]

Liver
Disease

HepG2 (6.25,
12.5, and

25 µM) and
HUVECs (5, 10,

20 µM)

cell culture UA
treatment

HUVECs and
HepG2 cells

↓ inflammatory cytokine production
induced by IL-6 in HepG2 cells [48]

Liver
Disease 0.1 and 0.05%

AIN-76
semisynthetic

diet

STZ/NA-
Diabetic

mice

↓ FBG, TG, FFA, TC and VLDL, LDL. ↓
hepatic G6-P activity and ↑ glucokinase
activity, the glucokinase/G6-P ratio, GLUT2
mRNA levels and glycogen content. ↑
aldose reductase activity, ↓ SDH

[52]

Metabolic
Disease 50 µM cell culture UA

treatment C2C12 cells
Inhibited mTORC activation by leucine
through suppression of mTOR lysosomal
localization

[55]

Metabolic
Disease 250 mg/kg IP

Sprague-
Dawley

rats

UA sustained exercise-induced mTORC1
activity [56]

Metabolic
Disease

40 mg/kg body
weight IP C57Bl/6 mice ↑muscle mass by inhibiting skeletal muscle

atrophy and improved metabolic outcomes [50]

Metabolic
Disease 0.5 g/kg HFD STZ-Diabetic

mice
↓ blood glucose, TC, FFA, TG, and
improved liver function [41]

Metabolic
Disease

125 nM,
250 nM,

500 nM and
1 µM

cell culture UA
treatment CHO/hIR cells

Inhibition of PTP1B ↓ blood glucose. PTP1B
is a phosphatase inhibitor of
insulin-mediated signaling.

[68]

Neuro.
Disease

5, 10, and
15 µM

cell culture UA
treatment

Sprague-
Dawley

rats

↓ free radical generation in primary rat
hippocampus neurons in response to kainite [69]

Neuro.
Disease 10 mg/kg/day oral gavage Kunming strain

mice

↑ activity of antioxidant enzymes, SOD,
CAT, GPx, and GR and ↓ general lipid
peroxidation in the brain

[70]

Neuro.
Disease 10 mg/kg/day oral gavage Kunming strain

mice

↓ AGEs, ROS, PCO levels, and
down-regulated iNOS, COX-2, and various
inflammatory cytokines mediated through
NFκB, all found in the prefrontal cortex of
the brain

[71]

Neuro.
Disease

10 or
20 mg/kg/day oral gavage C57BL/6J

improved cognitive deficits attributed to ↓
COX2, iNOS, TNFα and various
inflammatory interleukins mediated
through p38/NFκB signaling pathways

[72]

Neuro.
Disease 10 mg/kg/day oral gavage C57BL/6J

improves cognitive impairments by
inhibiting ER stress and NFκB signaling
pathway, restoring insulin signaling and the
mTOR pathway

[73]

Neuro.
Disease 50 or 100 µM cell culture UA

treatment

CHO-CD36 and
primary

microglia cells

Potential treatment for Alzheimer’s Disease
due to ↓ amyloid β binding to CD36 [74]

Neuro.
Disease

25 and
50 mg/kg IP SD rats ↓ oxidative stress attenuating EBI after SAH [75]
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Table 1. Cont.

Disease UA Delivery Model Outcome References

Neuro.
Disease 130 mg/kg IP Nrf2−/− and

WT rats
Protects brain from ischemic injury through
activation of NRF2 pathway [76]

Neuro.
Disease 100 nM cell culture UA

treatment

Patients with
parkin or
LRRK2

mutations

↑ activity of the mitochondrial respiratory
chain and displayed drug-like
dose-response curves for Parkinson’s
Disease

[77]

Obesity,
Diabetes 0.05% HFD C57Bl/6 mice

improved glucose tolerance and wt
maintenance while ↓ lipid accumulation in
liver

[42]

Obesity 0.05% Drinking Water C57Bl/6 mice ↓ visceral adiposity, total BW, BG, and lipid [49]

Obesity 0.14% and
0.27% HFD C57Bl/6 mice

↑muscle mass, skeletal muscle glucose
uptake, and BAT resulting in ↓ obesity,
hepatic steatosis, and improved glucose
tolerance

[40]

Obesity 2.5 to 10 µM cell culture UA
treatment

3T3-L1 mouse
embryo

fibroblasts

Attenuated adipogenesis through the
LKB1/AMPK pathway [53]

