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Abstract: It is crucial to study the axial compression behavior of concrete-filled steel tubular (CFST)
columns to ensure the safe operation of engineering structures. The restriction between steel tubular
and core concrete in CFSTs is complex and the relationship between geometric and material properties
and axial compression behavior is highly nonlinear. These challenges have prompted the use of
soft computing methods to predict the ultimate bearing capacity (abbreviated as Nu) under axial
compression. Taking the square CFST short column as an example, a mass of experimental data is
obtained through axial compression tests. Combined with support vector machine (SVM) and particle
swarm optimization (PSO), this paper presents a new method termed PSVM (SVM optimized by PSO)
for Nu value prediction. The nonlinear relationship in Nu value prediction is efficiently represented
by SVM, and PSO is used to select the model parameters of SVM. The experimental dataset is utilized
to verify the reliability of the PSVM model, and the prediction performance of PSVM is compared
with that of traditional design methods and other benchmark models. The proposed PSVM model
provides a better prediction of the ultimate axial capacity of square CFST short columns. As such,
PSVM is an efficient alternative method other than empirical and theoretical formulas.

Keywords: square CFST short columns; ultimate axial capacity prediction; axial compression test;
support vector machine; particle swarm optimization

1. Introduction

Concrete-filled steel tubular (CFST) refers to the composite member formed by filling steel tubular
with concrete. CFST makes use of the interaction between concrete and steel tubular under stress to
give full play to the advantages of both materials, that is, it not only greatly improves the plasticity
and toughness of concrete, but also can avoid or delay the local buckling of steel tubular. CFST has
the characteristics of high bearing capacity, good plasticity and toughness, convenient construction,
and excellent seismic and refractory performance [1]. Therefore, CFST structures are widely used at
home and abroad, of which an important type is the CFST column. CFST columns are mainly divided
into square and circular CFST columns based on different sectional forms. Square CFST columns are
easy to process and have better stability. Since they are mostly subjected to axial compression, it is
necessary to study the ultimate axial capacity of square CFST columns [2].

At present, many experimental studies have been carried out on the mechanical properties of CFST
columns under axial compression. Giakoumelis et al. [3] presented the behavior of circular CFSTs with
various concrete strengths under axial load, and examined the effects of several factors. Evirgen et al. [4]
adopted 16 hollow cold-formed steel tubulars and 48 CFSTs for axial compression tests, and investigated
the effects of width/thickness ratio, concrete strength, and geometrical shape of specimens on ultimate
loads. The efficient and accurate numerical simulation techniques developed rapidly [5], which
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were combined with axial compression tests, and fruitful results have been achieved. Tao et al. [6]
and Han et al. [7] respectively established a finite element model considering material nonlinearity
and interaction between concrete and steel tubular, and verified the model with experimental data.
Lyu et al. [8] analyzed the ultimate bearing capacity, failure mode, and load-displacement curve
of square thin-walled CFST short columns with reinforcement stiffener at different temperatures
using comparative experiments and ABAQUS simulation. Briefly, the ultimate axial capacity is an
essential mechanical index to evaluate the performance of CFST columns under axial compression in
both laboratory experiments and numerical simulations [9,10]. However, axial compression tests are
time-consuming and laborious. It is also difficult to consider all of the complicated conditions and
material properties in numerical simulations. For these purposes, scholars have always been exploring
alternative soft computing methods to conveniently acquire the accurate ultimate axial capacity.

Mass experimental data have been produced by previous studies, that provide a data basis for
mathematical modeling to estimate the ultimate axial capacity of CFST columns. Lu et al. [11] studied
the calculation method for ultimate axial capacity of square CFST short columns considering size effect.
The calculation formulas in the present codes of different countries were revised by collecting many
experimental results. Yu et al. [12] developed a simplified statistical method based on 663 tests to
predict the ultimate strength of circular CFST columns under concentric load. The confinement effect
on the concrete and the influence of relative slenderness were taken into account. Other simplified
calculation methods have also been proposed. For example, a simple method using an equivalent
slenderness ratio was suggested by Zheng et al. [13] to calculate the load-bearing capacity of CFST
laced columns. None of the above-proposed methods have been extensively used due to the limitations
of application scope. It is imperative to develop a general and precise method for calculating the
ultimate axial capacity.

