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Abstract: Background: Standard methods for deriving Centiloid scales from amyloid PET images are
time-consuming and require considerable expert knowledge. We aimed to develop a deep learning
method of automating Centiloid scale calculations from amyloid PET images with 11C-Pittsburgh
Compound-B (PiB) tracer and assess its applicability to 18F-labeled tracers without retraining. Meth-
ods: We trained models on 231 11C-PiB amyloid PET images using a 50-layer 3D ResNet architecture.
The models predicted the Centiloid scale, and accuracy was assessed using mean absolute error
(MAE), linear regression analysis, and Bland–Altman plots. Results: The MAEs for Alzheimer’s
disease (AD) and young controls (YC) were 8.54 and 2.61, respectively, using 11C-PiB, and 8.66 and
3.56, respectively, using 18F-NAV4694. The MAEs for AD and YC were higher with 18F-florbetaben
(39.8 and 7.13, respectively) and 18F-florbetapir (40.5 and 12.4, respectively), and the error rate was
moderate for 18F-flutemetamol (21.3 and 4.03, respectively). Linear regression yielded a slope of 1.00,
intercept of 1.26, and R2 of 0.956, with a mean bias of −1.31 in the Centiloid scale prediction. Conclu-
sions: We propose a deep learning means of directly predicting the Centiloid scale from amyloid PET
images in a native space. Transferring the model trained on 11C-PiB directly to 18F-NAV4694 without
retraining was feasible.

Keywords: amyloid PET; deep learning; centiloid scale

1. Introduction

Alzheimer’s disease (AD) is a major cause of dementia characterized by amyloid-β
plaques, hyperphosphorylated tau protein, and brain atrophy [1,2]. Amyloid-β, a key
hallmark of AD, begins to accumulate over two decades before the onset of symptoms.
Non-invasive amyloid positron emission tomography (PET) allows the early detection of
amyloid-β accumulation, which is critical for a differential diagnosis of AD. Fluorine-18-
labeled amyloid tracers, such as 18F-florbetaben, 18F-flutemetamol, and 18F-florbetapir, are
currently available for routine clinical amyloid PET imaging. On the other hand, 11C-PiB
and 18F-NAV4694 are available for research only. These amyloid PET tracers visualize
the distribution of amyloid-β despite different chemical architectures. Confirmation of
amyloid pathology by amyloid PET or cerebrospinal fluid (CSF) tests is essential for the
timely administration of disease-modifying drugs [3].

While amyloid PET results are often visually assessed as negative or positive in
clinical practice, quantitative evaluations are essential for clinical investigations and the
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development of drugs to treat AD. The standardized uptake value ratio (SUVR) is a
common quantitative measure, but it varies depending on the region of interest and the
tracer. The Global Alzheimer’s Association Interactive Network (GAAIN) introduced
the Centiloid scale to address these inconsistencies [4]. The Centiloid scale is defined by
linearly scaling the average SUVR value to 0 for subjects with a high certainty of being
amyloid-negative and to 100 for typical AD patients. The reproducibility of the Centiloid
scale calculation can be verified by quality control using available PET and MRI datasets
on the GAAIN website. Although the Centiloid scale is defined based on 11C-PiB data,
conversion of the SUVR of 18F-labeled amyloid tracers to the 11C-PiB equivalent of the
Centiloid scale allows the direct comparison of quantitative values between different
tracers. However, the calculation of the Centiloid scale requires several conditions. First, a
three-dimensional T1-weighted image covering the region from the vertex to the whole
cerebellum is required from the same subject. Then, manual image analysis is required
to calculate the Centiloid scale. It involves co-registration of the PET and MRI images of
the same subject, anatomical standardization, VOI analysis using specific VOIs, and the
conversion process from SUVR to the Centiloid scale. To overcome this, a simple method of
calculating the Centiloid scale using low-dose CT instead of MRI has been reported [5–7].
However, manual image analysis and acquisition of anatomical images are still required,
and no studies have been reported that automatically calculate the Centiloid scale using
only PET images. Quantitative analysis using only PET images allows the evaluation of
subjects without the corresponding MRI data.

