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Abstract: Gait recovery is a fundamental goal in patients with spinal cord injury to attain greater
autonomy and quality of life. Robotics is becoming a valid tool in improving motor, balance, and gait
function in this patient population. Moreover, other innovative approaches are leading to promising
results. The aim of this study was to investigate new rehabilitative methods for gait recovery in
people who have suffered spinal cord injuries. A systematic review of the last 10 years of the literature
was performed in three databases (PubMed, PEDro, andCochrane). We followed this PICO of the
review: P: adults with non-progressive spinal cord injury; I: new rehabilitative methods; C: new
methods vs. conventional methods; and O: improvement of gait parameters. When feasible, a
comparison through ES forest plots was performed. A total of 18 RCTs of the 599 results obtained
were included. The studies investigated robotic rehabilitation (n = 10), intermittent hypoxia (N = 3)
and external stimulation (N = 5). Six studies of the first group (robotic rehabilitation) were compared
using a forest plot for 10MWT, LEMS, WISCI-II, and SCIM-3. The other clinical trials were analyzed
through a narrative review of the results. We found weak evidence for the claim that robotic devices
lead to better outcomes in gait independence compared to conventional rehabilitation methods.
External stimulation and intermittent hypoxia seem to improve gait parameters associated with other
rehabilitation methods. Research investigating the role of innovative technologies in improving gait
and balance is needed since walking ability is a fundamental issue in patients with SCI.

Keywords: gait recovery; spinal cord injury; robotic rehabilitation; intermittent hypoxia; transcranial
magnetic stimulation; transcranial direct current stimulation

1. Introduction

According to the WHO (World Health Organization), spinal cord injury (SCI) is defined
as any “damage to the spinal cord resulting from trauma or disease or degeneration” [1],
representing one of the most devastating and debilitating conditions that an individual
can sustain [2]. It interrupts the physiologic conduction of the nervous signal through
the descending (motor) and ascending (sensitive) paths between the brain and periphery.
Depending on the entity and localization, SCI may result in two main clinical conditions,
i.e., paraplegia or tetraplegia, and both may be complete or incomplete with several combi-
nations of symptoms affecting patient quality of life [3]. Sphincteric [4] and autonomic [5]
involvement may occur as well.

One of the main goals of patients with SCI is to restore ambulation [6] since reduced
mobility may affect psychological well-being [7]. Walking, as stated by Jaquelin Perry,
is “is the body’s natural means of moving from one location to another. It also is the
most convenient means of traveling short distances.” [8] However, it is a “social means”
fundamental to meeting other people and attending personal and social activities. Gait
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is an apparently simple motor function, i.e., a “voluntary” movement, regulated by an
automatic process, which is evoked by sequential activations of neurons in the brainstem
and spinal cord [9]. Gait control requires the activation of the entire nervous system and
musculoskeletal system [10]. In the last few years, advances in neurobiology and in the neu-
rorehabilitation field have led to a better understanding of the effects of SCI on gait function
and, therefore, in developing treatments to ameliorate the outcomes [11]. Lately, the most
relevant mechanism of walking recovery in humans with SCI was related to the concept of
central pattern generators (CPGs) [12]. Following this theory, gait can be recovered through
rhythmic stimulation, which is a substantial part of different rehabilitation methods [13].

To date, gait rehabilitation protocols for SCI treatment include physical therapy [14]
with non-invasive interventions, consisting of various types of motor training that are
proven to decrease the inflammatory response, increase neurotrophin levels, and may
strengthen spared functions and guide spinal rearrangement [11]. A conventional training
program primarily provides compensatory strategies to regain motor activity and recover
from damages of the spinal cord [15]. These strategies can be administered alone or com-
bined with different technology-aided modalities such as treadmill training, overground
training, body weight-supported gait training [16], robot-assisted gait training(RAGT) [17],
and exoskeletons [18]. These methods seem to work, according to the CPGs theory, both
with rhythmic ambulation stimulation (treadmill training, overground training, and body-
weight-supported gait training) and reproduction of the rules of spinal locomotion (ex-
oskeletons and robot-assisted gait training) [13]. Other strategies, such as external stimula-
tion [19,20] and intermittent hypoxia [21], aim to enhance and stimulate neural plasticity
and have been analyzed and combined with other rehabilitation technologies to improve
mobility in SCI patients.