Obesity 25, 50, and
100 µM

cell culture UA
treatment

Sprague-
Dawley

rats

Anti-obesity mechanism by stimulating
lipolysis by upregulation of ATGL in
primary rat adipocytes

[54]

Obesity

Cynomorri
extract,

100–360 mg/kg
body weight

HFD C57Bl/6 mice
↓ wgt gain likely to ↑ energy expenditure
based on observed mitochondrial
uncoupling in skeletal muscle

[51]

As mentioned above, UA also lowers blood glucose levels. One mechanism through
which UA reduces blood glucose levels is via the inhibition of protein tyrosine phosphatase
1B, an important phosphatase inhibitor of insulin-mediated signaling [68]. Furthermore,
UA appears to help preserve pancreatic islet cells function as the compound protected
pancreatic islet cells from STZ-induced damage and impaired insulin secretion [61]. UA’s
ability to reduce blood glucose levels has led to a series of studies investigating the ther-
apeutic potential of combining UA with established anti-diabetic drugs. For example,
UA treatment combined with rosiglitazone in HFD-fed C57BL/6J reduces whole body
weight gain, prevents hepatic lipid accumulation, decreased systolic and diastolic blood
pressure, improved lipid status and lowered blood glucose levels more effectively than
either compound alone [62,63].

4.3. Cardiovascular Disease

Recent studies, including two from our group, have reported cardioprotective prop-
erties of UA. UA supplemented in a HFD strongly suppressed atherosclerotic plaque
formation and increased survival in a mouse model of diabetes-accelerated atherosclero-
sis [60]. UA-treated mice also showed reduced monocyte migration and recruitment of
monocyte-derived macrophages in vivo, as well as reduced accumulation of inflamma-
tory blood monocytes. Of note, in this study, UA was more potent than resveratrol in
preventing atherosclerosis. We confirmed the atheroprotective properties of dietary UA in
a classic mouse model of atherosclerosis, HFD-fed LDL receptor-deficient mice [19]. Both
studies provide compelling evidence that UA’s anti-atherogenic activity is to a large extent
mediated by the compound’s protective effects on blood monocytes, preventing nutrient
stress-induced hyperreactivity to chemoattractants and the overrecruiting of monocyte-
derived macrophages into tissues. The underlying molecular mechanism appears to
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involve inhibition of metabolic stress-induced Nox4 protein expression and increased
protein S-glutathionylation, a marker of oxidative stress and redox signaling [33,60,78,79].

In apparent contradiction to our reports, Messner et al. found that UA supplementa-
tion in the drinking water induces endothelial cell apoptosis, inflammation, and increased
atherosclerosis in APOE−/− mice [80]. However, the UA concentration in the drinking
water used in this study was 30 mM. These high concentrations are likely toxic to mice,
causing tissue irritation and injury, which may account for the systemic inflammation and
increased atherosclerosis in these mice reported by the authors [80]. In fact, a 24-h exposure
of THP-1 monocytic cells to UA concentrations exceeding 10 µM, i.e., a 3000-fold lower
concentration, is sufficient to promote cell death [19].

In addition to protecting against atherosclerosis, UA protects against isoproterenol-
induced myocardial infarction (MI) in rats as evidenced by reduced enzyme markers of
disease (creatine kinase-MB and lactate dehydrogenase), lipid biomarkers (LDL, TG, and
FFA), DNA fragmentation through upregulation of anti-apoptotic protein (Bcl-2, Bcl-xl),
downregulation of apoptotic proteins, including Bax, caspase-3, -8, and -9, cytochrome
c, TNF-α, and FAS, and reduced oxidative stress in the plasma and heart tissue of these
animals [57,58]. Oral UA also protects aortas of STZ-induced diabetic mice from vascular
injury as indicated by reduced aortic damage and oxidative stress and a concomitant
decrease in RAGE, p22, and NF-kB expression [59]. Taken together, these data suggest
that dietary UA has potent cardio- and vasculoprotective and anti-atherogenic properties
and may represent a new class of oral therapeutics for the prevention and treatment of
cardiovascular diseases.