In recent years, with the rapid development of artificial intelligence techniques, machine learning
algorithms (MLAs) have been popularized in all walks of life [14]. By virtue of the excellent nonlinear
learning ability, MLAs have already been employed to calculate the ultimate axial capacity of CFSTs.
Artificial neural networks (ANN) have become the most commonly used MLA. Saadoon et al. [15]
utilized ANN to develop a model for predicting the ultimate strength of rectangular CFST beam-columns
under eccentric axial loads. They used the same method to model and predict the ultimate strength of
circular CFST beam-columns [16]. The predicted values were more accurate than the AISC and EC4
values in both cases. Similarly, ANN was applied in [17–19]. In addition, Moon et al. [20] presented an
alternative method to determine the confinement effect of the concrete infill and the axial load capacity
of the stub CFST by using fuzzy logic. The focus was made on the accurate estimation of the confinement
effect of the CFST using the fuzzy-based model. Güneyisi et al. [21,22] respectively proposed a new
formulation for the axial load carrying capacity of circular CFST short columns and concrete-filled
double skin steel tubular composite columns based on gene expression programming (GEP). The GEP
model was much better than the available formulae, yielding a higher correlation coefficient and
lower error. MLAs were also used to estimate other properties of CFSTs. Al-Khaleefi et al. [23] and
Wang et al. [24] each predicted the fire resistance and load-strain relationship of CFSTs with different
dimensions and parameters using ANN. The prediction model for the ultimate pure bending moment
of CFSTs via adaptive neuro-fuzzy inference system was raised by Basarir et al. [25].

The application of MLAs in CFST performance index calculation is still in its infancy. To the
best of our knowledge, some advanced algorithms such as support vector machine (SVM) [26] have
not been applied in this field until now. SVM is a new supervised learning method developed in
statistical learning theory that performs well in solving small sample, nonlinear, and high dimensional
problems [27]. To date, SVM has been widely used in various fields of structural engineering, including
dam safety, scour monitoring, civil architecture, etc., due to its potential in nonlinear regression,
function approximation, and pattern recognition [28–31]. In brief, SVM can effectively deal with the
data modeling problem under the condition of limited samples because of superior generalization
ability and dimensionality insensitivity [32]. Nevertheless, the adjustment and optimization of SVM
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parameters is an essential problem, which greatly influences prediction effects. The metaheuristic
algorithm does not depend too much on the organization structure information of the algorithm, which
is suitable for parameter optimization and function calculation. Particle swarm optimization (PSO)
is a global random search algorithm based on swarm intelligence [33]. PSO is easier to implement
and produces more accurate results than other optimization algorithms, such as genetic algorithm
(GA) [34]. In this paper, given enough experimental data of axial compression tests for square CFST
short columns, a combined model termed PSVM (SVM optimized by PSO) is proposed to predict the
ultimate axial capacity. The prediction performance of PSVM is verified by an independent test set
and multi-model comparison. Performance assessment results are quantified by evaluation criteria.
The simulation results show the feasibility and superiority of the proposed PSVM model.

The rest of the paper is organized as follows. In Section 2, the axial pressure test procedure
and dataset compilation are briefly described. The mathematical principles of SVM and PSO are
presented in Section 3. Section 4 expatiates the complete implementation of PSVM. Section 5 illustrates
and discusses the results of model validation and sensitivity analysis, and depicts a prediction error
correction method. Conclusions and perspectives are finally provided in Section 6.

2. Experimental Dataset Construction

Dataset construction is the first step in modeling prediction. Axial compression tests are carried
out on short columns with different geometric sizes and material properties, and 180 groups of
experimental data are obtained. The dataset lays a foundation for Nu value prediction using soft
computing methods.