The aim of this systematic review is to investigate the emerging technologies and strate-
gies for gait recovery in adults with SCI, with particular interest in robot-assisted rehabilitation.

2. Materials and Methods

This review follows the PRISMA [22,23] and PICO [24] criteria, as shown in Table 1.

Table 1. PICO criteria.

Population Adult people with stabilized spinal cord, tetraplegic, or
paraplegic injuries with gait impairment.

Intervention Rehabilitation with innovative methods

Comparison New rehabilitation methods vs. conventional methods

Outcome Improvement in gait parameters

To meet PICO criteria, a search was conducted on some of the major scientific databases
(Pubmed, Cochrane, and PEDro), identifying randomized trials (RCTs), published in
the last 12 years in English, and investigating innovative rehabilitation programs for
walking recovery in people with SCI. Previous systematic reviews were excluded since
we wanted to analyze the row data of the included study by ourselves. Only the first
parts of crossover trials were included to avoid risk of overlapping results between the
two methods. Association of more than one therapeutic device was accepted, if it drew
comparisons with conventional rehabilitation.

2.1. Literature Search Strategy

A literature search was performed on 29 July 2022 using Pubmed (https://pubmed.
ncbi.nlm.nih.gov/) with the following search string: “(spinal cord injury) AND ((recovery)
OR (outcome) OR (prognosis)) AND ((ambulation) OR (walking) OR (walk) OR (gait))”.
Data from 2010 to 2022 from studies containing RCTs and clinical trials were considered,
totaling 151 results. Another literature search was performed on August 8 2022, using the
PEDro database (https://pedro.org.au/) with the terms “spinal cord injury” gait. Data

https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/
https://pedro.org.au/
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from 2010 from papers containing trials only were considered, totaling 23 results. A
third literature search was performed on the 10 August 2022 using the Cochrane website
(https://www.cochranelibrary.com/) with the search string “((spinal cord injury) AND
((recovery) OR (outcome) OR (prognosis)) AND ((ambulation) OR (walking) OR (walk)
OR (gait))):ti,ab,kw (Word variations have been searched)”. Publications dated between
January 2010 and December 2022 that contained trials (word variations were searched)as
well as included ICTRP 65 and CINAHL 39. totaled 117 results from Pubmed, 128 from
Embase, and 103 from CT.gov.

2.2. Inclusion/Exclusion Criteria

Inclusion criteria included RCTs and Crossover Trials published between 2010 and
2022, studies written in the English language, trials involving subjects older than 18 years
of age, trials using the walking-outcome measure, trials comparing at least one innovative
rehabilitation method versus a conventional method, and trials involving people with an
SCI of any level and non-progressive nature. Studies investigating treatments involving a
drug only, analyzing only a conventional rehabilitation method, involving a progressive
spinal injury, or involving patients younger than 18 years old were excluded.

2.3. Data Extraction and Criteria Appraisal

All data were extracted from article texts, tables, and figures. Three independent
authors reviewed each article (G.L., M.A., and T.D.). Discrepancies between the three
reviewers were resolved through discussion and consensus. The results of every stage of
selection were reviewed by the senior investigators (R.S.C. and M.G.O.).

2.4. Risk of Bias

Risk of bias was evaluated by one of the authors (M.A.) through the RoB 2 [25] method,
following the Cochrane Library [26] guidelines. Domains D1, D3, and D4 that involved
adherence to intervention were investigated.

2.5. Data Analysis and Heterogeneity of the Studies

Where necessary, data expressed as Standard Error (SE) were converted to Standard
Deviation (SD), which was more manageable, through the formula SD = SE ∗ √N , where
N stands for the statistic sample. Studies showing results as median and interquartile
range were converted to mean ± standard deviation (SD) according to the method of
Wan et al. [27].

