
applied
sciences

Article

Development of a Convolution-Based
Multi-Directional and Parallel Ant Colony
Algorithm Considering a Network with Dynamic
Topology Changes

Eunseo Oh and Hyunsoo Lee *

School of Industrial Engineering, Kumoh National Institute of Technology, P.O. 39177, Gumi, Korea
* Correspondence: hsl@kumoh.ac.kr; Tel.: +82-054-478-7661

Received: 5 August 2019; Accepted: 27 August 2019; Published: 4 September 2019
����������
�������

Abstract: While network path generation has been one of the representative Non-deterministic
Polynomial-time (NP)-hard problems, changes of network topology invalidate the effectiveness of
the existing metaheuristic algorithms. This research proposes a new and efficient path generation
framework that considers dynamic topology changes in a complex network. In order to overcome
this issue, Multi-directional and Parallel Ant Colony Optimization (MPACO) is proposed. Ant agents
are divided into several groups and start at different positions in parallel. Then, Gaussian Process
Regression (GPR)-based pheromone update method makes the algorithm more efficient. While the
proposed MPACO algorithm is more efficient than the existing ACO algorithm, it is limited in a
network with topological changes. In order to overcome the issue, the MPACO algorithm is modified
to the Convolution MPACO (CMPACO) algorithm. The proposed algorithm uses the pheromone
convolution method using a discrete Gaussian distribution. The proposed pheromone updating
method enables the generation of a more efficient network path with comparatively less influence from
topological network changes. In order to show the effectiveness of CMPACO, numerical networks
considering static and dynamic conditions are tested and compared. The proposed CMPACO
algorithm is considered a new and efficient parallel metaheuristic method to consider a complex
network with topological changes.

Keywords: metaheuristics; Gaussian Process Regression (GPR); dynamic network topology; discrete
pheromone convolution

1. Introduction

The route generation in a complicated network is a representative NP-Complete problem requiring
a non-deterministic solution time with the polynomial increase of problem complexity. It has a number
of applications, such as escape route production, and transport optimization. Specifically, in dynamic
environment circumstances that cause traffic congestion, such as road construction or traffic accident,
the driver’s effective route is subsequently compounded with various dynamic situations. In order to
overcome this complexity and to produce an efficient route, various existing studies [1–7], including
Ant Colony Optimization (ACO) [8,9], have been presented, and meta-heuristic algorithms have
been applied.

This research proposes an efficient route production algorithm for large-scale networks or
mazes, which have a start point and a terminal point, by combining the ACO algorithm with a new
distributed algorithm.

The study of Dorigo, Maniezzo, and Colonia [1] presented a meta-heuristic algorithm that produces
routes by describing an agent’s traces as a pheromone model using an ACO algorithm. Li and Xiao [2]

Appl. Sci. 2019, 9, 3646; doi:10.3390/app9183646 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-9535-8256
https://orcid.org/0000-0001-5512-2986
http://www.mdpi.com/2076-3417/9/18/3646?type=check_update&version=1
http://dx.doi.org/10.3390/app9183646
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 3646 2 of 20

used an ACO algorithm to search parallel routes by introducing a parameter matrix design method, in
order to produce fast escape routes from a maze. Yan and Yuan [3] developed faster routes using the
modification of the pheromone renewal rule, by minimizing the pheromone concentration in a blind
spot, whenever an ant agent in the maze reached the blind spot. Moreover, Ilie and Badica [4] generated
a more efficient route using an exchange of messages among various ant agents. Yoshikawa and
Nagura [5] conducted a study to limit ant agents that suddenly behave in an unusual way, minimizing
deviations in route production. Moreover, Yoshikawa and Otani [6] presented a study that aimed
to limit the possibility of an ant agent being trapped in a dead end. Kim and Lee [7] minimized the
escape time using the cooperation of multiple agents to avoid consequent congestion. In the studies
mentioned above, all agents used a unidirectional direction-based strategy [1–7] to produce routes
from the start point to the terminal point, in the escape from a maze or large network. However, as the
network becomes more complex, more time and computational loads are added to this strategy.

In order to overcome this issue, this research study uses a new and efficient strategy, the
“Multi-directional and Parallel Ant Colony Optimization (MPACO)” algorithm, to start agents at any
number of points simultaneously, not simply from the start point to the terminal point. The MPACO
algorithm supports parallel searches of agents, and uses a Gaussian Processes Regression (GPR)-based
pheromone updating method. Specifically, the proposed algorithm generates evacuation routes faster
than the previous algorithms in a dynamic network where the topology of the network is transformed
due to several reasons, such as traffic congestion or construction.

Section 2 of this research study examines the current ACO algorithms and relevant studies. Section 3
proposes the MPACO framework in a static environment. Section 4 proposes the Convolution-based
Multi-directional and Parallel Ant Colony Algorithm (CMPACO) framework that is effective in a
dynamic environment. Section 5 analyzes the effectiveness of the proposed framework with the
experimental results of ACO, MPACO algorithm, and CMPACO algorithm.

2. Background Knowledge

2.1. Routing Generation Methods and Ant Colony Optimization

The purpose of routing generation is to search for the more effective paths among numerous
alternative paths. A number of metaheuristic algorithms have been applied to find more efficient
routes. Table 1 summarizes several existing meta-heuristics and the relevant applications to generate
more efficient routs in complex networks.

Table 1. Existing research studies for route generation.

Route Generation Based Research Studies Applications and Characteristics

Garcia, Tria and Talampas [10] Particle Swarm Optimization-based Energy efficient
route generation to maximize vehicle mileage

Quang, Sanner, Morin and Aoul [11] Route generation of large-scale networks using
genetic algorithm

Yu, Liu, Liu, Hu, Zhang and Xiao [12] Clustering routing algorithm based on glowworm
swarm optimization

Xu, Wang and Sun [13]
Generation of efficient distributed model to reduce
communication load using intelligent
routing algorithm

Qiu, Zhong, Luo, Liu, Luo and Jiang [14] Power distribution network routing generation
using ACO

Among a number of meta-heuristic algorithms, swarm-based optimization methods [10,12,14]
have been widely used for more efficient route generations. One of the representative swarm-based
optimization is ACO. ACO is an algorithm derived by Dorigo [15,16], based on the cooperative behavior

Appl. Sci. 2019, 9, 3646 3 of 20

of ants in finding the shortest route from their colony to the food location. Table 2 shows that the
algorithm has been utilized as one of the meta-heuristics in solving the route problem in complex and
difficult networks.

Table 2. Several applications using Ant Colony Optimization.

Research Studies Using ACO Application Fields

Dorigo, Maniezzo, Colorni and Trubian [17]; Arnaout,
Musa and Rabadi [18]; Chen, Lo, Wu and Lin [19] Transportation and scheduling issues

Dorigo and Gambardella [20]; Oh and Lee [21] Efficient route production

Ahmadizar, Barzinpour and Arkat [22] Permutation flow shop scheduling problem

Dorigo, Maniezzo and Colorni [1] Traveling salesman problem

Reza, Mahfujur, Abdur, Wail and Abdulmotaleb [23] Wireless sensor network design

Maniezzo and Colorni [24] The quadratic assignment problem

In a general ACO algorithm, each ant acts as an artificial agent that moves to the target
probabilistically. At each step, the agent moves based on the graph topology of the problem, deposits
the pheromone, and updates the pheromone amount, using iterations to increase the probability of the
optimal route production.

Figure 1a depicts how agents move to produce an efficient route using ACO in a multilayered
graph. All agents start at the same position (e.g., the Ant Colony) at the beginning of each iteration.
However, agents in Figure 1b are initially located at random places, and search for the shortest path
more efficiently. Section 3 provides the detailed process and method.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 3 of 22

that the algorithm has been utilized as one of the meta-heuristics in solving the route problem in
complex and difficult networks.

In a general ACO algorithm, each ant acts as an artificial agent that moves to the target
probabilistically. At each step, the agent moves based on the graph topology of the problem, deposits
the pheromone, and updates the pheromone amount, using iterations to increase the probability of
the optimal route production.

Table 2. Several applications using Ant Colony Optimization.

Research Studies Using ACO Application Fields
Dorigo, Maniezzo, Colorni and Trubian [17]; Arnaout, Musa
and Rabadi [18]; Chen, Lo, Wu and Lin [19]

Transportation and
scheduling issues

Dorigo and Gambardella [20]; Oh and Lee [21] Efficient route production

Ahmadizar, Barzinpour and Arkat [22] Permutation flow shop
scheduling problem

Dorigo, Maniezzo and Colorni [1] Traveling salesman problem

Reza, Mahfujur, Abdur, Wail and Abdulmotaleb [23] Wireless sensor network
design

Maniezzo and Colorni [24] The quadratic assignment
problem

(a)

(b)

Figure 1. Conceptual comparisons between ACO algorithm and MPACO algorithm: (a) Optimal route
search in ACO algorithm; (b) Optimal route search in MPACO algorithm.

Figure 1a depicts how agents move to produce an efficient route using ACO in a multilayered
graph. All agents start at the same position (e.g., the Ant Colony) at the beginning of each iteration.
However, agents in Figure 1b are initially located at random places, and search for the shortest path
more efficiently. Section 3 provides the detailed process and method.