2.1. Axial Compression Test

To ensure the richness and diversity of experimental data, 180 specimens of different specifications
were designed by changing the geometric, steel and concrete properties of square CFST short columns.
Three specimens of each specification were made to reduce the influence of the dispersion of axial
compression test data, and a total of over 540 specimens were made. Before performing a series of
axial compression tests, the multi-mechanical properties of steel and concrete in CFST specimens of
different specifications were measured based on GB/T 228.1-2010 and GB/T 50081-2002, respectively.

The test consists of five main steps: (1) design of specimens; (2) selection and preliminary
processing of steel tube; (3) selection and production of concrete mix; (4) pouring and curing of
specimens; (5) loading and measurement. The axial compression tests of all specimens were performed
on a hydraulic loading system with sufficient loading force. The schematic diagram of the experimental
device is shown in Figure 1. A cushion plate is placed between the specimen and loading plate to
ensure that the CFST specimen is under uniform stress during loading. The preloading should be
carried out before the formal loading, and all specimens should bear the central load. The preloading
force cannot exceed 30% of the expected ultimate axial capacity. The multi-stage loading was adopted
in the test process [35,36] and the automatic data acquisition system was employed to record the
axial load until the specimen failure. After the completion of all tests, the arithmetic mean of the
ultimate axial capacity of the three specimens of each specification was taken as the final ultimate axial
capacity Nu.
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Figure 1. Schematic diagram of the axial compression test device for square concrete-filled steel 
tubular (CFST) short columns: (a) front view; (b) section view of the specimen. 
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Figure 1. Schematic diagram of the axial compression test device for square concrete-filled steel tubular
(CFST) short columns: (a) front view; (b) section view of the specimen.

2.2. Input Selection and Dataset Compilation

In addition to the output variable Nu through multiple tests, the model input variables need to
be determined for experimental dataset construction. Seven input variables (D,t,L,fy,Es,fc,Ec) were
identified according to different expressions from current codes of GJB 4142-2000 (see Equation (1)),
AIJ 1997 (see Equation (2)), AISC-LRFD 1999 (see Equation (3)), and EC4 2004 (see Equation (4)) [37],
which are marked in Figure 1 and described in Table 1. Specifically, the first five variables (D,t,L,fy,fc)
were selected based on Equations (1) and (2). Es and Ec were then selected as input variables since
both λc in Equation (3) and χ in Equation (4) are related to them. These seven selected variables
include geometric, steel, and concrete properties, which can represent most features of CFST specimens
of a certain specification. A total of 180 groups of data were ultimately compiled into a complete
experimental dataset, and the descriptive statistics of model input and output variables are shown in
Table 1.

Nu = (1.18 + 0.85
fyAs

fcAc
) fcAsc, (1)

Nu = 0.85 fcAc + fyAs, (2)

Nu =

 0.658λc
2
FmyAs, λc ≤ 1.5

0.877FmyAs

λc2 , λc > 1.5
, (3)

Nu = χ( fcAc + fyAs), (4)

where fy is the yield strength of steel, fc is the compressive strength of the core concrete,As, Ac, Asc

are respectively the cross section area of the steel tubular, core concrete, and CFST, λc is the relative
slenderness ratio, Fmy is the modified yield strength of steel, and χ is the axial stability factor.

Table 1. Statistics of model input and output variables.

Direction Category Symbol Description Minimum Maximum Mean

Input

Geometric
properties

D (mm) Side length of the square section 100.00 323.00 152.88
t (mm) Thickness of the steel tubular 1.44 7.47 4.13
L (mm) Length of the specimen 300.00 969.00 466.53

Steel
properties

fy (MPa) Yield strength of steel 198.00 835.00 340.83
Es (MPa) Elasticity modulus of the steel 180,518.00 214,000.00 202,273.54

Concrete
properties

fc (MPa) Compressive strength of the core concrete 10.65 91.10 45.79
Ec (MPa) Elasticity modulus of the core concrete 23,528.00 42,600.00 30,928.75

Output Dependent
variable Nu (kN) Ultimate bearing capacity of the specimen

under axial compression 507.00 5873.00 1978.91
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3. Soft Computing Methodologies

The PSVM model based on the combination of SVM and PSO is presented for Nu value prediction.
Several common indexes and a comprehensive index are used to measure the prediction performance
of PSVM and other benchmark models.