Effect size was analyzed, not strictly, because of the low heterogeneity of the outcomes
evaluated (I2 = 0) and wide confidence intervals (CI 95%). Forest plots were generated,
where possible, for more clearness regarding effect size, using the statistic software ProMeta
3 by (https://idostatistics.com/prometa3 3.0 ed. Internovi Cesena, Italy accessed on
23 January 2021). Effect sizes were acquired by comparing arithmetic means and SD pre
and post intervention of the outcomes through the “Hedge’s G” method. The statistical
model adopted was the “Random effect model”. The statistical analysis was performed by
the first author (G.L.).

3. Results

A total of 599 articles were collected from the databases. The selection process is
described in Figure 1, using the 2020 version of the PRISMA Flow diagram for new
systematic reviews [28].

https://www.cochranelibrary.com/
https://idostatistics.com/prometa3
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Figure 1. Selection process.

Eighteen RCTs were included in the systematic review. Study characteristics, data,
and outcomes are presented in Table 2. Trials were sorted into three categories. The
first category included studies involving the use of robotic devices such as exoskeletons
on a suspension treadmill (n = 7) [29–35] (Lokomat). One of these studies evaluated
the use of such devices associated with electromyography (EMG) feedback [36] (n = 1)
(3DCaLT), and two evaluated overground exoskeletons [18,37] (n = 2) (Ekso). In the
second group, we included studies assessing the use of intermittent hypoxia (IH) vs.
normoxia (NX) during traditional gait training [38,39] or during suspension treadmill
training [40] (BWSTT) (n = 3).The third group included studies that used magnetic [41–43]
(n = 3) (TMS) or electrical [44,45] (n = 2) (tDCS) external stimulation during robotic or
conventional rehabilitation.
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Table 2. RCTs selected for the systematic review.

Study Intervention Intervention
Time Case/Control Outcome

Measures
Mean Age ± SD

Case/Control Lesion Level AIS Time since
Lesion Results/Conclusions

Cheung et al.
2019 [32]

Lokomat + EMG
feedback 8 weeks 15/15

10MWT 6MWT
TUG WISCI-II

MAS

55.6 ± 4.98/
53.0 ± 12.94 <T10 C, D <1 year

Use of EMG-biofeedback RAGT
enhanced the walking performance

for SCI subjects and improved
cardiopulmonary function

Duffell et al.
2015 [34] Lokomat 4 weeks 27/29 10MWT 6MWT

TUG LEMS
46.6 ± 12.6/
47.8 ± 13.1 <T10 C, D >1 year

Overall, walking speed and
endurance improved, with no

difference between interventions.
Improvements in function were
achieved in a limited number of

people with SCI

Labruyère &
Hedel 2014 [35] Lokomat 4 weeks 5/4

10 MWT LEMS
WISCI-II FET

SCIM BERG PCI
59 ± 11 * C4-T11 C, D >1 year

No significant differences in changes
in scores between the 2 interventions,

except for maximal walking speed
(10MWT), which improved

significantly more after strength
training than after RAGT

Midik et al.
2020 [29] Lokomat 5 days 15/15 LEMS WISCI-II

SCIM-III
35.4 ± 12.1/
37.9 ± 10.0 T12-L3 C, D >3 months

Conventional rehabilitation is useful
in terms of the improvement in the

lower extremity motor function,
walking, and functional status in
men with incomplete SCI. RAGT

provides greater improvement in the
lower extremity motor function and

functional independence.

Shin et al.
2014 [33] Lokomat 4 weeks 27/26 LEMS AMI

SCIM-III WISCI-II
43.15 ± 14.37/
48.15 ± 11.49 C1-L4 D <6 months

RAGT combined with conventional
physiotherapy could yield more

improvement in ambulatory function
than conventional therapy alone

Varoqui et al.
2014 [30] Lokomat 4 weeks 15/15

Distance walked
in 2 min 10MWT

6MWT TUG

50.80 ± 2.12/
44.65 ± 2.66 <T10 C, D <1 year

The improvements in the kinematic
and kinetic parameters of the ankle

voluntary movement, and their
correlation with the functional

assessments, support the therapeutic
effect of robotic-assisted locomotor
training on motor impairment in

chronic iSCI
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Table 2. Cont.