The agents (the number of agents = AN) move from the first layer, the ant colony, up to the last
layer, the food location. In each destination point, an agent can select one of the directly connected
neighbor nodes, and diffuses its pheromone. The route is stronger as the concentration of pheromone
is stronger. P() = 𝜏∑ 𝜏∈ () , 𝑖𝑓 𝑗 ∈ 𝑁() (1)

In Equation (1), P() denotes the probability that the 𝑘 ant moves from node 𝑖 to node 𝑗, 𝑁() denotes the set of all movable nodes directly connected to node 𝑖, and 𝜏 is the pheromone
deposited in the route from node 𝑖 to node 𝑗.

Figure 1. Conceptual comparisons between ACO algorithm and MPACO algorithm: (a) Optimal route
search in ACO algorithm; (b) Optimal route search in MPACO algorithm.

The agents (the number of agents = AN) move from the first layer, the ant colony, up to the last
layer, the food location. In each destination point, an agent can select one of the directly connected
neighbor nodes, and diffuses its pheromone. The route is stronger as the concentration of pheromone
is stronger.

P(k)
i j =

τi j∑
j∈N(k)

i j
τi j

, i f j ∈ N(k)
i (1)

Appl. Sci. 2019, 9, 3646 4 of 20

In Equation (1), P(k)
i j denotes the probability that the kth ant moves from node i to node j, N(k)

i
denotes the set of all movable nodes directly connected to node i, and τi j is the pheromone deposited
in the route from node i to node j.

fk =
∑
i∈S

∑
j∈S

√(
xi − x j

)2
+

(
yi − y j

)2
, k = 1, 2, . . . , N (2)

Equation (2) indicates the cost function (fk) when the kth ant goes from node i to node j. S is the
set of all nodes passed by the kth ant. When the kth ant is at node i, the coordinates are presented as
(xi, yi); and when it is at node j, the coordinates are presented as

(
x j, y j

)
.

fbest = min
k=1,2,...,N

fk (3)

fworst = max
k=1,2,...,N

fk (4)

The optimal route (Equation (3)) and the worst route (Equation (4)) between routes selected by
the kth ant are determined. When fbest is determined at one iteration count, the algorithm updates the
deposited pheromone for the next iteration. The updated pheromone is used as a guide to search for
the future route of other ants.

As shown in Equations (5) and (6), the ants deposit more pheromone on the selected route,
using Equations (2) and (3). This enhanced route is used as a key indicator to the preferred route in
future route selection by other ants. Longer routes that do not attract attention are reduced relative
to pheromone evaporation as shown in Equation (7), and the pheromone in each route is updated as
learning processing.

τi j ← τi j +
N∑

k=1

∆τi j (5)

∆τi j =

 { fbest
fworst

, i f (i, j) ∈ global best tour
0 otherwise

(6)

τi j ← (1− ρ)τi j (7)

In Equation (6), { is a parameter to control the scale of the pheromone updated as an ant moves,
while in Equation (7), ρ is a pheromone decay parameter. The pheromones of all the route evaporate,
as shown in Equation (7). The pheromone of the route with the minimum objective function value
is updated, as shown in Equation (5). The renewal amount of pheromone is determined using
Equation (6) with fbest and fworst. Closest nodes with fewer objective function values are selected using
these pheromone updating processes. Finally, the algorithm generates the efficient solution route.

While a number of research studies have applied the ACO method to relevant application fields,
it is limited in a complex network with dynamically changing topology. This research proposes
the MPACO and CMPACO methods. The detailed algorithms are provided in Sections 3 and 4.
The following subsection explains the Gaussian Process Regression (GPR) method, which the proposed
method uses for estimating and updating pheromones.

2.2. Gaussian Processes Regression

GPR [25–27] is one of the representative nonparametric Bayesian algorithms. GPR is a technique
of estimating and updating the frequency of occurrence, using a Gaussian nonlinear distribution
function with a mean function and a covariance function. GPR algorithm has been used in many
research fields, as provided in Table 3.

Appl. Sci. 2019, 9, 3646 5 of 20

Table 3. Research applications using GPR.

Research Studies Using GPR Application Fields

Ak, Ergonul, Sencan, Torunoglu and Gonen [28] The time and space prediction of an
infectious diseases

Luttinen and Ilin [29] Sea level temperature reconstruction
Nguyen and Peters [30] Kinetics model estimation

Nguyen, Hu and Spanos [31] Efficient building field formation by estimating
indoor environment fields

Chen, Qian, Meng and Nabney [32] Wind prediction for energy efficiency

GPR has been used in many fields, as it has high prediction measurement for changing environment
based on a Bayesian framework, and enables probabilistic analyses using Gaussian distribution.

Figure 2 illustrates the process for estimating the final output value Y∗ using an f∗ at the input
value X∗ after producing the intermediate value fi by Bayesian renewal to convert the input value Xi to
the observed value Yi.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 5 of 22

Nguyen, Hu and Spanos [31] Efficient building field formation by estimating indoor
environment fields

Chen, Qian, Meng and Nabney [32] Wind prediction for energy efficiency

GPR has been used in many fields, as it has high prediction measurement for changing
environment based on a Bayesian framework, and enables probabilistic analyses using Gaussian
distribution.

Figure 2 illustrates the process for estimating the final output value 𝑌∗ using an 𝑓∗ at the input
value 𝑋∗ after producing the intermediate value 𝑓 by Bayesian renewal to convert the input value 𝑋 to the observed value 𝑌 .

Figure 2. Schematic graph of a Gaussian processes regression.

Equations (8)–(11) summarize the general GPR model. y = 𝑓 + ϵ (8)

where, ϵ~N 0, σ I D = (𝑋 , 𝑌), i = 1, … , a (9) 𝑓~GP(m(𝑋), k(𝑋, 𝑋∗)) (10) where m(𝑋) = E 𝑓(𝑋)] and k(𝑋, 𝑋∗) = E (𝑓(𝑋) − m(𝑋))(𝑓(𝑋∗) − m(𝑋∗))]
In Equation (8), ϵ is a noise parameter with a mean of 0 and a variance of 𝜎 subsequent to the

Gaussian distribution, and 𝐼 is an Identity matrix considering the data dimension. Equation (10) is
the “distribution over functions” [33] for converting to the target value 𝑌 , if a training data is
assigned with input vector 𝑋 and output vector 𝑌 as shown in Equation (9), which is a Gaussian
process distribution modeled with mean m(𝑋) and variance covariance k(𝑋, 𝑋∗) . k(𝑋, 𝑋∗) is a
covariance function (cov 𝑓(𝑋), 𝑓(𝑋∗) =), and indicates the similarity measure between both data. In
general, a special kernel function is modeled as a radial basis kernel of Equation (11). k(𝑋, 𝑋∗) = exp (− 12 |𝑋 − 𝑋∗|) (11)

Equation (10) can be mapped to Equation (12) with the condition of the absence of noise, and
then the pre-distribution is expressed as Equation (13). 𝑓∗~N(0, k(𝑋∗, 𝑋∗)) (12)

 𝑓𝑓∗ ~N 0, k(𝑋, 𝑋) k(𝑋, 𝑋∗)k(𝑋∗, 𝑋) k(𝑋∗, 𝑋∗) (13)

Figure 2. Schematic graph of a Gaussian processes regression.

Equations (8)–(11) summarize the general GPR model.

y = f + ε,
where, ε ∼ N

(
0,σ2

yI
) (8)

D =
{
(Xi, Yi), i = 1, . . . , a

}
(9)

f ∼ GP(m(X), k(X, X∗))
where m(X) = E[f (X)]

and k(X, X∗) = E[(f (X) −m(X))(f (X∗) −m(X∗))]
(10)

In Equation (8), ε is a noise parameter with a mean of 0 and a variance of σ2
y subsequent to the

Gaussian distribution, and I is an Identity matrix considering the data dimension. Equation (10) is the
“distribution over functions” [33] for converting to the target value Y, if a training data is assigned
with input vector X and output vector Y as shown in Equation (9), which is a Gaussian process
distribution modeled with mean m(X) and variance covariance k(X, X∗). k(X, X∗) is a covariance
function (cov(f (X), f (X∗)) =), and indicates the similarity measure between both data. In general, a
special kernel function is modeled as a radial basis kernel of Equation (11).

k(X, X∗) = exp(−
1
2
|X −X∗|2) (11)

Equation (10) can be mapped to Equation (12) with the condition of the absence of noise, and then
the pre-distribution is expressed as Equation (13).

f∗ ∼ N(0, k(X∗, X∗)) (12)

Appl. Sci. 2019, 9, 3646 6 of 20

[
f
f∗

]
∼ N

(
0,

[
k(X, X) k(X, X∗)

k(X∗, X) k(X∗, X∗)

])
(13)

However, the value obtained by the measurement of the actual data contains noise in general. In
this manner, the Y value is expressed as Equation (14).

Y ∼ N
(
0, k + σ2

yI
)

(14)

This indicates that the estimated Y using a general GPR model follows the attributes of multivariate
normal distribution with mean 0 and covariance k+ σ2

yI. This derived GPR model is used as a prediction
model using Bayesian framework.

