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Abstract: The effectiveness of deep neural network models is intricately tied to the distribution of
training data. However, in pose estimation, potential discrepancies in root joint positions and inherent
variability in biomechanical features across datasets are often overlooked in current training strategies.
To address these challenges, a novel Hand Pose Biomechanical Model (HPBM) is developed. In
contrast to the traditional 3D coordinate-encoded pose, it provides a more intuitive depiction of
the anatomical characteristics of the hand. Through this model, a data normalization approach
is implemented to align the root joint and unify the biomechanical features of training samples.
Furthermore, the HPBM facilitates a weakly supervised strategy for dataset expansion, significantly
enhancing the data diversity. The proposed normalized method is evaluated on two widely used
3D hand pose estimation datasets, RHD and STB, demonstrating superior performance compared to
the models trained without normalized datasets. Utilizing ground truth 2D keypoints as input, a
reduction of 45.1% and 43.4% in error is achieved on the STB and RHD datasets, respectively. When
leveraging 2D keypoints from MediaPipe, a reduction in error by 11.3% and 14.3% is observed on the
STB and RHD datasets.

Keywords: deep learning; hand pose estimation; biomechanical variability; Hand Pose Biomechanical
Model

1. Introduction

Three-dimesional hand pose estimation has become increasingly important in various
fields such as virtual reality, augmented reality, human–computer interaction, and sign
language recognition. Recent advances [1–3] in deep learning have had a significant impact
on this task, resulting in state-of-the-art performance [4–7]. Deep neural networks are
optimized adaptively through end-to-end training, which enables them to learn complex
representations directly from raw inputs. However, this data-dependent training method
also means that the effectiveness and generalization capabilities of the models are closely
tied to the distribution of the training data [8]. This presents challenges pertaining to
dataset quality.

The inconvenience of 3D pose acquisition presents a significant bottleneck for 3D hand
pose estimation [9]. Thus, researchers have proposed a range of techniques to address this
issue, including multi-dataset joint training [10–13], weakly supervised learning [12,14–16],
and self-supervised learning [9,17]. However, these methods often fail to account for poten-
tial disparities in annotating standards across datasets and the variability in biomechanical
features (such as bone length or palmar structure) among samples. These factors can
directly impact the feature distribution of training data. Given that model performance is
heavily influenced by the extent to which the training data capture the underlying data dis-
tribution, such challenges can indeed reduce the estimation ability of the model. Therefore,
effective preprocessing of the training data is essential for achieving optimal performance.
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Most recent approaches for 3D pose estimation rely on the 2D-to-3D lifting pipeline [6],
which detects 2D keypoints firstly and then lifts them to 3D. Our work adopts this common
practice strategy to detail the proposed normalization strategy. The lifting process is inher-
ently depth ambiguous [6], meaning that one single 2D pose can correspond to multiple
potential 3D poses. The mapping rules that determine which 3D pose corresponds to the
given 2D pose are learned from the training data. However, current datasets are typically
collected by multiple individuals, resulting in potential variability in biomechanical features
both within and across datasets. Thus, training models on such inconsistent data can lead
to learned mapping rules that generate 3D poses with inconsistent biomechanical features.

Multi-dataset joint training is a widely used method [10–13] for improving model
generalization ability. However, disparities in annotating standards across datasets can
negatively impact network performance, particularly due to differences in the location of
the root joint on the hand. For instance, the Rendered Hand Pose Dataset (RHD) [13] marks
the root joint in the wrist area, while the Stereo Hand Pose Tracking Benchmark (STB) [18]
dataset marks it in the palmar center. Directly feeding the model with these data, which
have significantly different palm structures, can result in the model receiving conflicting
knowledge, leading to suboptimal pose estimation performance.