Both UA and its analog, OA, also have anti-hypertensive properties. When OA from
Greek olive oil and Cape Town cultivar, or a 1:1 mixture of OA and UA extracted from
African wild olive leaves was administered to Dahl salt-sensitive (DSS) rats, an insulin-
resistant rat model of hypertension, these rats were protected from the development of se-
vere hypertension and atherosclerosis [81]. In addition to the anti-hypertensive properties,
daily application of the mixture for 6 weeks reduced heart rate, reduced hyperlipidemia,
and exerted antioxidant and hypoglycemic properties in DSS rats [20]. Sundaresan et al.
reported that orally administered UA alone significantly reduced blood pressure in HFD-
fed C57BL/6J mice [62]. A single intragastric dose (50 mg/kg) of UA significantly reduced
systolic and diastolic blood pressure without affecting the heart rate in male spontaneous
hypertensive (SHR) Wistar rats [82]. In the same rat model (SHRs), oral administration of
OA (1.08 mg/kg) for 4 weeks prevented elevated systolic and diastolic pressure [83]. This
anti-hypertensive effect was mediated by the downregulation of secretory phospholipase
A2 (sPLA2) and fatty acid synthase. Thus, in addition to their cardio-and vasculoprotective
properties, both UA and OA also appear to exert anti-hypertensive effects.

4.4. Kidney Disease

Evidence from several studies suggests that UA protects against diabetic-induced
kidney disease. UA supplemented in the diet (0.05, 0.1 or 0.2%) of STZ-induced dia-
betic mice preserved kidney function as measured by creatinine clearance, diminished
flux through the renal polyol pathway, and decreased advanced glycation end products
(AGEs) formation in urine [64,84]. In addition, 0.01% UA supplemented in the diet of
STZ-induced diabetic mice decreased glomerular hypertrophy, collagen accumulation and
suppressed the activation of inflammatory and oxidative pathways (STAT-3, ERK1/2 and
JNK) and iNOS overexpression [64]. After 16 weeks on a diet supplemented with 0.02%
UA, STZ-treated mice showed improved kidney function [66]. An animal model of carbon
tetrachloride (CCl4)-induced kidney damage was utilized to investigate UA’s protective
effects and found that UA prevents CCl4-induced nephrotoxicity, ROS, DNA damage,
proinflammatory markers [85]. Furthermore, oral administration of UA (2, 5, 10 mg/kg)
protected kidneys from gentamicin-induced damage in rats [67]. These findings strongly
suggest that UA is a potential oral therapeutic or adjunct therapy for the treatment of
kidney diseases.
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In summary, oral administration of UA greatly improves health outcomes in a variety
of rodent models of human metabolic diseases. A large body of data suggests that UA may
be an effective oral therapy for both the preventive and treatment of metabolic disorders
in humans as well as the chronic inflammatory diseases associated with these disorders.
To date, only a single small clinical trial has been conducted to examine these potential
health benefits in humans. In this randomized, double-blind, placebo-controlled clinical
trial, 24 patients between 30 and 60 years of age, with a diagnosis of metabolic syndrome
without treatment, were randomly assigned to two groups of 12 patients each, which either
received orally 150 mg of UA or homologated placebo once a day for 12 weeks [86]. The
authors report transient remission of metabolic syndrome, reducing body weight, BMI,
waist circumference, and fasting glucose, as well as increasing insulin sensitivity in 50% of
patients that received oral UA.

5. Cancer

UA’s anti-cancer properties have initially been described for the prevention of skin
tumors [87], but more recently, UA has been studied in a wide variety of cancers, includ-
ing bladder, colon, cervical, breast, liver, and lung (Table 2). Chronic inflammation and
oxidative stress are intricately linked with cancer development, progression, and metasta-
sis [88,89]. Many of the inflammatory pathways that are up-regulated in cancer cells are
targets of UA and other triterpenoids [90]. UA mediates many of its anti-cancer effects
through up-regulation of NF-kB [27,91,92], Bcl-2 [91], ICAM-1 [93], and PKC [94] and/or
the downregulation of STAT3 [95], JNK [96], and p53 [91], resulting in apoptosis, reduced
proliferation, and decreased angiogenesis thereby preventing cancer tumor formation
and metastasis.

Table 2. Anti-cancer effects of UA.

Pathway Cancer Type References

Induction of apoptosis

FoxM1 ↓ breast cancer cells [97]

Caspase ↑

melanoma cell [98]

endometrial cancer cell [99]

prostate cancer cells [100]

non-small cell lung cancer [101]

gastric cancer cell [102].

colon cancer cells [103]

bladder cancer cells [104]

Trail-mediated prostate cancer cells [105]

COX-2 ↓
colon cancer cells [103,106]

gastric cancer cell [107]

NF-κB ↓

bladder cancer cells [104]

pancreatic cancer cells [108].

prostate cancer cells [109]

hepatocellular carcinoma cells [110]

JNK ↑
colon cancer cells [111]

pancreatic cancer cells [108]

prostate cancer cells [112]
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Table 2. Cont.