Recently, deep learning methods in amyloid PET have shown exceptional perfor-
mance in areas such as classification [8], visual interpretation support [9], the prediction
of cognitive decline [10], and image restoration [11]. In addition, deep learning has been
applied to predict quantitative values from amyloid PET images. Deep learning-based
anatomical standardization method for 18F-florbetaben or 18F-flutemetamol PET without
MRI has been proposed [12]. A deep learning model was developed to quantify SUVR
from 18F-florbetapir or 18F-florbetaben PET images in a native space [13]. A deep learn-
ing quantification of the SUVR of an 18F-florbetapir PET image using a pretrained 2D
CNN has also been reported [14]. The use of generative adversarial network model to
generate structural MRI image from 18F-florbetapir PET image has been proposed for the
quantification of PET alone [15]. However, most of these techniques still rely on PET and
MRI preprocessing. In particular, the Centiloid scale has not been directly predicted using
deep learning. Since the Centiloid scale is converted from the SUVR calculated with the
specific volume of interest (VOI), a deep learning model for the Centiloid scale appears
to be of importance. The advantages of 3D convolutional neural network (CNN), which
can account for continuity between slices, are significant for an accurate Centiloid scale
prediction. The direct comparison of the different tracers is also an important part of the
Centiloid scale. Therefore, it is necessary to evaluate the model using a number of amyloid
tracers, not just a single one.

In this study, we aimed to fill this gap by directly predicting the Centiloid scale from
amyloid PET images without MRI using a 3D CNN. In addition, we investigated whether
a 3D CNN constructed with 11C-PiB could be applied to 18F-NAV4694, 18F-florbetaben,
18F-flutemetamol, and 18F-florbetapir without retraining. These PET tracers have the
common feature of binding to amyloid-β deposition, suggesting the potential applicability
of the deep learning model to different amyloid tracers. These PET data are available
from GAAIN and conversion methods to the 11C-PiB-equivalent Centiloid scale have been
reported. The ability to apply various amyloid tracers enhances the utility of the Centiloid
scale calculation methods, which is a significant advantage in their adoption for research
and clinical use.
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2. Materials and Methods
2.1. Dataset

We downloaded 79 amyloid 11C-PiB [4] and 210 amyloid 18F-NAV4694 [16], 18F-
Florbetaben [17], 18F-Flutemetamol [18], and 18F-Florbetapir [19] PET images from the
GAAIN database (https://www.gaain.org/centiloid-project accessed on 6 October 2022).
Table 1 shows details of the amyloid PET dataset. The ground truth of the Centiloid scale
value for deep learning prediction is published on the GAAIN website. A Centiloid scale
value calibrated to 11C-PiB is provided for 18F-labeled amyloid PET. We employed these
PET datasets to construct a predictive model for the Centiloid scale and to evaluate its
applicability across multiple tracers. In the dataset of 18F-labeled amyloid PET, 11C-PiB
PET imaging was also conducted on same subjects. Therefore, we utilized a total of 289
amyloid 11C PiB images from different repositories. 11C-PiB PET scans were performed on
34 healthy subjects and 45 patients with AD, for a total of 79 participants [4,20–26]. 11C-PiB
PET image was acquired 50 to 70 min after injection. The acquisition time for 11C-PiB
was consistent across all datasets. The PET scanners used a BioGraph TruePoint TrueV
(Siemens Healthineers, Erlangen, Germany), an ECAT Exact HR+ (Siemens), an ECAT
Exact HR (Siemens), and an Allegro PET camera (Philips Medical Systems, Eindhoven, The
Netherlands). Images were reconstructed using the filtered back projection (FBP), the 3D
row-action maximum likelihood algorithm (RAMLA), and the ordered subsets expectation
maximization (OSEM). 11C-PiB and 18F-NAV4694 PET scans were performed on 10 young
controls, 25 elderly controls, 10 patients with mild cognitive impairment (MCI), 7 patients
with mild AD, and 3 patients with frontotemporal dementia (FTD). The 18F-NAV4694 PET
image was acquired 50 to 70 min after injection using an Allegro PET camera in the 3D
mode. Images were reconstructed using the 3D RAMLA [16]. 11C-PiB and 18F-florbetaben
PET images were performed on 10 young controls, 6 elderly controls, 10 patients with MCI,
7 patients with AD, and 3 patients with FTD. 18F-florbetaben PET image was acquired 90 to
110 min after injection using an Allegro PET camera [27]. Images were reconstructed using
the 3D RAMLA and the line of response (LOR) RAMLA. 11C-PiB and 18F-flutemetamol
PET images were performed on 24 young controls, 10 elderly controls, 20 patients with
MCI, and 20 patients with AD. 18F-flutemetamol PET images were acquired 90 to 110 min
after injection using a 16-slice Biograph (Siemens), an ECAT EXACT HR+, a GE Advance
scanner (GE Healthcare, Milwaukee, WI, USA), a Discovery RX, and a Discovery RXT (GE
Healthcare) [18,28,29]. Images were reconstructed by the FBP and the OSEM. 18F-florbetapir
PET image was obtained for 13 young controls, 6 elderly controls, 3 at-risk elderly controls,
7 patients with MCI, 3 patients with possible AD, and 14 patients with AD. 18F-florbetapir
PET image was acquired 50 to 60 min after injection using an ECAT Exact HR+ in the 2D
mode with 2D-OSEM, a Gemini TF 64 (Philips) in the 3D mode with LOR-RAMLA, and
a GE Advance scanner in the 2D mode with Fourier rebinning iterative reconstruction
algorithm [19].