When the function value f∗(X∗) is predicted for the test data X∗, the pre-distribution for f∗(X∗)
considering the occurring noises is modeled using Equation (15).[

Y
f∗

]
∼ N

(
0,

[
k(X, X) + σ2

yI k(X, X∗)
k(X∗, X) k(X∗, X∗)

])
(15)

Using the newly updated Gaussian process, the derived Maximum Likelihood Estimator (MLE)
and its variance follow Equations (16) and (17), respectively.

f∗ = k(X∗, X)T(k(X, X) + σ2
yI)
−1

Y (16)

V [f∗] = k(X∗, X∗) − k(X∗, X)T(k(X, X) + σ2
yI)
−1

k(X, X∗) (17)

This research uses the introduced GPR framework for connecting and estimating the pheromones
of paralleled agents. Section 3 provides the detailed framework and algorithms of MPACO algorithm
using the GPR pheromone updating method.

3. Multi-Directional and Parallel Ant Colony Optimization (MPACO)

MPACO algorithm orients “multiple directional searches”, in which each group of ants start at
any point, as opposed to the ACO algorithm, where all agents start from the same start point (Ant
Colony). Moreover, MPACO algorithm has the characteristic of “parallelism”, in which each agent
searches in multiple directions simultaneously.

This section explains how MPACO works in a static network environment. Figure 3 illustrates the
detailed procedures of the MPACO algorithm.

Figure 3a depicts the initial situation of the MPACO algorithm. The agents of each group start at
the start point and the terminal point as usual, not just the start point of the maze. If the number of
groups (randomly selected starting points) is v, each group is composed of AN/v agents, where AN is
the number of overall agents. When the agents from different groups often occur together with each
other in a node, this node is defined as a collision node (q). The existence of the collision node implies
that the node may have a higher probability to be used as one of the paths. For this reason, when the
collision node is detected, the pheromone is diffused and calculated.

The pheromone value is estimated using a GPR-based updating method. As shown in Figure 3b,
the collision node q is detected, and the amount of pheromone (Figure 3c) is adjusted using a GPR
around the collision node. Equation (18) defines the GPR-type pheromone distribution D, where X
denotes a node belonging to radius w in the detected collision node.

D(Y∗) ∼ N(m(X), k(X, X∗)) (18)

M(int) = arg
∀(i, j)∈A

·maxτi j (19)

Appl. Sci. 2019, 9, 3646 7 of 20

Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 22

However, the value obtained by the measurement of the actual data contains noise in general.
In this manner, the 𝑌 value is expressed as Equation (14). 𝑌~N(0, k + 𝜎 I) (14)

This indicates that the estimated 𝑌 using a general GPR model follows the attributes of
multivariate normal distribution with mean 0 and covariance k + 𝜎 I. This derived GPR model is
used as a prediction model using Bayesian framework.

When the function value 𝑓∗(𝑋∗) is predicted for the test data 𝑋∗, the pre-distribution for 𝑓∗(𝑋∗)
considering the occurring noises is modeled using Equation (15). 𝑌𝑓∗ ~N 0, k(𝑋, 𝑋) + 𝜎 I k(𝑋, 𝑋∗) k(𝑋∗, 𝑋) k(𝑋∗, 𝑋∗) (15)

Using the newly updated Gaussian process, the derived Maximum Likelihood Estimator (MLE)
and its variance follow Equations (16) and (17), respectively. 𝑓∗ = k(𝑋∗, 𝑋) (k(𝑋, 𝑋) + 𝜎 I) 𝑌 (16)

V 𝑓∗] = k(𝑋∗, 𝑋∗) − k(𝑋∗, 𝑋) (k(𝑋, 𝑋) + 𝜎 I) k(𝑋, 𝑋∗) (17)

This research uses the introduced GPR framework for connecting and estimating the
pheromones of paralleled agents. Section 3 provides the detailed framework and algorithms of
MPACO algorithm using the GPR pheromone updating method.

3. Multi-Directional and Parallel Ant Colony Optimization (MPACO)

MPACO algorithm orients “multiple directional searches”, in which each group of ants start at
any point, as opposed to the ACO algorithm, where all agents start from the same start point (Ant
Colony). Moreover, MPACO algorithm has the characteristic of “parallelism”, in which each agent
searches in multiple directions simultaneously.

This section explains how MPACO works in a static network environment. Figure 3 illustrates
the detailed procedures of the MPACO algorithm.

(a)

(b)

(c)

(d) Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 22

(e)

(f)

(g)

(h)

Figure 3. Conceptual framework of MPACO algorithm and procedures. (a) Initial search from two
different nodes; (b) Discovery of the collision node q; (c) GPR based pheromone renewal in Node q;
(d) Choice of the node with the highest pheromone at the iteration “int”; (e) Searches with multi
directions at the nodes including M() at the following the iteration “int + 1”; (f) Discovery of the
collision nodes q1 & q2 at the following iteration; (g) GPR based pheromone updating in Node q1 &
q2; (h) Search and connection of the divided routes.

Figure 3a depicts the initial situation of the MPACO algorithm. The agents of each group start
at the start point and the terminal point as usual, not just the start point of the maze. If the number of
groups (randomly selected starting points) is 𝑣, each group is composed of 𝐴𝑁 / 𝑣 agents, where 𝐴𝑁 is the number of overall agents. When the agents from different groups often occur together with
each other in a node, this node is defined as a collision node (𝑞). The existence of the collision node
implies that the node may have a higher probability to be used as one of the paths. For this reason,
when the collision node is detected, the pheromone is diffused and calculated.

The pheromone value is estimated using a GPR-based updating method. As shown in Figure 3b,
the collision node 𝑞 is detected, and the amount of pheromone (Figure 3c) is adjusted using a GPR
around the collision node. Equation (18) defines the GPR-type pheromone distribution D, where 𝑋
denotes a node belonging to radius 𝑤 in the detected collision node. D(𝑌∗)~N(m(𝑋), k(𝑋, 𝑋∗)) (18) M() = arg∀(,)∈ ∙ max τ (19)

Equation (18) is derived using the prediction procedure provided in Section 2.2. The pheromone
value (𝑌∗) of node 𝑋∗ is predicted based on the GPR, and used as the updated pheromone value.
The parameter radius w depends on the characteristics of the problem. This research study uses 2 as
the value for each experimental measurement.

After updating the pheromone, a new node (Equation (19)) with the highest pheromone in the
network is selected. The node selected is called an intermediate node (M()), as shown in Figure 3d.
The reasoned M() node is added as a new starting node of the agents, as shown in Figure 3e, and

Figure 3. Conceptual framework of MPACO algorithm and procedures. (a) Initial search from two
different nodes; (b) Discovery of the collision node q; (c) GPR based pheromone renewal in Node
q; (d) Choice of the node with the highest pheromone at the iteration “int”; (e) Searches with multi
directions at the nodes including M(int+1) at the following the iteration “int + 1”; (f) Discovery of the
collision nodes q1 & q2 at the following iteration; (g) GPR based pheromone updating in Node q1 & q2;
(h) Search and connection of the divided routes.

Appl. Sci. 2019, 9, 3646 8 of 20

Equation (18) is derived using the prediction procedure provided in Section 2.2. The pheromone
value (Y∗) of node X∗ is predicted based on the GPR, and used as the updated pheromone value. The
parameter radius w depends on the characteristics of the problem. This research study uses 2 as the
value for each experimental measurement.

After updating the pheromone, a new node (Equation (19)) with the highest pheromone in the
network is selected. The node selected is called an intermediate node (M(int)), as shown in Figure 3d.
The reasoned M(int) node is added as a new starting node of the agents, as shown in Figure 3e, and
additional collision nodes (Figure 3f) are detected in the following iteration. Then, the GPR-type
pheromone is updated at the additional nodes, as shown in Figure 3g, using Equation (18). Finally, the
strongest pheromone points are linked with each other, and determine a final effective route, as shown
in Figure 3h.

When an agent diffuses pheromones in the shortened route using the cost function, MPACO
algorithm with collision nodes and intermediate nodes generates the route to the large network faster
and more efficiently than ACO algorithm. When these collision and intermediate nodes are not found,
the MPACO algorithm follows the route search procedure of the ACO algorithm.

Figure 4 depicts a flowchart of MPACO algorithm that produces an optimal candidate route. As
shown in Figure 4, two collision nodes are detected in the initial searches. Then, the intermediate node
is reasoned using the GPR rule. The node is registered to starting node lists. Then, the final route is
completed using the same iterations.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 22

additional collision nodes (Figure 3f) are detected in the following iteration. Then, the GPR-type
pheromone is updated at the additional nodes, as shown in Figure 3g, using Equation (18). Finally,
the strongest pheromone points are linked with each other, and determine a final effective route, as
shown in Figure 3h.

When an agent diffuses pheromones in the shortened route using the cost function, MPACO
algorithm with collision nodes and intermediate nodes generates the route to the large network faster
and more efficiently than ACO algorithm. When these collision and intermediate nodes are not
found, the MPACO algorithm follows the route search procedure of the ACO algorithm.

Figure 4 depicts a flowchart of MPACO algorithm that produces an optimal candidate route. As
shown in Figure 4, two collision nodes are detected in the initial searches. Then, the intermediate
node is reasoned using the GPR rule. The node is registered to starting node lists. Then, the final
route is completed using the same iterations.

Figure 4. MPACO algorithm-based route generation framework.