Pathway Cancer Type References

Inhibition of cell
proliferation

MAPK ↓
endometrial cancer [113]

colon cancer cells [103,114]

STAT3 ↓

prostate cancer cells [109]

multiple myeloma cells [95]

colorectal cancer cells [115,116]

p53 and
p21WAF1 ↑ non-small cell lung cancer [117]

Inhibition of metastasis

HIF-1α ↓ neuroblastoma cells [118]

VEGF ↓

lung cancer cells [119]

colorectal cancer cells [120]

liver cancer cells [93]

neuroblastoma cells [118]

MMP-9 ↓

glioma cells [94]

liver cancer cells [93]

lung cancer cells [119]

ICAM-1 ↓ liver cancer cells [93]

lung cancer cells [119]

Apoptosis, i.e., programmed cell death, is triggered by intrinsic and extrinsic cellular
pathways. At high doses, UA has been shown to activate the intrinsic pathway by inhibiting
anti-apoptotic pathways such as NF-kB [27,91,92] and COX-2 [103,106], and FoxM1 [59],
and up-regulation of pro-apoptotic pathways through the activation of caspases [98–104],
JNK [101,102,117], p53 [91], and the Trail-mediated pathway [105,121].

Carcinogenesis is characterized by excessive cell proliferation. UA has been shown
to inhibit cell proliferation by inhibiting MAPKs [109,119,120] or STAT3 activation path-
ways [95,109,115,116]. In human non-small cell lung cancer, UA also blocks cell cycle
progression in a p53 and p21WAF1-dependent manner [117].

Metastasis is dependent on tumor angiogenesis and the regulation of proteases, pepti-
dases, and adhesion molecules. UA and other triterpenoids reduce the angiogenic poten-
tial through down-regulation of hypoxia-inducible factor (HIF)-1α, vascular endothelial
growth factor (VEGF), and IL-8 [93,118,122]. In addition, multiple studies in various cancer
cell lines showed that UA down-regulates two gelatinases responsible for the breakdown
of extracellular matrix involved in cancer metastasis, matrix metalloproteinase 9 (MMP-9),
and MMP-2 [27,94,119,123]. Furthermore, UA treatment reduces the expression of the
adhesion molecule, intercellular adhesion molecule-1 (ICAM-1) [93,119], which is another
important regulator of cancer metastasis.

While many of UA’s anti-cancer effects have been reported in cell lines, UA shows
similar potency in rodent tumor models. Topical application of UA extracted from rosemary
reduced the number of tumors formed in a CD-I mouse model of skin tumor [87]. DMBA
and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin tumors were treated with
rosemary extract (3.6 mg in 299 µL acetone) for 19 weeks, reducing tumor formation by
99%. This effect was attributed to UA and carnosol. Methanol-extracted UA at 0.2, 0.6, and
2.0 µM doses was found to significantly reduce tumors. At a dose of 2.0 µM, UA reduced
tumor formation by 45%, whereas lower doses reduced tumor formation by 5–20% [54].
In SENCAR mice, topical application of UA, but not resveratrol, also reduced skin cancer
induced by DMBA and TPA treatment. UA treatment also reduced COX2 and IL-6 mRNA
expression in tumor-induced mice [124].
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Dietary studies show that even low doses of UA are effective against cancer. In a
mouse breast cancer model, mice on a 3-week diet of UA (0.05%, 0.1%, and 0.25% w/w)
demonstrated reduced tumor formation and tumor size. This effect was attributed to the
induction of apoptosis and disruption of cell cycle by UA [125]. A 1% UA supplemented
diet was found to also be effective for preventing prostate cancer metastasis in TRAMP
mice [126]. In this study, UA was found to downregulate CXCR4 in prostate cancer cells,
which correlated with an inhibition of CXCL12-induced migration, reducing metastasis
of prostate cancer cells. In a follow-up study, UA supplementation TRAMP mice diets for
12 weeks exhibited delayed tumor formation and reduced tumor growth and increased
survival [127]. These authors reported that UA decreases activation of NK-κB, STAT3, AKT,
and IKKα/β phosphorylation in prostate tissues, resulting in decreased TNF-α and IL-6
levels.