Table 1. Clinical demographics of GAAIN dataset for amyloid PET. 18F-labeled and 11C-PiB amyloid
PET images were acquired in one subject each.

PET Tracer Total Controls Patients
11C-PiB 79 34 45
18F-NAV4694 and 11C-PiB 55 10 45
18F-Florbetaben and 11C-PiB 35 10 25
18F-Flutemetamol and 11C-PiB 74 24 50
18F-Florbetapir and 11C-PiB 46 13 33

2.2. Deep Learning Model Architecture for Predicting Centiloid Scale

The Centiloid scale was predicted from amyloid PET images using the 50-layer three-
dimensional (3D) ResNet architecture (https://github.com/xmuyzz/3D-CNN-PyTorch
accessed on 6 December 2023). This deep learning model was modified from the standard

https://www.gaain.org/centiloid-project
https://github.com/xmuyzz/3D-CNN-PyTorch
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3D ResNet to address the specific complexities of processing PET images for AD. ResNet
facilitates effective learning in the deepest models through skip connection. In addition,
the ability of 3D CNN to process volumetric data makes it particularly useful for PET data
analysis in AD, where it can effectively capture the spatial complexity of local amyloid
deposition. It features a comprehensive design that includes 3D convolutional layers for
spatial data processing, batch normalization to accelerate training and improve model
performance, and rectified linear units (ReLUs) for nonlinear transformations. The archi-
tecture also includes a max-pooling layer to reduce dimensionality and improve feature
extraction, followed by four sequential layer blocks carefully constructed with bottleneck
blocks. These blocks are designed to deepen the network without increasing its complexity
or computational load through a combination of 3D convolution, batch normalization,
ReLUs, and down sampling layers. This allows the model to learn more complex features
from the PET images with greater efficiency. Sequential layer blocks consisting of 3, 4, 6,
and 3 bottleneck blocks allow the model to adaptively refine its predictions, making it
highly effective for medical imaging tasks. An average-pooling layer follows these blocks,
leading to a fully connected layer that culminates the network architecture and facilitates
the final prediction of the Centiloid scale. Figure 1 shows the structure of our deep learning
model. A network model was implemented on the following system environment: Intel(R)
Xenon Gold 5222 3.80 GHz; NVIDIA RTX A6000 video card with 24 GB of video memory;
CUDA v. 11.6; PyTorch v. 1.12.1; Python v. 3.8.13; and Ubuntu 18.04 LTS.
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Figure 1. Architecture of 50-layer 3D ResNet for predicting Centiloid scale from native amyloid PET
images. The width of the convolutional kernel was set to 1 × 1 × 1 or 3 × 3 × 3.

2.3. Deep Learning Training and Test Phase

Figure 2 shows the comprehensive training and testing processes of our deep learning
analysis. The deep learning model was trained on 231 (80%) of the 289 available 11C-PiB
amyloid PET images and tested on 58 (20%) of the 289 images, with 18F-amyloid PET images
included in the testing phase without further training. It has been demonstrated that deep
learning models trained on 18F-florbetapir PET images can be accurately applied to 18F-
florbetaben images without the need for retraining [13]. This study extends this approach
by applying a model trained on 11C-PiB to four types of 18F-labeled amyloid tracers.
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Figure 2. Scheme of deep learning training and testing phases.