Study Intervention Intervention
Time Case/Control Outcome

Measures
Mean Age ± SD

Case/Control Lesion Level AIS Time since
Lesion Results/Conclusions

Yildirim et al.
2019 [31] Lokomat 8 weeks 44/44 WISCI-II FIM 32 ± 23/36.5 ± 24 C1-L4 A, B, C, D <6 months

Robotic-assisted gait training
combined with conventional therapy

was found to be superior to the
conventional therapy in terms of gait

function and level of disability

Wu et al.
2018 [36] 3DCaLT 6 weeks 7/7 6MWT speed

MAS BERG SF-36
48.4 ± 13.5/
48.1 ± 4.9 C2-T10 C, D >1 year

A greater improvement in 6-min
walking distance was observed after

robotic training than that after
treadmill-only training

Chang et al.
2018 [18] Ekso 3 weeks 4/3

10MWT 6WT TUG
LEMS

spacial-temporal
parameters

56 ± 17/60 ± 2 <T12 C, D <6 months

Improvement was observed in the
6MWT for the exoskeleton (EGT)

group. Both the EGT and the
conventional groups showed

significant increases in right step
length. The EGT group also showed

improvement in stride length.

Jo et al.
2020 [42] TMS + exercise 3 weeks 13/12 + 13 ** 10MWT GRASSP

MEP MVC 44.2 ± 14.8 * C2-L3 A, C, D >1 year

Stimulation contributed to
preserving exercise gains. Our
findings indicate that targeted

non-invasive stimulation of spinal
synapses might represent an effective

strategy to facilitate
exercise-mediated recovery

Kumru et al.
2016 [41] TMS + Lokomat 8 weeks 17/17 10MWT WISCI-II

LEMS
46.4 ± 15.5/
48.7 ± 16.5 <T12 C, D <6 months

A total of 20 sessions of daily
high-frequency TMS combined with

Lokomat gait training can lead to
clinical improvement in gait in

motor-incomplete SCI

Raithatha et al.
2016 [44] tDCS + Lokomat 3 weeks 9/6

10MWT 6MWT
TUG BERG

SCIM-III MMT
47.5 ± 13.2 C4-L1 B, C, D >1 year

Pairing tDCS with Lokomat can
improve lower extremity motor

function more than Lokomat alone
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Table 2. Cont.

Study Intervention Intervention
Time Case/Control Outcome

Measures
Mean Age ± SD

Case/Control Lesion Level AIS Time since
Lesion Results/Conclusions

Hayes et al.
2014 [38] IH 5 weeks 4/6 *** 10MWT 6MWT 43 ± 4 * <T12 C, D >1 year

IH ± walking improved walking
speed and distance in patients with

chronic iSCI. The impact of IH is
enhanced by combination with

walking, demonstrating that
combinatorial therapies may

promote greater functional benefits
in patients with iSCI

Navarrete-
Opazo et al.

2017 [40]
IH + BWSTT 4 weeks 17/16 10MWT 6MWT

TUG 41 ± 17/42 ± 17 >C5 C, C >6 months

Moderate IH (daily IH) combined
with locomotor training improved
walking speed and endurance in

subjects with iSCI

Edwards et al.
2022 [37] Ekso 12 weeks 9/10/6

10MWT, 6MWT,
TUG, WISCI-II,

NASA-Task Load
Index

41 ± 10/50 ± 15 C3-L1 C, D >1 year

Chronic SCI participants with
independent stepping ability at

baseline can improve clinical
ambulatory status

Tan et al.
2021 [39] IH + WALK 4 weeks 5/5 ***

10MWT, 6MWT,
kinematics
parameters

46 ± 18 C4-T9 C, D >1 years

Daily AIH combined with walking
practice (AIH + WALK) improved
overground walking performance

and intralimb motor coordination in
patients with chronic iSCI

Krogh et al.
2021 [43] TMS 4weeks 10/9 LEMS, 10MWT,

6MWT) 57 ± 8/52 ± 12 C2-L1 C, D >3 months

High-frequency TMS may increase
long-term-training-induced recovery

of lower limb muscle strength
following SCI.