6. Neurological Disorders and Other Diseases of the Brain

Neurons are susceptible to oxidative damage which is thought to be the underlying
cause of many neurodegenerative diseases. UA’s role has been investigated in preventing
neurodegeneration through the reduction in ROS production and inflammation through
the upregulation of antioxidant enzymes and the downregulation of inflammatory path-
ways (Table 1). In various rodent models of neurotoxicity, UA protected against oxidative
stress and free radicals in various regions of the brain [69–71,74,128,129]. Specifically, UA
administered through oral gavage protected senescent mice from D-galactose-induced
neurotoxicity by increasing the activity of antioxidant enzymes (SOD, catalase (CAT),
glutathione peroxidase (GPx) and glutathione reductase (GR), reducing general lipid per-
oxidation in the brain [70], and by decreasing advanced glycation end products (AGEs),
ROS, and protein carbonyl levels, mainly by down-regulating iNOS, COX-2, and various
inflammatory cytokines mediated through NFκB [71]. Furthermore, UA protects the brain
from ischemic injury in mice through activation of the NRF2 pathway, a cellular antioxidant
response system [76]. The neuroprotective effects of UA, therefore, appear largely due
to its potent anti-inflammatory properties. Mice fed an HFD that received a daily oral
gavage of UA (10 mg/kg/day) showed reduced cognitive impairments, effects that appear
to be mediated by inhibiting endoplasmic reticulum (ER) stress and the NFκB signaling
pathway, and restoring insulin signaling and the mammalian target of rapamycin (mTOR)
pathway [73]. Furthermore, in a model of lipopolysaccharide (LPS)-induced brain inflam-
mation, UA administered by oral gavage (10 or 20 mg/kg/day) significantly improved
cognitive deficits, which was attributed to decreased inflammatory mediators, including
COX2, iNOS, TNFα, and various NFκB-dependent inflammatory interleukins [72]. Tsai
and Yin found UA and OA protected against hydrogen peroxide (H2O2) or 1-methyl-4-
phenylpyridinium ion (MPP+)-induced neuronal cell damage in a concentration-dependent
manner [28]. Interestingly, UA was more potent than OA in protecting the PC12 cells from
plasma membrane damage and preventing the release of inflammatory mediators, IL-6
and TNF-α.

Of note, UA has been proposed as a potential therapeutic for Alzheimer’s disease due
to UA’s ability to reduce amyloid β binding to CD36, an important step in microglial acti-
vation and the onset of neuroinflammation [74]. Furthermore, UA was found to attenuate
early brain injury after subarachnoid hemorrhage and shows promise as a neuroprotec-
tive compound for the treatment of Parkinson’s disease [75,77]. Together, these findings
highlight UA’s therapeutic potential in neurological disorders and neurodegenerative
diseases.

7. Biological Effects of Naturally Occurring Analogues of UA

In addition to UA, many of its naturally occurring analogues have also been inves-
tigated for their biological effects and potential health benefits. Interestingly, many of
the analogues are found in olive oil, which is thought to be responsible for many of the
beneficial health effects of the Mediterranean diet, suggesting a possible additive or even
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synergistic effect of these compounds in human health. Based on the reported health
benefits and potential relevance for human disease prevention, we will limit our discussion
to the following three natural UA analogues: asiatic acid (AA), corosolic acid (CA), and
23-hydroxy UA (23-OH UA, Table 3).

Table 3. Effects of natural UA analogues.

Analog Dose Delivery Model Outcome References

Asiatic acid 2.5, 5, 10 and
20 µM

cell culture AA
treatment

Breast cancer cell
lines MCF-7 and

MDA-MB-231

Cell growth inhibition by inducing
cancer cells to undergo S-G2/M phase
arrest and apoptosis

[130]

Asiatic acid 10, 20, 30, 40
and 50 µM

cell culture AA
treatment

SK-MEL-2
human

melanoma cell
line

↓ cell viability, induced apoptosis in
SK-MEL-2 cells, ↑ ROS, enhanced Bax
expression, and induced caspase-3
activity

[131]

Asiatic acid
10, 20, 30, 40,

70 and
100 µM

cell culture AA
treatment

HepG2 human
hepatoblastoma

cell line

↓ cell viability, induced apoptosis in
HepG2 human hepatoma cells, ↑
intracellular Ca2+ level and p53
expression