All pixel values of less than 0 were adjusted to 0 because PET images reconstructed
using the FBP algorithm were included. The training images were randomly rotated (be-
tween −10◦ and 10◦) and scaled to increase the robustness of the model. Since the original
matrix size were not uniform, the images were resized to 128 × 128 × 128 voxels. In order
to ensure uniformity across the dataset and enhance the model’s ability to learn from the
PET images effectively, the voxel intensity was normalized using min–max normalization
for model input.

The mean square error (MSE) was used for the loss function and adaptive moment
(Adam) estimation of the optimization algorithm.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2

where n is the number of PET images, yi is the ground truth Centiloid scale, and ŷi is
the Centiloid scale computed by our deep learning model. The use of the MSE as the
loss function is advantageous because it emphasizes larger errors by squaring the error
values, thus causing the model to focus more on reducing these errors during training. The
learning rate was 0.0001, and the batch size was 4. To avoid overfitting, the training phase
was terminated when performance did not improve over 20 consecutive epochs. Thus, the
number of epochs was 73.

The ability to predict the Centiloid scale was evaluated using the mean absolute error
(MAE) on the test dataset.

MAE =
1
n

n

∑
i=1

|yi − ŷi|

where n is the number of PET images, yi is the ground truth Centiloid scale, and ŷi is the
Centiloid scale computed by our deep learning model. Using the MAE as a performance
metric has the advantage of providing a direct interpretation of the average prediction error
in the same units as the predicted value.

2.4. Statistical Analysis

The difference in predictive performance between ADs and YCs was tested using
the Mann–Whitney U test with a significance level of 0.05. One-way analysis of variance
(ANOVA) was used to evaluate differences in predictive performance between different
tracers. In cases where one-way ANOVA indicated significant differences, Bonferroni-
corrected post hoc tests were used to identify specific groups. The correlation between



Brain Sci. 2024, 14, 406 6 of 12

the deep learning approach and the ground truth was assessed using Pearson correlation
analysis. The slope, intercept, and coefficient of determination were obtained using linear
regression analyses of the ground truth and predicted values of the test set. Centiloid
scale concordance between deep learning prediction and ground truth was assessed using
Bland–Altman plots. All data were statistically analyzed using Python v. 3.8.13, scikit-learn
v. 1.1.2, and SciPy v. 1.8.13.

3. Results

The evaluation of the predictive accuracy of deep learning was carefully performed
using the designated test set. Figure 3 shows a detailed comparison of the MAE for both
11C-PiB and various 18F-labeled amyloid tracers, delineating the results for young controls
(YCs) and AD patients. The MAEs for AD and YC were 8.54 and 2.61, respectively, using
11C-PiB, and 8.66 and 3.56, respectively, using 18F-NAV4694. The MAEs for AD and YC
were higher with 18F-florbetaben (39.8 and 7.13, respectively) and 18F-florbetapir (40.5 and
12.4, respectively), and the error rate was moderate for 18F-flutemetamol (21.3 and 4.03,
respectively). AD patients had higher MAE values for all tracers compared to YC, indicating
a divergence in predictive accuracy between these groups. The MAE was significantly
higher for AD than YC for all tracers (11C-PiB, U = 570.0 and p < 0.001; 18F-NAV4694,
U = 319.0 and p < 0.05; 18F-florbetaben, U = 217.0 and p < 0.001; 18F-flutemetamol, U = 958.0
and p < 0.001; 18F-florbetapir, U = 342.0 and p < 0.05;). Significant differences between
groups were found for the amyloid PET tracers by one-way ANOVA (F = 17.8 and p < 0.001).
Significant differences between groups were found for the amyloid PET tracers by one-way
ANOVA (F = 17.8 and p < 0.001). Post hoc tests confirmed a significant difference in the
following six groups: 11C-PiB and 18F-florbetaben (p < 0.001), 11C-PiB and 18F-florbetapir
(p < 0. 001), 18F-NAV4694 and 18F-florbetaben (p < 0.001), 18F-NAV4694 and 18F-florbetapir
(p < 0.001), 18F-florbetaben and 18F-flutemetamol (p < 0.001), and 18F-florbetapir and 18F-
flutemetamol (p < 0.001).
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Figure 4 shows scatter plots of Pearson correlation analyses. The correlation be-
tween deep learning prediction and the ground truth of the Centiloid scale was significant
(r = 0.978; p < 0.001). Linear regression analysis yielded the following values: slope, 1.00;
intercept, 1.26; and coefficient of determination, 0.956. The Centiloid scale calculated by
our deep learning model was equivalent to that of the GAAIN Centiloid Project (slope,
0.98–1.02; intercept, −2–2; R2 correlation coefficient > 0.98). The prediction accuracy of
11C-PiB (r = 0.978), 18F-NAV4694 (r = 0.967), and 18F-flutemetamol (r = 0.957) without
retraining was comparable. The correlation between the ground truth and the predicted
Centiloid scale was lower for 18F-florbetaben (r = 0.883) and 18F-florbetapir (r = 0.707) than
for the other tracers.
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Figure 4. Scatter plot between the ground truth and the predicted Centiloid scale. The results of the
linear regression analysis are shown with a black line, and r is the correlation coefficient: (a) 11C-PiB,
(b) 18F-NAV4694, (c) 18F-florbetaben, (d) 18F-flutemetamol, and (e) 18F-florbetapir.