3.1. Support Vector Machine

The basic idea of SVM is to map the nonlinear problem from low-dimensional to high-dimensional
spaces by using the kernel function, thereby solving the nonlinear problem by the linear method [38].
Given N sample datasets

{
(xi, yi), i = 1, 2, · · · , N

}
, xi = [x1i, x2i, · · · , xni] ∈ Rnl is the input data, and

yi ∈ Rnh is the output data corresponding to xi. A nonlinear mapping ϕ(x) : Rnl → Rnh is used to
map the input data xi into a high-dimensional feature space Rnh , where a linear function f (x) exists to
describe the nonlinear relationship between input and output. The linear function f (x) = ωTϕ(x) + b
is exactly the regression function of SVM, where ω is the weight vector, and b is the offset.

To reduce the error between training data and ε-insensitive loss function, SVM minimizes the
structural risk. The formula is as follows:

min
ω,b

1
2
‖ω‖2 + C

N∑
i=1

max(0,
∣∣∣yi −ω

Tϕ(xi) − b
∣∣∣− ε), (5)

where ε is the insensitive loss coefficient, and C, C > 0 is the penalty factor.
After introducing the slack variables ξi and ξi

∗, Equation (5) is transformed into the following
optimization problem with constraints.

min
ω,b

[
1
2‖ω‖

2 + C
N∑

i=1
(ξi + ξi

∗)

]
s.t.


yi − [ωTϕ(xi) + b] ≤ ε+ ξi
ωTϕ(xi) + b− yi ≤ ε+ ξi

∗

ξi, ξi
∗
≥ 0, i = 1, 2, · · · , N

(6)

By establishing the Lagrangian function and satisfying the Karush–Kuhn–Tucker conditions,
Equation (6) is regarded as a quadratic programming problem [39].

min
{

1
2

N∑
i=1

(αi − αi
∗)(α j − α j

∗)κ(xi, x j) +
N∑

i=1
αi(ε− yi) +

N∑
i=1

αi
∗(ε+ yi)

}
s.t.


N∑

i=1
(αi − αi

∗) = 0

αi,αi
∗
∈ [0, C]

(7)

where αi and αi
∗ are Lagrangian multipliers, and κ(xi, x j) is the kernel function.

The linear regression function is obtained by solving Equation (7).
f (x) =

N∑
i=1

(αi − αi
∗)κ(x, xi) + b

b = y j −
N∑

i=1
(αi − αi

∗)κ(xi, x j) + ε, j ∈ {m|0<αm<C}
. (8)

In this paper, the radial basis function κ(xi, x j) = exp
(
−
‖xi−x j‖

2

2γ2

)
is selected as the kernel function

of SVM, where γ is the width parameter of the radial basis kernel function. Accordingly, the prediction
performance of SVM mainly depends on three parameters (C,γ, ε). It should be noted that ε is generally
set to 0.01 [40], and the remaining two parameters (C,γ) need to be optimized.
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3.2. Particle Swarm Optimization

PSO searches for the optimal solution in the complex solution space through cooperation
and competition among individuals, which is suitable for the selection and optimization of SVM
parameters [41,42]. When solving the optimization problem with PSO, a group of particles is initialized
in the d-dimensional solution space. Each particle represents a potential solution of the optimization
problem, whose features are described by position, velocity, and fitness value. The fitness value
is determined by a fitness function to determine the quality of particles. In the process of particle
optimization, each particle is searched globally in the solution space by an iterative method. In each
iteration, the global optimal solution of all particles and the current optimal solution of the particle
itself are generated. Each particle updates its velocity and position according to Equations (9) and (10),
and searches generation by generation until the optimal solution is obtained.