[132]

Asiatic acid 10 or 20 mg/
kg/day oral gavage C57BL/6 mice

↑ insulin sensitivity, protected mice from
hepatosteatosis, ↓ ROS production,
hepatic lipid accumulation, and IL-13B
secretion with high AA dose

[133]

Asiatic acid
5, 10 and
20 mg/kg

BW
oral STZ-diabetic

mice

Reversed STZ-induced diabetes,
potentially regulates CHO metabolism by
modulating diabetic-regulatory enzymes

[134]

Asiatic acid 10 or 20 mg/
kg/day intragastrically Sprague-Dawley

rats

Improved HCHF diet-induced insulin
sensitivity, lipid profiles, hemodynamic
parameters, oxidative stress markers,
plasma TNF-α, NOx, and recovered
abnormality of eNOS/iNOS expressions

[135]

Corosolic
acid 0.072% HFD SHR-cp rats

↓ blood pressure, serum FFAs, oxidative
stress markers, myeloperoxidase markers,
and high sensitivity C-reactive protein

[136]

Corosolic
acid 20–100 µM Syringe pump

infused Wistar rats
Inhibited gluconeogenesis in liver by ↑
Fru-2,6-BP, ↓ cAMP levels, inhibiting
PKA activity and ↑ glycolysis

[137]

Corosolic
acid

10 mg/kg
BW oral KK-Ay mice Hypoglycemic effect derived from ↑

GLUT4 translocation in muscle [138]

Corosolic
acid

250 and
500 nM

cell culture CA
treatment

CHO/hIR and
L6 myoblast cells

Enhanced glucose uptake by ↑ GLUT4
translocation mediated by insulin
pathway activation, inhibited PTP1B,
T-cell-PTP, src phosphatase 1 and 2
activity

[139]

23-Hydroxy
Ursolic Acid 0.05% HFD LDLR-KO mice ↓ atherosclerotic plaque size and weight

gain, more potent than ursolic acid [19]

23-Hydroxy
Ursolic Acid 0.2% HFD C57BL/6 mice

↑ glucose tolerance, ↓ weight gain,
hyperleptinemia, macrophage
recruitment, and adipose tissue
inflammation

[140]

7.1. Asiatic Acid

Asiatic acid (AA) has also been investigated as an anti-cancer compound. Studies in
breast cancer cells [130], human melanoma cells [131], and human hepatoma cells [132]
demonstrate that AA induces apoptosis in cancer cells (Table 3). The metabolic effects
of AA have also been examined. Yan et al. supplemented HFD-fed mice diets with 10
or 20 mg/kg/day of AA and found it increases insulin sensitivity and protects the mice
from hepatic steatosis. ROS production, hepatic lipid accumulation, IL-1β TNFα and IL-6
secretion were also suppressed in HFD-fed mice that received the higher AA dose [133].
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Ramachandran et al. also demonstrated that AA reversed streptozotocin-induced diabetes
in rats that received AA orally for 45-days before streptozotocin injection [134]. AA has
also been shown to improve insulin sensitivity in Sprague-Dawley rats with metabolic
syndrome [135]. The authors found that a dose of 20 mg/kg of AA was effective at reversing
the high-carbohydrate, high-fructose diet-induced insulin resistance, hypertension, and
inflammation. Importantly, they found AA supplementation also restored eNOS/iNOS
expression to normal levels in these rats.

7.2. Corosolic Acid

Corosolic acid (CA) has also been demonstrated to have protective effects against
metabolic syndrome in rats [136] (Table 3). Yamada et al. investigated CA’s anti-diabetic
mechanisms and found it inhibited gluconeogenesis in rat liver by increasing fructose
2,6-bisphosphate and decreased cAMP levels, inhibiting PKA activity and by increasing
glycolysis [137]. Another possible mechanism for CA’s anti-diabetic effect may be its ability
to promote GLUT4 translocation. Hind limb skeletal muscle of diabetic KK-Ay mice that
were orally administered 10 mg/kg of CA showed higher levels of GLUT4 translocation
than those in control mice [138]. These findings were replicated by Shi et al. in CHO/hIR
cells [139]. These authors reported that CA inhibits protein activity of negative regulators
of insulin uptake; tyrosine phosphatase1B and src homology phosphatase-1 and 2 activities.