Evans et al.
2022 [45]

tDCS + Motor
Skill Training 3 days 14/11

10MWT,
kinematics

parameters, BBS
50 ± 10/46 ± 15 CD-T8 D >1 year

High-frequency TMS may increase
long-term-training-induced recovery

of lower limb muscle strength
following SCI.

* Only cumulative data available; ** Studies with double control (placebo + exercise− TCMS + exercise− TCMS); *** Crossover Trial with two blocks (IH/placebo− IH/placebo + ground
training). AIS: A= Complete, B= Sensory incomplete, C= Motor incomplete, D= Motor incomplete.
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After a preliminary data analysis, authors agreed to investigate studies with different
approaches due to a lack of data to perform a full metanalysis. Metanalysis for studies
of the first group involved 10MWT [46] for gait speed, LEMS [47] to measure strength in
key muscles of lower limbs, and WISCI-II [48] and SCIM-3 [49] to evaluate gait autonomy
in the first group studies (Figures 2–5, summarized in Table 3). Sequentially, a narrative
review for the rest of data we collected is shown in Table 4.
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Table 3. Outcome measures of studies of the first group expressed as Mean ± SD.

Study 10 MWT Self-Selected
Speed 10MWT Fast 6MWT TUG WISCI-II SCIM-3 LEMS

Cheung et al. 2019 [32] 0.44 ± 0.24/0.45 ± 0.24
0.44 ± 0.29/0.48 ± 0.34

14.6 ± 4.27/16.3 ± 4.95
17.0 ± 2.78/17.1 ± 2.59

73.3 ± 19.73/
71.0 ± 26.32
80.0 ± 17.44/
80.3 ± 17.69

35.5 ± 4.50/36.5 ± 6.16
39.4 ± 9.07/40 ± 8.89

Duffell et al. 2015 [34] No comparable No comparable No comparable 35.0 ± 13.9/34.6 ± 12.3
42.6 ± 4.6/41.9 ± 5.3

Labruyère & Hedel
2014 [35]

0.62 ± 0.23/0.66 ± 0.29
0.58 ± 0.19/0.64 ± 0.23

0.79 ± 0.31/0.80 ± 0.35
0.66 ± 022/0.80 ± 0.28

14.1 ± 2.5/14.9 ± 3.1
14.4 ± 2.6/14.8 ± 2.9

88.4 ± 7.9/89.2 ± 7.6
87.9 ± 8.1/89.2 ± 7.9

40.9 ± 7.5/41.6 ± 7.3
40.4 ± 6.6/41.4 ± 6.9

Midik et al. 2020 [29] 9.8 ± 5.42 /13.7 ± 4.26
11 ± 4.26/13.6 ± 3.87

69.1 ± 18.98/
79.1 ± 17.81

69.2 ± 11.62/76.2 ± 9.29

27.1 ± 12.78/
28.9 ± 13.94

23.8 ± 8.91/24.4 ± 8.52

Shin et al. 2014 [33]