Figure 5 shows Bland–Altman plots in which the mean bias of the Centiloid scale
between deep learning prediction and ground truth was −1.31, with 95% acceptable limits
of −21.10 and 18.49.
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Figure 5. Bland-Altman plot comparing the ground truth and the predicted Centiloid scale. Blue
circles represent an individual measurement. The middle-dashed line represents the mean difference,
while the upper and lower dashed lines indicate the limits of agreement (mean difference ± 1.96
standard deviations): (a) 11C-PiB, (b) 18F-NAV4694, (c) 18F-florbetaben, (d) 18F-flutemetamol, and
(e) 18F-florbetapir.

4. Discussion

Our team has developed a deep learning system specifically designed to predict
the Centiloid scale from amyloid PET images using an advanced 50-layer 3D ResNet
architecture. Since the conventional calculation of the Centiloid Scale requires MR images
and complex quantitative analysis, our deep learning-based approach offers significant
clinical advantages and streamlines the assessment process. To our knowledge, this is
the first application of deep learning to derive the Centiloid scale directly from 11C-PiB



Brain Sci. 2024, 14, 406 8 of 12

amyloid PET images in their native space, marking a significant milestone in neuroimaging
analysis. In addition, we investigated the feasibility of applying models trained on 11C-PiB
data to 18F-labeled amyloid tracers without the need for further training. Our exploration
extended to evaluating the model’s performance across a spectrum of individuals with
normal cognitive function to those diagnosed with Alzheimer’s disease, with the goal
of demonstrating the versatility and potential of our deep learning system to improve
diagnostic processes for neurodegenerative diseases.

The Centiloid scale was directly and accurately computed from 11C-PiB amyloid PET
images in a native space using deep learning (Figure 3). The prediction accuracy was signif-
icantly higher in the YC than the AD group (p < 0.05). The reported cut-off for the Centiloid
scale for normal cognition and AD is 10–35 [6,30–33]. The present findings showed that the
respective Centiloid ranges for YC and AD were −18.26–28.7 and −22.2–160.7. The AD
group included patients with frontotemporal dementia (FTD) and mild cognitive impair-
ment (MCI) who had to recognize various feature patterns from images. Thus, we assumed
that such patients would have a higher learning difficulty than cognitively typical people.