Table 4 summarizes the comparison of the computation speed using ACO and the proposed
MPACO. The network as shown in Figure 4 is used as a test network. Four ants are used in both
algorithms, and the optimal paths are obtained in one iteration.

Figure 4. MPACO algorithm-based route generation framework.

Appl. Sci. 2019, 9, 3646 9 of 20

Table 4 summarizes the comparison of the computation speed using ACO and the proposed
MPACO. The network as shown in Figure 4 is used as a test network. Four ants are used in both
algorithms, and the optimal paths are obtained in one iteration.

Table 4. Comparison of the computation speed between ACO and MPACO.

ACO MPACO

Iterations 1 1
Computation speed (Agents’ Total Movement) 70.64 61.64

Table 4 shows that the overall agents’ movement using ACO is longer than the movement using
MPACO. This indicates that the computation speed of MPACO is faster than the speed of ACO.

Algorithm 1 explains the route search algorithm for detecting a collision node. As explained
with the illustrations, initial agents are divided into two groups, which start at the S-node and
T-node, respectively.

Algorithm 1. Route search algorithm for detecting a collision node.

Initialize:
Current iteration→ int
Overall number of agents→ AN
for k=1 to AN/2
Ants start from S node and T node (S node has AN/2 ants, and T node has AN/2 ants).
Choose the next node using a P(k)

i j . (Equation (1))
end for
When ants in different groups meet in a node, it is classified as a collision node (q).
If (the existence of q == false)
Go to Algorithm 2.
else
Go to Algorithm 3.
end if

When a collision node is not detected, MPACO follows the procedures of ACO algorithm, as
shown in Algorithm 2.

Algorithm 2. Route search in the case of the non-existence of a “collision node”.

Initialize:
Evaporation rate ρ ∈ (0, 1]
The objective function is to minimize the distance of the route where the ants are moved
(Equation (2)).
Combine the distances moved in each section.
Choose the optimal candidate route fbest (Equation (3)).
Evaporate the pheromones (Equation (5)).
Update the pheromones on fbest route (Equation (6)).
return Algorithm 1

When a collision node is detected, the GPR-type pheromone amount is estimated and updated
with Algorithm 3.

Appl. Sci. 2019, 9, 3646 10 of 20

Algorithm 3. GPR based Pheromone renewal Algorithm.

Initialize:
Radius w ∈ I+

In the q node,
all nodes in the radius w = X
Y = the pheromone values of the X.
Input: Training data point { X, Y }
GPR is applied to predict test data X∗ and Y∗ (Equation (18)).
Update pheromone with Y∗ value on X∗ node.
Choose the M(int) node with the highest pheromone value (Equation (19)).
Go to Algorithm 4.

Then, the subsequent process is to find an intermediate node (Mint) with the highest pheromone
value near a collision node. The reasoned Mint is listed as another starting node, and agents start their
search with an updated starting node list (M(int+1)), as shown in Algorithm 4. The updated node list
(M(int+1)) at the following iteration (int+1) includes the initial starting point (S-node) and the target
node (T-node). If the number of nodes in M(int+1) is greater than the number of overall agents (AN),
additional detection processes for collision nodes and intermediate nodes are stopped. The numerical
analyses using the proposed algorithm are provided in Section 5.1.

Algorithm 4. Route generation Algorithm with an intermediate node (M(int+1)).

Initialize:
Current iteration→ int+1
number of M(int+1)

→ v
for k=1 to AN/v
Ants start from all M(int+1) nodes that are detected.
Choose the next node using P(k)

i j (Equation (1)).
end for

4. Dynamic Configurable Network and Convolution-Type Multi-Directional and Parallel Ant
Colony Optimization (CMPACO)

While the previous section shows the effectiveness of the proposed network with networks with
static topology, a number of real networks have dynamic changes in their topologies and configurations
due to various reasons, such as route constructions and heavy traffic jams. An algorithm that constructs
an efficient route in a dynamic network has been used in many research fields, as provided in Table 5.
The changes of network topologies for learning processes have resulted in low performances of the
existing algorithms. This section provides a variation of the MPACO algorithm that overcomes the
issue, and explains how it works.

Although the MPACO algorithm is more successful than the ACO algorithm in static network
environments, dynamic changes in network topologies might invalidate the pheromone-based route
reasoning using the learning processes of MPACO. In order to overcome this issue, a new and
efficient dynamic network framework (Convolution-type Multi-directional and Parallel Ant Colony
Optimization (CMPACO) algorithm) is proposed. The new algorithm uses a discrete Gaussian
convolution. Figure 5 illustrates how the pheromone is renewed when the collision nodes are detected
using the proposed CMPACO algorithm.

As shown in Figure 5a, when a collision node is detected, the algorithm examines another collision
node that shares the area within the given radius α,β,γ. The pheromone at each collision node
is modeled as a step-based Gaussian distribution, as shown in Equation (20). Equation (20) is a
discrete Gaussian distribution with mean 0 and standard deviation according to the discrete ranges

Appl. Sci. 2019, 9, 3646 11 of 20

(α,β,γ) of the converted radius, while ‘t’ is a parameter for controlling the concentration of diffused
pheromone values.

f (x) =
t√

(2π ∗ σ)
exp−

1
2∗σ2 x2

,

x = α, 0 < x ≤ α
x = β, α < x ≤ β
x = γ, β < x

, 0 < α < β < γ (20)

Then, pheromones in the shared regions are synthesized with the convolution of both the
step-based Gaussian distributions, as shown in Figure 5b.

Table 5. Research applications on dynamic networks.

Research Studies on Dynamic Networks Application Fields

Eklund, Kirkby and Pollitt [34] Use dijkstra’s classic double bucket algorithm to find
the network route

Giraldal, Rodriguez, Pernas, Higuera, Ortega and
Zarzuela [35] Intelligent system for transport fleet management

Noto and Sato [36] Route search for car navigation systems using the
extended dijkstra algorithm

Moss and Segall [37] Optimal control theory to the problem of
dynamic routing

Cauvery and Viswanatha [38] Generate the shortest route applied ants algorithm
and genetic algorithm

Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 22

(a)

(b)

Figure 5. Discrete Gaussian convolution based pheromone renewal. (a) Detection of both Collison
nodes; (b) Discrete Gaussian convolution based pheromone renewal.

As shown in Figure 5a, when a collision node is detected, the algorithm examines another
collision node that shares the area within the given radius α, β, γ. The pheromone at each collision
node is modeled as a step-based Gaussian distribution, as shown in Equation (20). Equation (20) is a
discrete Gaussian distribution with mean 0 and standard deviation according to the discrete ranges
(α, β, γ) of the converted radius, while ‘ 𝑡 ’ is a parameter for controlling the concentration of diffused
pheromone values.

𝑓(𝑥) = 𝑡(2𝜋 ∗ 𝜎) 𝑒𝑥𝑝 ∗ , 𝑥 = 𝛼, 0 𝑥 𝛼 𝑥 = 𝛽, 𝛼 𝑥 𝛽 𝑥 = 𝛾, 𝛽 𝑥 , 0 α β γ (20)

Then, pheromones in the shared regions are synthesized with the convolution of both the step-
based Gaussian distributions, as shown in Figure 5b.

As shown in Figure 6, the pheromone amount of A, B, and C in radii α, β, and γ at node 𝑞 are
modeled using Equation (21). 𝜏 ← 𝐴, 𝑖𝑓 (𝑖𝑗) ∈ 𝜋𝛼 𝜏 ← 𝐵, 𝑖𝑓 (𝑖𝑗) ∈ 𝜋𝛽 − 𝜋𝛼𝜏 ← 𝐶, 𝑖𝑓 (𝑖𝑗) ∈ 𝜋𝛾 − 𝜋𝛽 (21)

Then, the pheromone convolution between both collision nodes is executed using Equations (20)
and (21). Figure 7 shows the pheromone convolution using both discrete Gaussian distributions.

Figure 6. Estimation of pheromone using a discretized Gaussian distribution.

Figure 5. Discrete Gaussian convolution based pheromone renewal. (a) Detection of both Collison
nodes; (b) Discrete Gaussian convolution based pheromone renewal.

As shown in Figure 6, the pheromone amount of A, B, and C in radii α,β, and γ at node q are
modeled using Equation (21).

τi j ← A, i f (i j) ∈ πα2

τi j ← B, i f (i j) ∈ πβ2
−πα2

τi j ← C, i f (i j) ∈ πγ2
−πβ2

(21)

Then, the pheromone convolution between both collision nodes is executed using Equations (20)
and (21). Figure 7 shows the pheromone convolution using both discrete Gaussian distributions.

The subsequent processes follow the processes of MPACO. While MPACO algorithm purses a
node with the highest pheromone using the GPR process, topology changes in a target network might
lead to mis-estimated nodes. However, the proposed CMPACO uses the discrete additions of the
amount of diffusion of each pheromone when multiple collision nodes are located within a close radius,

Appl. Sci. 2019, 9, 3646 12 of 20

as shown in Figure 7. The comparatively simple convolution-based node selection is influenced less
by the dynamic changes in network topology. Then, it makes the finding of the effective route more
robust against small network changes in the learning process. Section 5.2. provides the effectiveness of
the proposed CMPACO algorithm with the examples of the dynamically changing networks

Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 22

(a)

(b)

Figure 5. Discrete Gaussian convolution based pheromone renewal. (a) Detection of both Collison
nodes; (b) Discrete Gaussian convolution based pheromone renewal.