5.67 ± 10.97/
10 ± 14.87 *

6.67 ± 12.55/
9.67 ± 15.68 *

5 ± 8.61/12 ± 20.35 *
8 ± 14.12/14 ± 25.88 *

27.67 ± 21.91/
35.33 ± 22.7 *

31 ± 15.69/35 ± 21.96 *

Varoqui et al. 2014 [30] 0.56 ± 0.09/0.64 ± 0.10
No available data

206.96 ± 29.57/208.87
± 28.36

No available data

34.15 ± 9.61/27.83 ±
7.32

No available data

Yildirim et al. 2019 [31] 5 (9)/9 (7) **
5 (6.7)/6.5 (5) **

Wu et al. 2018 [36] 0.33 ± 0.15/0.39 ± 0.20
0.56 ± 0.24/0.56 ± 0.24

0.48 ± 0.22/0.54 ± 0.29
0.80 ± 0.34/0.79 ± 0.35

120 ± 37/157 ± 59
control was 218 ± 92 m

and 225 ± 96

Chang et al. 2018 [18]
0.17 ± 0.01/0.22 ± 0.03

0.51 ± 0.0.28/
0.55 ± 0.31

50 ± 23/67 ± 25
147 ± 87/154 ± 94

71 ± 23/55 ± 8
37 ± 17/36 ± 17

Edwards et al. 2022 [37] 0.18 ± 0.23/0.07 ±
0.11/0.03 ±0.03

0.20 ±0.24/ 0.14
±0.18/0.03 ± 0.13 No comparable No comparable No comparable

* Data converted from median and interquartile range to mean ± SD according to Wan et al.’s 2014 formula; ** Data expressed as Median (interquartile range).
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Table 4. Outcome measures of studies of the second and third groups expressed as Mean ± SD.

Study 10MWT Self-Selected
Speed 10MWT Fast 6MWT TUG WISCI-II SCIM-3 LEMS MMT

Jo et al. 2020 [42] 12.4% *
16.5% */24.5% *

Kumru et al. 2016 [41] 2 of 15/6 of 15 #

2 of 16/4 of 16 #

Comparable
between the
two groups

+8.2
+3.4

Raithatha et al.
2016 [44]

0.18 ± 0.15/+0.04 ± 0.07 ##

0.16 ± 0.07/+0.14 ± 0.07 ##

188 ± 212/
+21.8 ± 51.4 4 ##

184 ± 88/
+132.5 ± 64.35 ##

38.7 ± 12.9/+ 0.6 ± 10.53 ##

77.5 ± 7.0/–18.5 ± 1.98 ##
59.7 ± 19.5/1.2 ± 1.47 ##

44.2 ± 26.5/2.7 ± 1.13 ##
L 4.3 ± 2.1 **
R 9.1 ± 3.8 **

Hayes et al. 2014 [38] Not significative +269 m
+173 m

Navarrete-Opazo et al.
2017 [40]

−20.3 ± 6.9 s
−15.5 ± 4.8 s

+70.5 ± 13.2 m
+ 43.1 ± 10.7 m

−23.7 ± 11.1 s
−22.8 ±11.5 s

Evans et al. 2022 [45] 0.69 ± 0.51/
0.83 ± 0.51

Krogh et al. 2021 [43] 18.5 ± 30.5 /2.5 ±2.1 77.7 ± 65.5/
75.6 ± 56.9 4.3 ± 3.0/3.7 ± 3.8

Tan et al. 2022 [39] No comparable No comparable No comparable

* This study shows the necessary time to complete the 10 meters path in percentual reduction before and after the intervention with two control groups (TCMS + exercise/ placebo +
exercise / TCMS). ** Within-group changes from baseline to postintervention tDCS/Sham. # Capable of completing the test. ## Mean difference before and after.
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Evaluations of all the studies before and after intervention are summarized in Tables 3 and 5
as arithmetic mean ± standard deviation (SD).

Table 5. Robotic treatment dosage.

Study Weeks of
Treatment

Session *
Week Sessions Minutes Total

Minutes

Midik et al. [29] 8 3 24 30 720
Cheung et al. [32] 5 3 15 30 450

Labruyère & Hedel [35] 4 4 16 45 720
Shin et al. [33] 4 3 12 40 480

Edwards et al. [37] 12 3 36 45 1620

Regarding the studies of this group, we also decided to extract the dosage of robotic
treatment in Table 5 to facilitate further comparisons among robotic and non-robotic
methods. The risk of bias analysis in the studies is summarized in Figure 6 through “traffic
light” graphics.
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4. Discussion

This systematic review investigates the use of innovative rehabilitation approaches in
patients with SCI. For the first time ever, we have gone beyond robotics since our study
also focuses on other promising protocols, paving the way for more personalized training.
Indeed, previous reviews have analyzed the effect of singular rehabilitation devices or
type of technologies, focusing on stationary robotic-assisted gait training [16,50–53], and
overground exoskeletons [54–56], leading to controversial results.