7.3. 23-Hydroxy Ursolic Acid

Based on structure-function studies using ursolic acid and nine of its naturally oc-
curring UA analogues, Nguyen et al. identified 23-hydroxy ursolic acid (23-OH UA) as a
novel, naturally occurring triterpenoid with potential health benefits [19] (Table 3). 23-OH
UA is a phytochemical found in the leaves of Lagerstroemia speciosa or giant crepe-myrtle
native to South East Asia, and leaves and twigs of Juglans sinensis, a walnut tree found
in East Asia [141]. Like UA, 23-OH UA prevented nutrient-stress induced dysfunction
in THP-1 monocytic cells and human blood monocytes. In HFD-fed LDLR−/− mice, an
established mouse model of human atherosclerosis, both dietary UA and 23-OH UA sup-
plemented at 0.05% to the HFD prevented dyslipidemia-induced loss of MKP-1 activity and
hyper-chemotactic activity, hallmarks of blood monocyte dysfunction, without affecting
plasma lipids or blood glucose levels or white blood cell and monocyte counts. Despite
their similar mechanism of action, dietary 23-OH UA was significantly more effective
in preventing atherosclerotic lesion formation and weight gain than UA. In a follow-up
study, the same group confirmed the potent anti-obesogenic properties of 23-OH UA
in a mouse model of diet-induced obesity and reported that 23-OH UA also improves
glucose tolerance, prevents hyperleptinemia, preserves blood monocyte function, and
reduces the recruitment of monocyte-derived macrophages into adipose tissues during
nutrient stress. The authors provide evidence that the mechanism of action of 23-OH
UA appears to involve the conversion of macrophages into anti-inflammatory, potentially
inflammation-resolving phenotypes, which appears to contribute to the reduced adipose
tissue inflammation seen in 23-OH UA-supplemented mice. Together these data suggest
that 23-OH UA may serve as an oral therapy for patients at risk for obesity, impaired
glucose tolerance, and cardiovascular diseases.

7.4. Other Ursolic Acid Analogues and Related Pentacyclic Triterpenoids

Other less studied naturally occurring analogues of UA include erythrodiol (ED),
hederagenin (HG), and madecassic acid (MA). They have all been investigated as anti-
cancer agents. ED, another analogue found in olive oil, was also found to have anti-cancer
properties. ED inhibited proliferation and promoted apoptosis in HT-29 adenocarcinoma
cells [142]. Adding ED (10 mg/kg) to a western diet after 12 weeks significantly decreased
lipid droplets in liver male ApoE/ApoA1-deficient mice [143]. Hepatic transcriptome anal-
ysis of these mice revealed altered gene expression in pathways related to detoxification,
protein metabolism, and nucleic acid-related metabolites. ED also stabilized ABCA1, a key
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transporter for cholesterol efflux, in THP-1-derived human macrophages [144]. Yu et al.
reported that intraperitoneal injection of HG attenuated cerebral ischemia/reperfusion-
induced apoptosis and inflammatory cytokine expression and reduced cerebral infarction
via the MLK3 signaling pathway [145]. HG also reduced bleomycin-induced pulmonary fi-
brosis in rats by decreasing the levels of α-SMA, collagen I, hydroxyproline, and decreased
inflammatory cytokines (TNF-α and IL-6) as well as phosphorylation of JNK and NFAT4 in
a dose-dependent manner [146]. MA showed anti-diabetic properties. Daily i.p. injections
of MA (20 mg/kg, daily) in 5-week-old male C57BL6J mice fed a HFD for 4 weeks, signifi-
cantly improved systemic insulin sensitivity [147]. MA also restored vascular relaxation
and increased NO bioavailability in these mice through AKT and eNOS phosphorylation.
Interestingly, in our studies, neither ED nor MA showed protective effects in nutrient
stress-induced monocyte dysfunction whereas HG was nearly as potent in preventing
monocyte dysfunction as UA and 23-OH UA [19], suggesting a common molecular target
for UA, 23-OH UA and HG.