The prediction performance of the Centiloid scale using deep learning differed among
the amyloid tracers (Figures 4 and 5). This might have been due to the structure or dynamic
range of each tracer (Figure 6). The deep learning prediction for 18F-NAV4694 was almost
identical to that of 11C-PiB. Time–activity curves and blood clearance of 18F-NAV4694
and 11C-PiB are similar [34] and have the same dynamic range [16,35]. Furthermore, 18F-
NAV4694 has higher specific and lower non-specific accumulation than other 18F-labeled
amyloid tracers [36–38]. The predictive performance of 18F-flutemetamol was the same
as that of PiB for YC, but the error for AD was high. The slightly wider dynamic range
of 18F-flutemetamol compared with 18F-florbetaben and 18F-florbetapir [39,40] resulted
in better prediction accuracy. High non-specific binding in white matter might affect
prediction accuracy. Errors were the highest for 18F-florbetapir and 18F-florbetaben. A
quantitative value prediction model trained with 18F-florbetapir can be applied to 18F-
florbetaben without retraining [13]. The structures of the thioflavin derivatives 11C-PiB,
18F-NAV4694, and 18F-flutemetamol are similar [41]. On the other hand, 18F-florbetapir and
18F-florbetaben are stilbene derivatives of Congo red [41]. Their distribution in the brain
varies due to these structural differences. The model that learned with 11C-PiB had high
predictive performance with 18F-NAV4694 and 18F-flutemetamol. In contrast, the model
that learned with 18F-florbetapir had high predictive performance with 18F-florbetaben.
Therefore, the translucency of the model might differ depending on the chemical structure
and the distribution of each drug in the brain even when the amyloid PET tracer is the same.
When building deep learning models for multiple tracers, chemical structure and dynamic
range have a significant impact on model performance. Therefore, not only the deep
learning model but also the knowledge of the tracers become critical in model development
and application. When using a model with tracers other than those used in training, it is
important to be careful about quantitative accuracy. It has been shown that the higher the
structural or imagistic similarity between the tracers, the higher the applicability of the
deep learning model. This is not limited to amyloid PET imaging but is also expected to
apply to other PET imaging modalities, such as tau PET.

The correlation and linearity between the ground truth Centiloid scale and the deep
learning predictions show excellent accuracy (Figure 5). Deep learning methods signifi-
cantly streamline the calculation of the Centiloid scale by eliminating the need for extensive
PET and MRI image analysis and, thus, are not affected by variations in image analysis
processes such as co-registration and anatomical standardization. In addition, this deep
learning-based Centiloid prediction minimizes quantification variability due to reference
region selection and efficiently computes the Centiloid scale from native-space amyloid
PET images in just 0.10 s. The absence of preprocessing bias in the Centiloid scale computed
by deep learning, due to its reliance on native-space PET images, and the elimination of
variation due to slice selection, unlike in 2D models, by using a 3D model, highlight the ro-
bustness and precision of this innovative approach. A 3D model has a much larger number
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of parameters than a 2D model. A 2D ResNet50, with an input size of 224 × 224 × 3 pixels,
has approximately 2.56 million parameters, while a 3D ResNet50, with an input size of
224 × 224 × 224 pixels, has approximately 48 million parameters. The number of 3D
ResNet50 parameters used in this study is consistent with those of the previous studies [42].
Therefore, we consider the structure of our 3D ResNet to be standard in the field.
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This study has several limitations. The dataset was relatively small. More data
regarding 18F-labeled amyloid tracers and amyloid PET-positive individuals are needed
from larger samples. The predictive performance can potentially be improved, particularly
in the 12–30 Centiloid range. A transparent explanation for the decision making process
used by deep learning models is essential. The disadvantage of black-box deep learning
is that the underlying decision basis must be determined by visualization using means
such as heat maps. The model must be specific to each type of amyloid tracer and carefully
selected to avoid inaccurate predictions. In this study, there was a duplication of subjects
across different amyloid PET tracers. Subjects who underwent PET imaging with 18F-
labeled amyloid tracers also underwent imaging with 11C-PiB. The 11C-PiB PET images
were used to train the model, while the 18F-labeled images were used to test the model. The
possible overestimation of predictive results is due to the duplication of subjects. However,
despite the similar distribution patterns of several amyloid tracers, the images are not
identical. In fact, differences in predictive performance were observed among the tracers
in 18F-labeled amyloid PET, and no overestimation by the model was found. In order to
improve predictive performance, ensuring a sufficient amount of data for model training
was considered critical. In future research, the use of larger datasets could improve the
prediction accuracy of the model. Subjects with different cognitive status and multiple
amyloid PET tracers must be included.

5. Conclusions

We developed a deep learning method with 3D CNN to predict the Centiloid scale
from amyloid PET images without MRI images. In addition, the applicability of a 3D
CNN constructed with 11C-PiB to 18F-NAV4694, 18F-florbetaben, 18F-flutemetamol, and
18F-florbetapyr without retraining was investigated. Our method eliminates manual image
analysis and provides consistent, reproducible quantitative results. The advanced redirec-
tion of deep learning models for tracers with similar properties was feasible. The current
findings may not be limited to amyloid PET but may be applicable to the deep learning
approach for any PET imaging.
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