A review by Cheung et al. highlighted improvement in independence and endurance
linked to robot-assisted gait training in patients with SCI [53], while Alashram et al. found
an increase in gait speed, walking distance, strength, range of motion, and mobility after
incomplete SCI through the use of the Lokomat device [50]. Less encouraging results were
found in more-remote reviews, such as the one by Swennen et al., in which no evidence
on the improvement of walking function after robot-assisted gait training was found [16].
At that time, well-designed randomized controlled trials were lacking, and more evidence
was needed.

Regarding rehabilitation through the use of powered exoskeletons, different results
were found in complete and incomplete SCI in a recent scoping review. Walking per-
formance tested with 10MWT, 6MWT, TUG, and WISCI improved only in patients with
incomplete SCI [56]. However, as demonstrated by Louie et al., only powered exoskeletons
can provide the ability to walk at modest speeds to non-ambulatory individuals with
complete SCI [55].

No other reviews explore the use of external stimulation and intermittent hypoxia
in gait rehabilitation in people with spinal cord injuries, possibly because of the lack
of comparable outcome data. This was why we were able to perform a metanalysis
only on robotics and for specific outcomes (i.e., 10MWT [46], LEMS [47], WISCI-II [48],
and SCIM-3 [49]).

4.1. Studies on Robotics

Technological devices, such as robots, are able to deliver repetitive, high-intensity,
standardized movement [57], a task that is difficult to achieve through manual therapy.
Our analysis demonstrated that there is a sufficient magnitude [58] of WISCI-II with ES
(Effect Size) = 0.23 (ES > 0.2) for robotic rehabilitation methods. No other relevant results
in terms of ES were observed for other outcome measures. In our analysis, we did not
observe a correlation between the exposition to the intervention and ES. Nevertheless, data
showed that a major dosage of intervention leads to the highest ES, as shown in Table 4. The
contribution of the other outcome measures is uncertain, as the ES of robotic rehabilitation
is high but with an insufficient magnitude.

Two studies evaluated the use of an exoskeleton (the Ekso®): one comparing it with
conventional physical therapy [18] and the other comparing it with conventional therapy
and BSWTT or standard care [37]. The first one was a pilot study on feasibility and efficacy,
wherein all participants were able to complete the training, and significant improvement
in the stride length, right step length, and 6MWT were observed after the experimental
training. The second study confirmed that gait training with Ekso is safe and feasible in
an outpatient setting, increasing gait speed (even though not statistically significantly),
leading to clinically significant improvement proved by the transition in the gait speed
category from home to community ambulation. Wearable exoskeletons, therefore, can
be utilized as a gait-training device to facilitate motor and gait function recovery and
health promotion for people with SPI. To this aim, a new prototype using pneumatic
actuators may be used. Indeed, a geometrical model of a pneumatic exoskeleton based on
anthropometrical parameters has been proposed. The authors attempted to demonstrate
that their approach can be utilized to analyze the kinematics of the positions of lower limb
segments and exoskeleton elements. Then, by changing every kinematic parameter (angle
and angular velocity of each joint), how actuators should work can be observed [59].



Brain Sci. 2023, 13, 703 13 of 17

4.2. External Stimulation (Non-Invasive Brain Stimulation)

The five studies selected evaluated two different methods of brain stimulation: Tran-
scranial Magnetic Stimulation (TMS) and transcranial Direct Current Stimulation (tDCS).
The TMS functioning mechanism seems to be activated by two different pathways, such
as recruitment of neural networks [60–62], resulting in stimulation of neuroplasticity and
modulation of the cerebral cortex with a reflection on descending paths [19,20]. These meth-
ods were associated with physical therapy, and efficacy in gait recovery was investigated.
TMS associated with conventional physical therapy showed a 12.4% increase in speed in
the group treated with TMS + physical therapy, a 16.5% increase in speed in the group
treated with placebo + physical therapy, and an 18.7% increase in speed in the group using
TMS only. Real TMS compared with SHAM was associated with a greater increase in total
leg maximum voluntary contraction, with no significant results in gait parameters [43]. The
association of TMS with gait training using Lokomat in sub-acute patients has proven more
effective. Indeed, at follow-up evaluation, 71.4% of patients receiving TMS could complete
the 6MWT, whereas only 40% of the sample treated with placebo + Lokomat could complete
it. Nonetheless, no improvement in WISCI-II was observed in the two groups.