vid(t + 1) = wivid(t) + c1r1(pid(t) − xid(t)) + c2r2
(
pgd(t) − xid(t)

)
, (9)

xid(t + 1) = xid(t) + vid(t + 1), (10)

where d is the population dimension; i represents the i-th particle of all particles; t is the current
iteration number; wi is the inertia weight; c1 and c2 are acceleration constants (or learning factors);
r1 and r2 are random numbers of [0, 1]; vid ∈ [−vmax, vmax] is the velocity of the particle, vmax represents
the maximum velocity of particles and represents the search ability of particles in the solution space;
xid represents the position of the particle in the current search space; pid represents the best position the
particle has found so far; pgd represents the best position that the whole particle swarm has searched
so far.

The inertia weight wi is a function that decreases linearly with the iteration number t, which is
calculated as follows:

wi = wmax −
wmax −wmin

tmax
t, (11)

where wmax is the maximum inertia weight, wmin is the minimum inertia weight, and tmax is the
maximum number of iterations.

3.3. Evaluation Criteria

Four evaluation indexes of the coefficient of determination (R2), mean absolute percentage error
(MAPE), mean absolute error (MAE), and root mean square error (RMSE) were used to quantify the
estimation performance of the prediction model [43–46].

R2 = 1−

n∑
i=1

(yi − ŷi)
2

n∑
i=1

(yi − y)2
, (12)

MAPE =
100%

n

n∑
i=1

∣∣∣∣∣ yi − ŷi

yi

∣∣∣∣∣, (13)

MAE =
1
n

n∑
i=1

∣∣∣yi − ŷi
∣∣∣, (14)

RMSE =

√√
1
n

n∑
i=1

(yi − ŷi)
2, (15)

where n is the total number of data to be evaluated, yi is the i-th measured value, ŷi is the i-th predicted
value, and y is the mean of y values.
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The comprehensive evaluation index (CEI), derived from 1 − R2, MAPE, MAE, and RMSE,
is proposed to comprehensively evaluate the prediction performance of different models. CEI is a
cost-type index; that is, the smaller the CEI value, the better the model performance.

CEI =
1
m

m∑
j=1

( P j − Pmin, j

Pmax, j − Pmin, j

)
, 0 ≤ CEI ≤ 1, (16)

where m is the number of evaluation indexes, P j is the j-th evaluation index, Pmin, j is the minimum
value of a different prediction model of the j-th evaluation index, and Pmax, j is the maximum value of a
different prediction model of the j-th evaluation index.

4. Methodology Implementation Procedure

The overall architecture of the proposed PSVM model is shown in Figure 2, which illustrates
the complete methodology implementation procedure. Several important steps, including dataset
preprocessing, parameter optimization, model validation, and performance evaluation, are described
in detail in this section.Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 18 
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4.1. Dataset Checking and Preprocessing

The Pearson correlation coefficient between any two input variables was calculated, as shown
in Figure 3. Only D and L have significant correlation, while the remaining correlations are not
significant, indicating that the input selection is reasonable. Model input and output variables usually
have different dimensions and orders of magnitude, and all variables are converted to the same
order of magnitude without dimension using the min-max normalization method [47]. The complete
experimental dataset was then randomly divided into training set (70%) and test set (30%) to establish
and examine the prediction model. Specifically, there were 126 groups of data in the training set and 54
groups of data in the test set. The optimal parameter combination of PSVM model (Cbest,γbest) was
obtained from the training set, and the test set was used to verify the prediction performance of the
corresponding model.
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4.2. Parameter Optimization