As shown in Figure 5a, when a collision node is detected, the algorithm examines another
collision node that shares the area within the given radius α, β, γ. The pheromone at each collision
node is modeled as a step-based Gaussian distribution, as shown in Equation (20). Equation (20) is a
discrete Gaussian distribution with mean 0 and standard deviation according to the discrete ranges
(α, β, γ) of the converted radius, while ‘ 𝑡 ’ is a parameter for controlling the concentration of diffused
pheromone values.

𝑓(𝑥) = 𝑡(2𝜋 ∗ 𝜎) 𝑒𝑥𝑝 ∗ , 𝑥 = 𝛼, 0 𝑥 𝛼 𝑥 = 𝛽, 𝛼 𝑥 𝛽 𝑥 = 𝛾, 𝛽 𝑥 , 0 α β γ (20)

Then, pheromones in the shared regions are synthesized with the convolution of both the step-
based Gaussian distributions, as shown in Figure 5b.

As shown in Figure 6, the pheromone amount of A, B, and C in radii α, β, and γ at node 𝑞 are
modeled using Equation (21). 𝜏 ← 𝐴, 𝑖𝑓 (𝑖𝑗) ∈ 𝜋𝛼 𝜏 ← 𝐵, 𝑖𝑓 (𝑖𝑗) ∈ 𝜋𝛽 − 𝜋𝛼𝜏 ← 𝐶, 𝑖𝑓 (𝑖𝑗) ∈ 𝜋𝛾 − 𝜋𝛽 (21)

Then, the pheromone convolution between both collision nodes is executed using Equations (20)
and (21). Figure 7 shows the pheromone convolution using both discrete Gaussian distributions.

Figure 6. Estimation of pheromone using a discretized Gaussian distribution.

Figure 6. Estimation of pheromone using a discretized Gaussian distribution.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 22

Figure 7. Calculation of pheromone in both collision nodes.

The subsequent processes follow the processes of MPACO. While MPACO algorithm purses a
node with the highest pheromone using the GPR process, topology changes in a target network might
lead to mis-estimated nodes. However, the proposed CMPACO uses the discrete additions of the
amount of diffusion of each pheromone when multiple collision nodes are located within a close
radius, as shown in Figure 7. The comparatively simple convolution-based node selection is
influenced less by the dynamic changes in network topology. Then, it makes the finding of the
effective route more robust against small network changes in the learning process. Section 5.2.
provides the effectiveness of the proposed CMPACO algorithm with the examples of the dynamically
changing networks

5. Numerical Studies and Performance Analysis of MPACO and CMPACO

5.1. Performance Comparisons of MPACO and ACO

This section provides the performance comparisons between ACO and the proposed algorithm;
MPACO under networks with fixed topology. As explained in the previous section, the MPACO
algorithm has the advantage of generating an efficient route faster than ACO algorithm in a large
network, by simultaneously searching for routes in multiple directions, and updating pheromones
based on GPR. In order to verify the validity of the proposed algorithm, numerical experiments and
analyses under labyrinth type networks are provided and compared with ACO algorithm.

Tables 6 and 7 summarize the conditions and the assumptions for the numerical experiments
conducted and the parameters used. Table 8 shows the test platform parameters.

Table 6. Experimental conditions and assumptions.

Type Detailed Assumptions
Condition No.1 The same number of ants is used in both ACO and MPACO tests.

Condition No. 2
The locations for ant colony and food location are the same in each network for both
cases.

Assumption No. 1 When ants in different groups meet each other in a node, the ants stop moving.
Assumption No. 2 When the ants reach the wall/block of the maze, they go back to find another route.

Table 7. Parameters and their values for experiments.

Variable Value
Evaporation rate (ρ) 0.5

Initial pheromone (𝜏) 1
Number of ant (AN) 12

Figure 7. Calculation of pheromone in both collision nodes.

5. Numerical Studies and Performance Analysis of MPACO and CMPACO

5.1. Performance Comparisons of MPACO and ACO

This section provides the performance comparisons between ACO and the proposed algorithm;
MPACO under networks with fixed topology. As explained in the previous section, the MPACO
algorithm has the advantage of generating an efficient route faster than ACO algorithm in a large
network, by simultaneously searching for routes in multiple directions, and updating pheromones
based on GPR. In order to verify the validity of the proposed algorithm, numerical experiments and
analyses under labyrinth type networks are provided and compared with ACO algorithm.

Tables 6 and 7 summarize the conditions and the assumptions for the numerical experiments
conducted and the parameters used. Table 8 shows the test platform parameters.

Table 6. Experimental conditions and assumptions.

Type Detailed Assumptions

Condition No.1 The same number of ants is used in both ACO and
MPACO tests.

Condition No. 2 The locations for ant colony and food location are the
same in each network for both cases.

Assumption No. 1 When ants in different groups meet each other in a
node, the ants stop moving.

Assumption No. 2 When the ants reach the wall/block of the maze, they
go back to find another route.

Appl. Sci. 2019, 9, 3646 13 of 20

Table 7. Parameters and their values for experiments.

Variable Value

Evaporation rate (ρ) 0.5
Initial pheromone (τi j) 1
Number of ant (AN) 12

Table 8. The test platform.

Platform Parameters

System Version Windows 10 Pro. 64-bit
CPU Intel(R) Core (TM) i7-4870HQ @ 2.50GHz
RAM 16GB

Figure 8 illustrates the tested network, and how the intensity of pheromone is strengthened during
the iterations using the proposed MPACO algorithm. As shown in Figure 8a–d, the x and y axes are
the coordinates of the node, and the z axis indicates the amount of pheromone. The explained GPR
process is applied in every iteration, and the pheromone is deposited around the collision nodes. As a
result, it can be seen that the route from each start node to the terminal node is searched effectively.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 22

Table 8. The test platform.

Platform Parameters
System Version Windows 10 Pro. 64-bit

CPU Intel(R) Core (TM) i7-4870HQ @ 2.50GHz
RAM 16GB

Figure 8 illustrates the tested network, and how the intensity of pheromone is strengthened
during the iterations using the proposed MPACO algorithm. As shown in Figures 8a–d, the x and y
axes are the coordinates of the node, and the z axis indicates the amount of pheromone. The explained
GPR process is applied in every iteration, and the pheromone is deposited around the collision nodes.
As a result, it can be seen that the route from each start node to the terminal node is searched
effectively.

(a)

(b)

(c) (d)
Figure 8. Pheromone distribution using the MPACO algorithm. (a) Pheromone distribution view in
the maze (the 3rd iteration); (b) Pheromone distribution view (the 10th iteration); (c) Pheromone
distribution view (the 100th iteration); (d) Final pheromone distribution and the optimal route using
MPACO.

Figure 8. Pheromone distribution using the MPACO algorithm. (a) Pheromone distribution view in the
maze (the 3rd iteration); (b) Pheromone distribution view (the 10th iteration); (c) Pheromone distribution
view (the 100th iteration); (d) Final pheromone distribution and the optimal route using MPACO.

Appl. Sci. 2019, 9, 3646 14 of 20

Figure 9 illustrates the change of the cost function value in each iteration using ACO and MPACO,
where the x axis indicates the number of iterations, and the y axis the route distance from the start
node to the terminal node.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 22

Figure 9 illustrates the change of the cost function value in each iteration using ACO and
MPACO, where the x axis indicates the number of iterations, and the y axis the route distance from
the start node to the terminal node.

Figure 9. Route distance comparisons per each iteration between ACO and MPACO.

Figure 9 shows that the proposed MPACO algorithm produces the optimal routes much faster
than ACO algorithm. Table 9 summarizes the computation time comparison between both
algorithms.

Table 9. Computation time comparison between ACO and MPACO.

Test Framework Iteration Computation Time
ACO 32 19.16(s)

MPACO 5 4.92(s)

In order to show the effectiveness of the proposed algorithm, various networks are tested, as
shown in Table 10. The tests using various networks provide the effectiveness of the proposed
MAPCO framework compared to the existing ACO algorithm.

Figure 9. Route distance comparisons per each iteration between ACO and MPACO.

Figure 9 shows that the proposed MPACO algorithm produces the optimal routes much faster
than ACO algorithm. Table 9 summarizes the computation time comparison between both algorithms.

Table 9. Computation time comparison between ACO and MPACO.

Test Framework Iteration Computation Time

ACO 32 19.16(s)
MPACO 5 4.92(s)

In order to show the effectiveness of the proposed algorithm, various networks are tested, as shown
in Table 10. The tests using various networks provide the effectiveness of the proposed MAPCO
framework compared to the existing ACO algorithm.

Table 10. Test comparison with various networks.

Map Iteration
Route Search Time

ACO MPACO

Appl. Sci. 2019, 9, x FOR PEER REVIEW 15 of 22

Table 10. Test comparison with various networks.