In contrast, robotic rehabilitation using Lokomat coupled with tDCS was applied in
the study by Raithatha et al. [44], wherein the experimental group showed better results in
evaluation in terms of strength measured by Manual Muscle Testing (MMT) with intragroup
changes from baseline to postintervention of 4.3 ± 2.1 on the left lower limb and 9.1 ± 3.8
for the right lower limb. Previous research has shown that anodal tDCS applied to the motor
cortex increases corticospinal excitability in both healthy adults and stroke survivors [63].
Moreover, it seems that neuromodulation may improve the acquisition and consolidation
of motor abilities [64], though more recent research has shown a substantial degree of
interindividual heterogeneity in motor cortical responsiveness to tDCS [65], which may
contribute to a lack of effect observed in other studies. Taken together, data on these
coupled approaches suggest that it is possible to associate rehabilitative methods (physical
therapy and robotics) with tDCS and TMS to further improve functional recovery in patients
affected by SCI.

4.3. Intermittent Hypoxia

Intermittent hypoxia (IH) appears to increase physical performance of people with
incomplete SCI, as shown by Trumbower in al. [66]. This method seems able to stimulate
synaptic plasticity of nervous fibers spared after injuries through the secretion of serotonin
from Carotidis chemoceptors [67,68]. The release of serotonin activates the specific receptor
5-HT2, triggering the release of BDNF (brain-derived neurotrophic factor) [69] and the
activation of the tirosin-kinasis signal path [70]. Some authors [39,40] tried to confirm the
hypothesis of a better outcome by associating a rehabilitation treatment to IH.

Navarrete-Opazo et al. [40] associated BWSTT with a 90” IH FiO2 9%, 15 times a day
for 5 days in a row, followed by IH 3 times a week for the following 3 weeks. Gait training
sessions were executed 3 times a week for 3 weeks. Beginning on the fifth day of IH therapy,
an increase in speed measured through the 10MWT was observed; moreover, this gain was
maintained for the next 3 weeks, and endurance increased as well.

Another study by Hayes et al. [38], applied the same protocol for 5 days in a row and
was associated with 30 min of walking on the ground one hour later. The most important
result was an endurance and speed increase (as per 6MWT and 10WMT, respectively) in
the group treated with IH + walking.

Finally, it has been shown that IH elicits clinically meaningful improvements in
walking speed and distance that persist for weeks after treatment [39]. However, given
the lack of common outcome measures and the few patients enrolled in these published
studies, it is not possible to state whether and to what extent IH works for treating SCI.
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5. Conclusions

A cohort of new rehabilitation methods have been studied in the last 12 years to
improve gait recovery in SCI patients. These can be associated with conventional reha-
bilitation to enhance neuroplasticity and consequently motor function and mobility. We
observed, with low evidence, that robot-assisted gait rehabilitation, alone or associated
with other methods (e.g., Biofeedback EMG), leads to improvement in gait function and
independence, in comparison to conventional therapy alone. Moreover, we may say that
this kind of rehabilitation relieves the care to acquire the same therapeutic dosage we
can deliver with traditional methods using fewer human resources. External stimulation
appears to be a promising technique when TMS is associated with robotic rehabilitation.
Finally, the usage of Intermittent Hypoxia associated with physical exercise seems to be
the fastest method to improve gait outcome measures. Nonetheless, there is still a lack
of large sample trials with good homogeneity of data and long-term follow-up. Future
research should take into account different combinations of treatment to further increase
motor outcomes, and therefore quality of life, in patients with SCI.
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