The SVM parameters are optimized by means of both PSO and five-fold cross validation. The value
ranges of two parameters C and γ were set as [0.1, 100] and [0.01, 100], respectively. When using PSO
for parameter optimization, the population size of the particle swarm was 20, the maximum number of
iterations was 100, and two learning factors, c1 and c2, were separately set as 1.5 and 1.7 [48]. A group
of initial particles was randomly generated in the range of parameters, and the mean square error
(MSE) of cross validation [49] was selected as the fitness function. The iterative optimization process of
the PSO algorithm is illustrated in Figure 2, and the fitness curve obtained can be seen in Figure 4.
When the iteration number is 79, the fitness value reaches the minimum of 0.008, and the optimal
parameters, Cbest = 16.474 and γbest = 0.129, are acquired by model training. The PSVM model with
optimal parameters needs to be verified through the test set.
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4.3. Performance Evaluation

On the one hand, the measured Nu values in the training set and test set were compared with the
corresponding predicted values after inverse normalization. The evaluation indexes in Section 3.3
were used to quantify the PSVM model training and test results to determine whether the trained
model has the problem of over-fitting or under-fitting. On the other hand, several other soft computing
methods, namely decision tree (DT) [50], Gaussian process (GP) [51], and multiple linear regression
(MLR) [52], were introduced for performance comparison with PSVM to demonstrate the advantages
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of the proposed PSVM model. Herein, MLR is the simplest regression technique, which involves
finding the best fitting straight line through a set of points. DT builds regression or classification
models in the form of a tree structure. GP is a nonparametric model which uses prior knowledge to
conduct regression analysis of data. The three models are commonly applied in the field of structural
engineering [53–55]. Additionally, two common design methods based on the superposition principle,
GJB 4142-2000 (Chinese code) and AIJ 1997 (Japanese code) expressions, were also used for prediction
comparison with PSVM.

In terms of the same training and test set, the prediction results of six methods (DT, GP, MLR, PSVM,
GJB 4142-2000, and AIJ 1997 expressions) were obtained based on MATLAB® R2016b. The performance
comparisons of these calculations were visualized and quantified.

5. Results and Discussion

5.1. PSVM Training and Test Results

The PSVM training and test results are shown in Figure 5a,b, respectively. It can be found that the
measured and estimated Nu values obtained from PSVM in the training and test sets agree with each
other. The excellent prediction performance of PSVM shows that the SVM model, which adopts PSO
algorithm to seek the optimal parameter combination, can capture the complex nonlinear mapping
between the seven input variables and ultimate axial capacity Nu [56]. The prediction effect of PSVM is
quantitatively evaluated with five statistical indexes. The performance evaluation results of PSVM
training and test are seen in Figure 6a,b. Obviously, R2, MAPE, MAE, and RMSE are close to 1 and CEI
is 0 in both datasets, which indicates that the prediction accuracy of PSVM is relatively high. Moreover,
the regions enclosed by five indexes corresponding to the PSVM training and test in the radar chart are
almost coincidental, indicating that the trained PSVM model is reasonable.
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5.2. Multi-Model Performance Comparison

The linear fitting effects of the measured Nu values in the test set and the corresponding predicted
Nu values obtained from the six different methods are shown in Figure 7. It is evident from the first four
subgraphs that PSVM has the best prediction performance, followed by DT, and the worst is GP. Though
MLR is a common linear model, its performance is still better than the nonlinear model of GP, indicating
that the linear model is not necessarily worse than the nonlinear model. Additionally, as a combined
model, the prediction performance of PSVM is better than that of a single model. This viewpoint can be
proven by the performance evaluation results of different models in Tables 2 and 3. Generally speaking,
the prediction accuracy of SVM optimized by PSO is about 5% higher than that of SVM optimized by
the grid search technique (GST) [57]. In Section 4.2, PSO converges after less than 100 iterations, which
shows that the operation efficiency of PSO is also better than that of GST. Additionally, PSO can adjust
SVM parameters adaptively, so that the combined PSVM model has better generalization ability.

Table 2. Prediction performance evaluation of DT, GP, MLR, PSVM, AIJ 1997, and GJB 4142-2000
expressions in the training set.