100 18.96(s) 12.98(s)

100 24.91(s) 16.41(s)

100 27.63(s) 19.21(s)

5.2. Performance Analyses of CMPACO Considering Dynamic Network Topology

In order to verify the validity of the proposed CMPACO algorithm, numerical experiments are
conducted on the dynamic changes of network topology, where during the learning process, a portion
of the network changes. As shown in the previous section, the topology of the network often changes
due to the sudden congestion that in real applications is often caused by road construction. The tests
with CMPACO are analyzed and compared with tests with the ACO algorithm and MPACO algorithm.
The test conditions and assumptions follow the descriptions in Tables 6 and 7 of Section 5.1.

For the comparison with the previous methods used, the route topology of the maze is set to
change after every (30 and 60) iterations to describe a network with a dynamic topology change. σ

100 18.96(s) 12.98(s)

Appl. Sci. 2019, 9, x FOR PEER REVIEW 15 of 22

Table 10. Test comparison with various networks.

100 18.96(s) 12.98(s)

100 24.91(s) 16.41(s)

100 27.63(s) 19.21(s)

5.2. Performance Analyses of CMPACO Considering Dynamic Network Topology

In order to verify the validity of the proposed CMPACO algorithm, numerical experiments are
conducted on the dynamic changes of network topology, where during the learning process, a portion
of the network changes. As shown in the previous section, the topology of the network often changes
due to the sudden congestion that in real applications is often caused by road construction. The tests
with CMPACO are analyzed and compared with tests with the ACO algorithm and MPACO algorithm.
The test conditions and assumptions follow the descriptions in Tables 6 and 7 of Section 5.1.

For the comparison with the previous methods used, the route topology of the maze is set to
change after every (30 and 60) iterations to describe a network with a dynamic topology change. σ

100 24.91(s) 16.41(s)

Appl. Sci. 2019, 9, x FOR PEER REVIEW 15 of 22

Table 10. Test comparison with various networks.

100 18.96(s) 12.98(s)

100 24.91(s) 16.41(s)

100 27.63(s) 19.21(s)

5.2. Performance Analyses of CMPACO Considering Dynamic Network Topology

In order to verify the validity of the proposed CMPACO algorithm, numerical experiments are
conducted on the dynamic changes of network topology, where during the learning process, a portion
of the network changes. As shown in the previous section, the topology of the network often changes
due to the sudden congestion that in real applications is often caused by road construction. The tests
with CMPACO are analyzed and compared with tests with the ACO algorithm and MPACO algorithm.
The test conditions and assumptions follow the descriptions in Tables 6 and 7 of Section 5.1.

For the comparison with the previous methods used, the route topology of the maze is set to
change after every (30 and 60) iterations to describe a network with a dynamic topology change. σ

100 27.63(s) 19.21(s)

Appl. Sci. 2019, 9, 3646 15 of 20

5.2. Performance Analyses of CMPACO Considering Dynamic Network Topology

In order to verify the validity of the proposed CMPACO algorithm, numerical experiments are
conducted on the dynamic changes of network topology, where during the learning process, a portion
of the network changes. As shown in the previous section, the topology of the network often changes
due to the sudden congestion that in real applications is often caused by road construction. The tests
with CMPACO are analyzed and compared with tests with the ACO algorithm and MPACO algorithm.
The test conditions and assumptions follow the descriptions in Tables 6 and 7 of Section 5.1.

For the comparison with the previous methods used, the route topology of the maze is set to
change after every (30 and 60) iterations to describe a network with a dynamic topology change. σ and
t in Equation (20) are modeled in this experiment with (1.4 and 5), respectively. As shown in Figure 10,
a network has two topological changes during the learning processes.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 16 of 22

and 𝑡 in Equation (20) are modeled in this experiment with (1.4 and 5), respectively. As shown in
Figure 10, a network has two topological changes during the learning processes.

Figure 10. A network with two topological changes during the learning process.

Figure 11 depicts the amount of final pheromone using MPACO and CMPACO algorithm in the
dynamically changing maze.

(a)

(b)

Figure 11. Pheromone distribution using MPACO and CMPACO in the maze. (a) Final pheromone
distribution using MPACO in the maze; (b) Final pheromone distribution using CMPACO in the
maze.

Figure 11 shows that the x and y axes are the node coordinates on the final network, and the
level contour indicates the amount of finally formed pheromones. In the case of the MPACO
algorithm (Figure 11a), the pheromone distribution is strong, primarily at the start point; however,
the pheromone is low in the movement route. This observation indicates that MPACO is not effective
in generating the final route considering dynamical topology changes. On the other hand, in the case
of the CMPACO algorithm (Figure 11b), a comparatively strong pheromone is formed around the
movement route.

Table 11 summarizes the results of applying ACO, MPACO, and CMPACO. The results show
that the proposed CMPACO has better performances than other algorithms in a network
environment with variable topology. The test platform parameters follow Table 8.

Table 11. Computation time comparisons among ACO, MPACO and CMPACO.

Test Framework Iteration Computation Time (Unit: Seconds)

Figure 10. A network with two topological changes during the learning process.

Figure 11 depicts the amount of final pheromone using MPACO and CMPACO algorithm in the
dynamically changing maze.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 16 of 22

and 𝑡 in Equation (20) are modeled in this experiment with (1.4 and 5), respectively. As shown in
Figure 10, a network has two topological changes during the learning processes.

Figure 10. A network with two topological changes during the learning process.

gorithm in the dynamically changing maze.

(a) (b)

Figure 11. Pheromone distribution using MPACO and CMPACO in the maze. (a) Final pheromone
distribution using MPACO in the maze; (b) Final pheromone distribution using CMPACO in the
maze.

Figure 11 shows that the x and y axes are the node coordinates on the final network, and the
level contour indicates the amount of finally formed pheromones. In the case of the MPACO
algorithm (Figure 11a), the pheromone distribution is strong, primarily at the start point; however,
the pheromone is low in the movement route. This observation indicates that MPACO is not effective
in generating the final route considering dynamical topology changes. On the other hand, in the case
of the CMPACO algorithm (Figure 11b), a comparatively strong pheromone is formed around the
movement route.

Table 11 summarizes the results of applying ACO, MPACO, and CMPACO. The results show
that the proposed CMPACO has better performances than other algorithms in a network
environment with variable topology. The test platform parameters follow Table 8.

Table 11. Computation time comparisons among ACO, MPACO and CMPACO.

Test Framework Iteration Computation Time (Unit: Seconds)

Figure 11. Pheromone distribution using MPACO and CMPACO in the maze. (a) Final pheromone
distribution using MPACO in the maze; (b) Final pheromone distribution using CMPACO in the maze.

Figure 11 shows that the x and y axes are the node coordinates on the final network, and the level
contour indicates the amount of finally formed pheromones. In the case of the MPACO algorithm
(Figure 11a), the pheromone distribution is strong, primarily at the start point; however, the pheromone
is low in the movement route. This observation indicates that MPACO is not effective in generating the

Appl. Sci. 2019, 9, 3646 16 of 20

final route considering dynamical topology changes. On the other hand, in the case of the CMPACO
algorithm (Figure 11b), a comparatively strong pheromone is formed around the movement route.

Table 11 summarizes the results of applying ACO, MPACO, and CMPACO. The results show that
the proposed CMPACO has better performances than other algorithms in a network environment with
variable topology. The test platform parameters follow Table 8.

Table 11. Computation time comparisons among ACO, MPACO and CMPACO.

Test Framework Iteration Computation Time (Unit: Seconds)

ACO 100 17.15
MPACO 100 25.81

CMPACO 100 9.88

Figure 12 illustrates comparisons of the cost function values using ACO, MPACO, and CMPACO
algorithms in the network. Each dotted line indicates the time when the topology changes.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 17 of 22

ACO 100 17.15
MPACO 100 25.81

CMPACO 100 9.88

Figure 12 illustrates comparisons of the cost function values using ACO, MPACO, and
CMPACO algorithms in the network. Each dotted line indicates the time when the topology changes.

Figure 12. Comparisons of the cost function values using ACO, MPACO and CMPACO.

Taking into account the case of the ACO algorithm, the route search for the shortest distance
takes the longest time in all dynamic environments. In the case of the MPACO algorithm, the
performance of MPACO is more unstable than that of the proposed CMPACO algorithm.

The MPACO algorithm updates the pheromone around the collision node by applying the GPR
whenever the route changes in a dynamic environment. Then, there is a high probability that the
collision node will fail to predict the amount of pheromone in the neighboring node, due to the
sudden change. It is impossible to predict a new collision node caused by a dynamic network
topology change and the pheromone of a changed route. In addition, an effective route cannot be
produced by predicting the pheromone distributed in the previous collision node.

However, the CMPACO algorithm updates the pheromone value discretely from the collision
node to the radius node. As explained previously, CMPACO’s discretized pheromone convolution is
influenced less by the changes of network topology. The provided numerical example shows the
effectiveness of the proposed algorithm, particularly when searching a complex maze with dynamic
topology changes.

In order to compare algorithms’ performances, a number of networks with dynamic topological
changes are tested using ACO, MPACO and CMPAO. As shown in Figures 13a,b, two more networks
are configured with two dynamical topologies during the learning processes.

Figure 12. Comparisons of the cost function values using ACO, MPACO and CMPACO.

Taking into account the case of the ACO algorithm, the route search for the shortest distance takes
the longest time in all dynamic environments. In the case of the MPACO algorithm, the performance
of MPACO is more unstable than that of the proposed CMPACO algorithm.