UA’s structural isomer OA, an oleane-type triterpenoid (Figure 1), was traditionally
used in folk medicine as an anti-inflammatory and is currently marketed in China for use
against liver diseases [148,149] (Table 3). OA’s pharmacokinetics has been described in
rodents as well as humans. The pharmacokinetics of OA in rats was described by Jeong
et al. [150]. They orally administered OA at 10, 25, and 50 mg/kg intravenously and found
absolute oral bioavailability to be 0.7% at 25 and 50 mg/kg. The low bioavailability may
be a result of poor absorption or fast clearance. Song et al. gave 40 mg of OA in capsule
form to 18 healthy men and used HPLC tandem MS to determine levels of OA in human
plasma. They found the highest concentration of OA in the plasma level to be 12.12 ng/mL
(0.03 µM) at 5.2 h [150].

Like UA, OA has been reported to have anti-inflammatory properties such as amelio-
rating formaldehyde-induced arthritis in rats [151]. These authors also found the median
lethal dose for OA to be greater than 2 g/kg, suggesting low toxicity in rodents. OA is
also known to have anti-viral properties [152,153]. Human peripheral blood mononuclear
cells (hPBMC) isolated from healthy donors and HIV-infected donors were treated with
varying doses of OA (10–80 µM). At 80 µM, the authors found 60% inhibition of HIV repli-
cation and 90% inhibition of HIV-1 protease, an essential protein for HIV replication [152].
However, the concentrations used in this study should be considered supra-physiological.
Kashiwada et al. also found OA to have anti-HIV properties [153]. OA-treated H9 cells
showed reduced replication of HIV-1 (EC50 = 1.7 µg/mL or 3.7 µM). OA has also been
reported to have anti-cancer effects. In a cell culture study with four different liver cancer
cell lines, Yan et al. found OA, along with UA, to decrease cell viability, increase DNA
fragmentation, and increase caspase-3 and caspase-8 levels, indicating their potential as
anti-cancer agents [93]. In addition to liver cancer, OA has proven to be effective against
lung cancer cell lines [154], leukemia cells [155], and is currently being used in phase 1
clinical trials as an anti-cancer therapeutic [156].

Betulin is a plant-derived pentacyclic triterpene metabolite of the lupine type (Figure 1)
and found in large quantities in the outer bark of birch trees [157]. Betulin shows a wide
range of pharmaceutical effects such as anti-HIV, anti-inflammatory, and anti-cancer prop-
erties [146,158]. Kamaraj et al. reported that ovalbumin (OVA)-induced lung inflam-
mation and hypersensitivity were attenuated by reducing the production of ROS and
pro-inflammatory cytokines through the down-regulation of MMP-9 expression, tissue
transglutaminase (tTG), TGF-β1 gene expression and by reducing TREM-1, p-IκB, and
NF-κB p65 protein levels in the lung [159]. In an experimental mammary cancer model,
orally supplemented betulin restored antioxidant activity and modulated the expression of
both MAPKs and AhR/Nrf2-associated proteins [160], indicating that betulin has strong
anti-inflammatory and anti-cancerogenic properties.

Several synthetic triterpenoids have also been shown to protect cancer cells,
macrophages, and neutrophils from oxidative stress, inflammatory stimuli, and cell
death [156,161,162]. Of these, the synthetic oleanolic acid-based CDDO series is best
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characterized. Thimmulappa et al. found that CDDO upregulated the Nrf2 pathway, an
important antioxidant pathway critical for activating phase 2 genes [161] (Table 3). Phase 2
genes are upregulated during oxidative stress, members include heme oxygenase 1 (HO-1),
glutathione S-transferase (GST), and NADP-quinone reductase and therefore have been
explored as possible cancer therapeutic targets [163–165]. CDDO has also been demon-
strated to increase HO-1 and GST and reduce LPS-induced inflammation as well [162].
CDDO is also a partial agonist of PPARγ [166]. Mice with breast cancer saw a reduction
in tumor sizes when their diets were supplemented with 40 mg/kg of CDDO [165] and
CDDO was shown to be effective against triple-negative breast cancer by targeting tumor
stem cells [164].

8. Conclusions

The data reviewed here reveal that UA has a wide range of biological activities and
is able to both prevent and treat a variety of pathologies in animal models of human
diseases, ranging from metabolic disorders and chronic inflammatory diseases to cancer
and neurological diseases. Whether these promising results will translate into real health
benefits in humans remains to be explored as do UA’s bioavailability, pharmacokinetics,
efficacy, and safety for humans. Furthermore, pharmaceutical efforts should focus on
identifying the molecular target(s) of UA and on developing UA derivatives with better
bioavailability. We hope this review will stimulate more research into UA and its analogues
and derivatives and will ultimately lead to more human trials with this exciting and
promising compound.
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