Evaluation Indexes DT GP MLR PSVM AIJ 1997 Expression GJB 4142-2000 Expression

R2 0.825 0.432 0.522 0.932 0.635 0.770
MAPE 0.204 0.512 0.320 0.143 0.316 0.210

MAE (×103 kN) 0.369 0.743 0.592 0.239 0.606 0.423
RMSE (×103 kN) 0.503 0.906 0.831 0.314 0.727 0.576

CEI 0.239 1.000 0.718 0.000 0.622 0.329

Table 3. Prediction performance evaluation of DT, GP, MLR, PSVM, AIJ 1997, and GJB 4142-2000
expressions in the test set.

Evaluation Indexes DT GP MLR PSVM AIJ 1997 Expression GJB 4142-2000 Expression

R2 0.843 0.239 0.544 0.914 0.629 0.801
MAPE 0.195 0.544 0.304 0.145 0.303 0.196

MAE (×103 kN) 0.327 0.773 0.520 0.227 0.539 0.345
RMSE (×103 kN) 0.411 0.905 0.701 0.304 0.632 0.463

CEI 0.148 1.000 0.536 0.000 0.484 0.194

The last two subgraphs in Figure 7 are the calculation results of the two design methods,
GJB 4142-2000 and AIJ 1997 expressions. Compared with the above four MLAs, the design expressions
have physical meaning and are easy to calculate, resulting in lots of practical applications. As for
prediction performance, the prediction accuracy of the two expressions is not as good as that of PSVM
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and DT, but better than that of MLR and GP. Combined with Tables 2 and 3, it can be found that the
calculation results of GJB are more accurate than those of AIJ, but there is still a gap with PSVM.
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5.3. Prediction Error Correction

Although PSVM has a higher prediction accuracy than the other three MLAs and the two design
expressions (see Section 5.2), there is still a certain error between estimated results and measured
Nu values. Thus, prediction error correction becomes the key to further improve the prediction
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performance of PSVM. To this end, a prediction error correction method based on PSVM is proposed.
(1) The output variable was changed from Nu to the relative error (abbreviated as ξ) obtained by
subtracting the predicted value from the measured value, and seven input variables (D, t, L, fy, Es, fc, Ec)

remain unchanged. According to Section 4.1, the prediction error dataset was also divided into training
set (70%) and test set (30%), and the data order remained the same. (2) According to the parameter
optimization process in Section 4.2, when the iteration number is 55, the fitness value reaches the
minimum of 0.068, and the optimal parameters, Cbest = 16.429 and γbest = 0.391, are obtained. (3) The
PSVM model with optimal parameters was used to make a prediction of relative error ξ. The predicted
ξ values were added to the corresponding predicted Nu values in the test set (in Section 5.1) to obtain
the predicted Nu results after error correction (see Figure 8). It can be found that the Nu value after error
correction is closer to the measured value, especially the box selected points in Figure 8. Additionally,
the evaluation indexes of corrected Nu values are better than those of original prediction results,
as shown in Table 4. The improvement of prediction performance shows that the prediction error
correction method is feasible and effective.
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Figure 8. Measured and estimated Nu values obtained from the original PSVM model and error
corrected PSVM model in the test set.

Table 4. Prediction performance comparison of the original PSVM model and error corrected PSVM
model in the test set.

Evaluation Indexes PSVM PSVM after Error Correction

R2 0.914 0.953
MAPE 0.145 0.107

MAE (×103 kN) 0.227 0.176
RMSE (×103 kN) 0.304 0.226

5.4. Sensitivity Analysis of Input Variables

Both Section 5.1 and 5.2 demonstrate the decent performance of the PSVM model. In order to
determine the most influential input variables on the ultimate axial capacity Nu, the sensitivity analysis
is performed using the cosine amplitude method (CAM) [58,59] in this section. The method has
achieved good sensitivity analysis results in most research [60–62]. The express similarity relation
between the target function and the input parameters is used to obtain by CAM [63]. In this method,
each data pair (xi, x j) can be considered as a specific point in the m-dimensional space, where each
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point requires m-coordinates to be fully described. Thus, each input variable is directly connected to
the corresponding output. The strength of this relationship between xi and x j is calculated by:

ri j =

m∑
k=1

xikx jk√
m∑

k=1
x2

ik

m∑
k=1

x2
jk

, (17)

where xik and x jk are the k-th input and corresponding k-th output variable of the model, respectively;
and m is the number of experimental data. The larger the ri j value, the greater the influence of the
corresponding input variable on the output.