The MPACO algorithm updates the pheromone around the collision node by applying the GPR
whenever the route changes in a dynamic environment. Then, there is a high probability that the
collision node will fail to predict the amount of pheromone in the neighboring node, due to the sudden
change. It is impossible to predict a new collision node caused by a dynamic network topology change
and the pheromone of a changed route. In addition, an effective route cannot be produced by predicting
the pheromone distributed in the previous collision node.

However, the CMPACO algorithm updates the pheromone value discretely from the collision
node to the radius node. As explained previously, CMPACO’s discretized pheromone convolution
is influenced less by the changes of network topology. The provided numerical example shows the
effectiveness of the proposed algorithm, particularly when searching a complex maze with dynamic
topology changes.

In order to compare algorithms’ performances, a number of networks with dynamic topological
changes are tested using ACO, MPACO and CMPAO. As shown in Figure 13a,b, two more networks
are configured with two dynamical topologies during the learning processes.

Appl. Sci. 2019, 9, 3646 17 of 20Appl. Sci. 2019, 9, x FOR PEER REVIEW 18 of 22

(a)

(b)

Figure 13. A second various network with two topological changes during the learning process. (a)
Test network 1 with topological changes during the learning process; (b) Test network 2 with
topological changes during the learning process.

Figure 14 shows the changes of the objective function value per iterations with the networks
shown in Figure 13a.

Figure 13. A second various network with two topological changes during the learning process. (a) Test
network 1 with topological changes during the learning process; (b) Test network 2 with topological
changes during the learning process.

Figure 14 shows the changes of the objective function value per iterations with the networks
shown in Figure 13a.

As shown in Figure 14, CMPACO shows the best performances per each change of the network
topology, compared to ACO and MPACO.

Table 12 compares each computation time for the final best routs using ACO, MPACO and
CMPACO. As shown in Figure 14 and Table 12, these numerical studies show that the proposed
CMPACO has better performances for network path generation considering dynamic network
topology changes.

Table 12. Computation time comparisons among ACO, MPACO and CMPACO.

Test Networks
Computation Time for the Best Result

ACO MPACO CMPACO

Test network 1 15.82(s) 17.33(s) 10.45(s)
Test network 2 18.98(s) 20.55(s) 10.50(s)

Appl. Sci. 2019, 9, 3646 18 of 20
Appl. Sci. 2019, 9, x FOR PEER REVIEW 19 of 22

Figure 14. Comparisons of the cost function values using ACO, MPACO and CMPACO with the test
network 1.

As shown in Figure 14, CMPACO shows the best performances per each change of the network
topology, compared to ACO and MPACO.

Table 12 compares each computation time for the final best routs using ACO, MPACO and
CMPACO. As shown in Figure 14 and Table 12, these numerical studies show that the proposed
CMPACO has better performances for network path generation considering dynamic network
topology changes.

Table 12. Computation time comparisons among ACO, MPACO and CMPACO.

Test Networks
Computation Time for the Best Result

ACO MPACO CMPACO
Test network 1 15.82(s) 17.33(s) 10.45(s)
Test network 2 18.98(s) 20.55(s) 10.50(s)

6. Conclusions and Further Studies

The path generation from the start node to the target node in a complex network is a
representative problem that has been steadily investigated in the field of network optimization and
machine learning. While most algorithms, including ACO, use a unidirectional search in a serial
manner, the computation takes a long time as the complexity increases, with the drawback that it
fails to search the route effectively in a dynamic environment.

In order to overcome these issues, the MPACO algorithm is proposed to search for an effective
path by updating the pheromone through a Bayesian-type GPR process at the node where ant agents
search multi-directionally. The numerical studies show the greater effectiveness of the MPACO
algorithm than the existing ACO and the greater the complexity of the network, the more efficient it
is. However, while the MPACO algorithm generates the route faster than the ACO algorithm in a
static environment, the renewal process of the pheromone fails to recognize the neighboring nodes’
topology changes in the network.

This issue is overcome using the proposed CMPACO framework, which updates the pheromone
by interpolating discrete Gaussian distributions at the collision node. In order to verify the
effectiveness of the proposed algorithm, it is compared to the ACO algorithm and the MPACO
algorithm. The experimental results show that the presented CMAPCO algorithm offers better
performance than the ACO algorithm and MPACO algorithm, with respect to the computation speed
and the optimized cost function.

Figure 14. Comparisons of the cost function values using ACO, MPACO and CMPACO with the test
network 1.

6. Conclusions and Further Studies

The path generation from the start node to the target node in a complex network is a representative
problem that has been steadily investigated in the field of network optimization and machine learning.
While most algorithms, including ACO, use a unidirectional search in a serial manner, the computation
takes a long time as the complexity increases, with the drawback that it fails to search the route
effectively in a dynamic environment.

In order to overcome these issues, the MPACO algorithm is proposed to search for an effective path
by updating the pheromone through a Bayesian-type GPR process at the node where ant agents search
multi-directionally. The numerical studies show the greater effectiveness of the MPACO algorithm
than the existing ACO and the greater the complexity of the network, the more efficient it is. However,
while the MPACO algorithm generates the route faster than the ACO algorithm in a static environment,
the renewal process of the pheromone fails to recognize the neighboring nodes’ topology changes in
the network.

This issue is overcome using the proposed CMPACO framework, which updates the pheromone
by interpolating discrete Gaussian distributions at the collision node. In order to verify the effectiveness
of the proposed algorithm, it is compared to the ACO algorithm and the MPACO algorithm. The
experimental results show that the presented CMAPCO algorithm offers better performance than the
ACO algorithm and MPACO algorithm, with respect to the computation speed and the optimized
cost function.

The proposed framework can be applied to various network route problems with complex and
dynamic topology changes and to real road networks. As further studies, more effective meta-heuristic
algorithms and pheromone diffusion algorithms can be considered for much quicker path generation.

Author Contributions: E.O. and H.L. conceptualized the framework and developed the methodologies. E.O.
implemented and validated the framework. H.L. supervised the overall research processes. E.O. wrote the
manuscript. And H.L. reviewed and edited it.

Funding: This research was supported by The Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education, S. Korea (grant number:
NRF-2018R1D1A3B07047113).

Conflicts of Interest: The authors declare no conflicts of interest.

Appl. Sci. 2019, 9, 3646 19 of 20

References

1. Dorigo, M.; Maniezzo, V.; Colorni, A. The ant system: Optimization by a colony of cooperating agents. IEEE
Trans. Syst. Man Cybern. Part B 1996, 26, 29–41. [CrossRef] [PubMed]

2. Liu, Y.; Xiao, Y. Parallel solution of maze optimal path based on ant colony algorithm. In Proceedings of the
2nd International Conference on Computer Science and Electronics Engineering, Paris, France, 22–23 March
2013; pp. 1826–1829. [CrossRef]

3. Yan, Z.; Yuan, C.W. Ant Colony Optimization for Navigating Complex Labyrinths. In Proceedings of the
International Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing, Chongqing,
China, 26–29 May 2003; pp. 445–448. [CrossRef]

4. Ilie, S.; Badica, C. Multi-agent approach to distributed ant colony optimization. Sci. Comput. Program. 2013,
78, 762–774. [CrossRef]

5. Yoshikawa, M.; Nagura, T. Adaptive Ant Colony Optimization Considering Intensification and Diversification.
In Proceedings of the International MultiConference of Engineers and Computer Scientists, Hong Kong,
China, 18–20 March 2009; pp. 200–203.

6. Yoshikawa, M.; Otani, K. Ant Colony Optimization Routing Algorithm with Tabu Search. In Proceedings of
the International MultiConference of Engineers and Computer Scientists, Hong Kong, China, 17–19 March
2010; pp. 17–19.

7. Kim, J.; Lee, H. Multi-agent Reinforcement Learning based Evacuation Framework Considering Both
Evacuation Time and Crowdedness. J. Korean Inst. Intell. Syst. 2016, 26, 335–342.

8. Dorigo, M.; Birattari, M. Ant Colony Optimization. In Encyclopedia of Machine Learning, 2010 ed.; Sammut, C.,
Webb, G.I., Eds.; Science+Business Media: Boston, MA, USA, 2010; pp. 37–40. [CrossRef]

9. Dorigo, M.; Caro, G.D. Ant colony optimization: A new metaheuristic. In Proceedings of the 1999 Congress
on Evolutionary Computation, Washington, DC, USA, 6–9 July 1999; pp. 1470–1477. [CrossRef]

10. Garcia, A.G.; Tria, L.A.R.; Talampas, M.C.R. Development of an Energy-Efficient Routing Algorithm for
Electric Vehicles. In Proceedings of the IEEE Transportation Electrification Conference and Expo, Detroit, MI,
USA, 19–21 June 2019; pp. 1–5. [CrossRef]

11. Quang, P.T.A.; Sanner, J.M.; Morin, C.; Aoul, Y.H. Multi-objective multi-constrained QoS Routing in
large-scale networks: A genetic algorithm approach. In Proceedings of the International Conference on Smart
Communications in Network Technologies, El Oued, Algeria, 27–31 October 2018; pp. 55–60. [CrossRef]

12. Yu, X.; Liu, Q.; Liu, Y.; Hu, M.; Zhang, K.; Xiao, R. Uneven clustering routing algorithm based on glowworm
swarm optimization. Ad Hoc Netw. 2019, 93, 1–8. [CrossRef]

13. Xu, Y.; Wang, X.; Sun, T. Heuristic routing algorithm toward scalable distributed generalized assignment
problem. Soft Comput. 2018, 22, 845–859. [CrossRef]

14. Qiu, S.; Zhong, Y.; Luo, X.; Liu, J.; Luo, Y.; Jiang, P. A Relay Routing Algorithm for Remote Concentrated
Ammeter Reading Based on Ant Colony Optimization. In Proceedings of the International Conference on
Systems Engineering, Sydney, Australia, 18–20 December 2018; pp. 1–8. [CrossRef]

15. Dorigo, M.; Caro, G.D.; Gambardella, L.M. Ant algorithms for discrete optimization. J. Int. Soc. Artif. Life
1999, 5, 137–172. [CrossRef]

16. Birattari, M.; Pellegrini, P.; Dorigo, M. On the Invariance of Ant Colony Optimization. IEEE Trans. Evolut.
Comput. 2007, 11, 732–742. [CrossRef]

17. Dorigo, M.; Maniezzo, V.; Colorni, A.; Trubian, M. Ant systems for Job shop scheduling. Belg. J. Oper. Res.
Stat. Comput. Sci. 1994, 34, 39–54.