The sensitivity analysis results are presented in Figure 9. From a single variable, the side length D
of square CFST specimens has the greatest influence on the ultimate axial capacity. In terms of different
variable combinations, it is obvious that the geometric properties (D, t, L) of square CFST specimens
have the relatively highest effects on Nu values. Therefore, the size effect (or scale effect) of square
CFST short columns under axial compression is not negligible, which has long been discussed by
Yamamoto et al. [64].
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5.5. Discussion: Future Model Improvements

There are some deficiencies in predicting the ultimate axial capacity Nu of square CFST short
columns through the proposed PSVM model, which need to be resolved in future research. (1) The
amount of data used to establish the PSVM model is small, with only 180 groups of experimental data.
Although the test accuracy of the trained model is over 90%, the generalizability and robustness of the
model based on a small amount of data are insufficient. More high-quality experimental data needs
to be collected to improve the overall performance of PSVM. (2) Some other properties that affect
the ultimate axial capacity of square CFST short columns are not treated as input variables, such as
steel grade, concrete age, and concrete pouring method. When many input variables are considered,
feature selection is also required. (3) Four supervised learning methods (DT, GP, MLR, and SVM)
and a metaheuristic optimization algorithm (PSO) were used for nonlinear regression modeling in
this paper. Other advanced MLAs can be introduced to predict the ultimate axial capacity, such as
multilayer perceptron [65,66] and random forest [67–69]. Some new optimization algorithms can also
be used to improve model performance while reducing the operation time. The combined model is the
development trend of the regression prediction method. (4) The proposed PSVM model is essentially a
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black box. In other words, the complex relationship between input and output variables is difficult
to explain. The interpretability of the model needs to be studied urgently. Furthermore, feature
importance analysis is also imperative before the model is applied to practical engineering, which
makes it easy to adjust the geometric, steel, and concrete properties of square CFST short columns.

6. Conclusions and Perspectives

This paper mainly investigated the application of the combined PSVM model based on SVM and
PSO in the prediction of ultimate axial capacity Nu of square CFST short columns. A large number
of axial compression tests were utilized to obtain the experimental data needed by the prediction
model. The reliability of the experimental dataset was ensured by input selection and data checking.
PSO algorithm was used to optimize the parameters of SVM to achieve the optimal PSVM model.
The prediction performance of the trained model was verified by an independent test set, and compared
with that of the other three benchmark models and two design expressions. The prediction effect of
each method was quantified by five evaluation criteria. Simulation results show that the proposed
PSVM model has obvious advantages in Nu value prediction, as described below:

• The SVM optimized by PSO can accurately capture the complex nonlinear relationship between
the seven input variables and the ultimate axial capacity. Thus, both model training and test
results are great, and the accuracy rate is more than 90%.

• The PSO algorithm can rapidly converge after less than 100 iterations, and the MSE value
corresponding to the optimal parameter combination is small, indicating that PSO is suitable for
optimizing the SVM parameters.

• Compared with the other three MLAs and two expressions, the evaluation indexes of PSVM are
superior. The excellent prediction performance of PSVM can reflect the enormous potential of
combining mechanical property experiments with artificial intelligence algorithms.

• The proposed prediction error correction method is helpful to improve the prediction performance
of PSVM. Additionally, the sensitivity analysis results are expected to simplify the design of square
CFST short columns.

As such, it is believed that the proposed PSVM model can be suitably applied in engineering.
Not only can the model predict the ultimate axial capacity, but can be used to estimate other mechanical
properties of square CFST short columns, such as ultimate pure bending moment and fire resistance.
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