18. Arnaout, J.; Musa, R.; Rabadi, G. Ant colony optimization algorithm to parallel machine scheduling problem
with setups. In Proceedings of the IEEE Conference on Automation Science and Engineering, Arlington, VA,
USA, 23–26 August 2008; pp. 578–582. [CrossRef]

19. Chen, R.; Lo, S.; Wu, C.; Lin, T. An effective ant colony optimization based algorithm for flow shop scheduling.
In Proceedings of the IEEE Conference on Soft Computing in Industrial Applications, Muroran, Japan, 25–27
June 2008; pp. 25–27. [CrossRef]

20. Dorigo, M.; Gambardella, L.M. Ant colony system: A cooperative learning approach to the traveling salesman
problem. IEEE Trans. Evol. Comput. 1997, 1, 53–66. [CrossRef]

21. Oh, E.; Lee, H. Effective Routing Generation Framework using Multi-directional and Parallel Ant Colony
Optimization. J. Korean Inst. Intell. Syst. 2018, 28, 523–530. [CrossRef]

http://dx.doi.org/10.1109/3477.484436
http://www.ncbi.nlm.nih.gov/pubmed/18263004
http://dx.doi.org/10.2991/iccsee.2013.458
http://dx.doi.org/10.1007/3-540-39205-X_74
http://dx.doi.org/10.1016/j.scico.2011.09.001
http://dx.doi.org/10.1007/978-0-387-30164-8
http://dx.doi.org/10.1109/CEC.1999.782657
http://dx.doi.org/10.1109/ITEC.2019.8790491
http://dx.doi.org/10.1109/SaCoNeT.2018.8585634
http://dx.doi.org/10.1016/j.adhoc.2019.101923
http://dx.doi.org/10.1007/s00500-016-2388-3
http://dx.doi.org/10.1109/ICSENG.2018.8638217
http://dx.doi.org/10.1162/106454699568728
http://dx.doi.org/10.1109/TEVC.2007.892762
http://dx.doi.org/10.1109/COASE.2008.4626566
http://dx.doi.org/10.1109/SMCIA.2008.5045943
http://dx.doi.org/10.1109/4235.585892
http://dx.doi.org/10.5391/JKIIS.2018.28.5.523

Appl. Sci. 2019, 9, 3646 20 of 20

22. Ahmadizar, F.; Barzinpour, F.; Arkat, J. Solving permutation flow shop sequencing using ant colony
optimization. In Proceedings of the IEEE International Conference on Industrial Engineering and Engineering
Management, Singapore, 2–4 December 2007; pp. 753–757. [CrossRef]

23. Reza, G.A.; Mahfujur, R.; Abdur, R.; Wail, G.; Abdulmotaleb, E.S. Ant colony-based many-to-one sensory
data routing in Wireless Sensor Networks. In Proceedings of the IEEE/ACS International Conference on
Computer Systems and Applications, Doha, Qatar, 31 March–4 April 2008; pp. 1005–1010. [CrossRef]

24. Maniezzo, V.; Colorni, A. The ant system applied to the quadratic assignment problem. IEEE Trans. Knowl.
Data Eng. 1999, 11, 769–778. [CrossRef]

25. Williams, C.K.I.; Rasmussen, C.E. Gaussian Processes for Machine Learning; The MIT Press: London, UK, 2006;
pp. 7–128.

26. Williams, C.K.I.; Rasmussen, C.E. Gaussian Processes for Regression. Adv. Neural Process. Syst. 1996, 8,
514–520.

27. Rasmussen, C.E. Gaussian Processes in Machine Learning. Adv. Lect. Mach. Learn. 2004, 3176, 63–71.
[CrossRef]

28. Ak, C.; Ergonul, O.; Sencan, I.; Torunoglu, M.A.; Gonen, M. Spatiotemporal prediction of infectious diseases
using structured Gaussian processes with application to Crimean-Congo hemorrhagic fever. PLoS Negl. Trop.
Dis. 2018, 12, e0006737. [CrossRef] [PubMed]

29. Luttinen, J.; Ilin, A. Efficient Gaussian process inference for short-scale spatio-temporal modeling.
In Proceedings of the 15th International Conference on Artificial Intelligence and Statistics, La Palma,
Canary Islands, 21–23 April 2012; pp. 741–750.

30. Nguyen, D.; Peters, J. Learning Robot Dynamics for Computed Torque Control using Local Gaussian
Processes Regression. In Proceedings of the ECSIS Symposium on Learning and Adaptive Behaviors for
Robotic Systems, Edinburgh, UK, 6–8 August 2008; pp. 59–64. [CrossRef]

31. Nguyen, L.; Hu, G.; Spanos, C.J. Spatio-temporal environmental monitoring for smart buildings.
In Proceedings of the 13th IEEE International Conference on Control and Automation, Ohrid, Macedonia,
3–6 July 2017; pp. 277–282. [CrossRef]

32. Chen, N.; Qian, Z.; Meng, X.; Nabney, I.T. Short-term wind power forecasting using Gaussian processes.
In Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, China,
3–9 August 2013; pp. 2790–2796.

33. Schulz, E.; Speekenbrink, M.; Krause, A. A tutorial on Gaussian process regression: Modelling, exploring,
and exploiting functions. J. Math. Psychol. 2017, 85, 1–16. [CrossRef]

34. Eklund, P.W.; Kirkby, S.; Pollitt, S. A Dynamic Multi-source Dijkstra’s Algorithm for Vehicle Routing.
In Proceedings of the IEEE Australian and New Zealand Conference on Intelligent Information Systems,
Adelaide, SA, Australia, 18–20 November 1996; pp. 329–333. [CrossRef]

35. Giralda, D.B.; Rodriguez, M.A.; Pernas, F.J.D.; Higuera, J.F.D.; Ortega, D.G.; Zarzuela, M.M. Intelligent
system for dynamic transport fleet management. In Proceedings of the IEEE Conference on Emerging
Technologies and Factory Automation, Catania, Italy, 19–22 September 2005; pp. 773–776. [CrossRef]

36. Noto, M.; Sato, H. A Method for the Shortest Path Search by Extended Dijkstra Algorithm. In Proceedings of
the International Conference on Systems, Man and Cybernetics, Nashville, TN, USA, 8–11 October 2000;
pp. 2316–2320. [CrossRef]

37. Moss, F.H.; Segall, A. An Optimal Control Approach to Dynamic Routing in Network. IEEE Trans. Autom.
Control 1982, 27, 329–339. [CrossRef]

38. Cauvery, N.K.; Viswanatha, K.V. Routing in Dynamic Network using Ants and Genetic Algorithm. Int. J.
Comput. Sci. Netw. Secur. 2009, 9, 194–200.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/IEEM.2007.4419291
http://dx.doi.org/10.1109/AICCSA.2008.4493668
http://dx.doi.org/10.1109/69.806935
http://dx.doi.org/10.1007/978-3-540-28650-9_4
http://dx.doi.org/10.1371/journal.pntd.0006737
http://www.ncbi.nlm.nih.gov/pubmed/30118497
http://dx.doi.org/10.1109/LAB-RS.2008.16
http://dx.doi.org/10.1109/ICCA.2017.8003073
http://dx.doi.org/10.1016/j.jmp.2018.03.001
http://dx.doi.org/10.1109/ANZIIS.1996.573976
http://dx.doi.org/10.1109/ETFA.2005.1612603
http://dx.doi.org/10.1109/ICSMC.2000.886462
http://dx.doi.org/10.1109/TAC.1982.1102915
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background Knowledge
	Routing Generation Methods and Ant Colony Optimization
	Gaussian Processes Regression

	Multi-Directional and Parallel Ant Colony Optimization (MPACO)
	Dynamic Configurable Network and Convolution-Type Multi-Directional and Parallel Ant Colony Optimization (CMPACO)
	Numerical Studies and Performance Analysis of MPACO and CMPACO
	Performance Comparisons of MPACO and ACO
	Performance Analyses of CMPACO Considering Dynamic Network Topology

	Conclusions and Further Studies
	References