In conclusion, current training methods for hand pose estimation face two main
challenges: insufficient accommodation of biomechanical variability among samples and
disparities in annotating standards across datasets. To address these issues, this study
introduces a data normalization strategy aimed at enhancing model accuracy and gener-
alization. This strategy comprises two main steps: first, aligning the root joint position
in training data to a common reference point based on the target annotating standard,
and second, normalizing biomechanical features using a Hand Pose Biomechanical Model
(HPBM). This model is designed inspired by the biomechanical feature extraction pro-
posed by Spurr et al. [12]. Specifically, the spatial angles of the finger bones are defined as
dynamic parameters, while the palmar structure and bone lengths are regarded as static
parameters, these designations are contingent upon the spatio-temporal consistency of
specific individual parameters. After unifying the static parameters in training dataset
with the HPBM, the normalized HPBM-encoded poses are acquired. Subsequently, these
poses are mapped to a 3D coordinate-encoded representation through Sequential Least
Squares Programming (SLSQP). By employing this approach, the impact of biomechanical
variability and annotation standards across different datasets are mitigated.

In addition, the HPBM can facilitate the development of a weakly supervised training
methodology that does not require any labeled data but rather relies on prior knowledge,
such as skeletal length and articulation range of motion. By fixing the static parameters
of the HPBM-encoded pose and generating bone curvatures within the biomechanically
feasible range, the 3D normalized hand pose dataset can be expanded without the need for
manual labeling. This new dataset offers a greater variety of poses, effectively tackling the
challenge of 3D keypoint annotation and thereby enhancing the estimation accuracy of the
model. For instance, through weakly supervised training, the error is minimized from 4.85
to 4.57 when the model is fed with ground truth 2D keypoints on the RHD datasets.

The main contribution of this work lies in three folds:

1. In consideration of the anatomical characteristics of the hand, a novel HPBM is
introduced, specifically crafted to intuitively depict the biomechanical features of
hand poses. This model addresses the limitations associated with traditional 3D
coordinate-encoded pose representations.

2. A universal and effective dataset normalization strategy was explored, utilizing the
HPBM to unify biomechanical features and standardize root joint positions within
and across datasets. In addition, a weakly supervised training methodology was also
introduced, utilizing the HPBM to autonomously generate robust 2D–3D pose pairs
without the need for manual annotations.

3. Compared to training on non-normalized data, models trained on the proposed
normalized dataset demonstrated significant improvements. On the RHD and STB
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datasets, notable reductions of 45.1% and 43.4% in error were observed when the
model utilized the ground truth 2D pose. Weakly supervised training further achieved
an additional 5.7% reduction. The proposed framework proves effective, delivering
advanced estimation performance.

2. Related works
2.1. The 2D-to-3D Lifting Pipeline

Compared to end-to-end 3D pose estimation, the 2D-to-3D pipeline approach divides
the task into two independent parts: 2D pose estimation from the image and lifting the 2D
pose to a 3D pose. Recent 2D-to-3D lifting methods [6,19–23] have demonstrated superior
performance compared to end-to-end approaches, owing to the reliable and effective 2D
keypoint detection methods developed in previous works [24–27]. To advance 2D-to-3D
pose estimation, a Graph Stacked Hourglass Network [22] is introduced. This architecture
comprises a repeated encoder–decoder and a graph-structured feature processing approach
across multiple scales of skeletal representations, which enhances the ability of the model
to learn both local and global feature representations. Chen et al. [28] proposed breaking
down the 3D pose estimation task into bone direction prediction and bone length prediction,
aiding in addressing depth ambiguity. In addition, domain generalization [29] is applied in
hand pose estimation to address the issue of images with characteristics different from the
training data. These advances in 2D-to-3D lifting have significantly improved the accuracy
of 3D pose estimation.

2.2. Techniques for Addressing Limited Annotated 3D Pose Training Data

Self-supervised learning has been used in various methods to address the challenge
of annotating 3D pose data, achieving notable results [9,17,30–32]. For instance, a self-
supervised module [17] is proposed that utilizes 2D spatial relationships and 3D geometric
knowledge to overcome domain gaps in hand pose estimation and reduce the need for
abundant 3D pose labeled data. In Ren et al. [33], depth images are utilized for 3D
pose estimation, which uses an image-to-image translation technology for pre-training
and a dual-branch network for pixel-wise estimation in a decoupled way. Additionally,
S2HAND [32] was proposed to jointly estimate pose, shape, texture, and camera viewpoint.
It utilizes 2D detected keypoints to obtain geometric cues from the input image and
learns an accurate hand reconstruction model through the consistency between 2D and
3D representations.

Weakly supervised learning is another widely used approach to enhance the general-
ization capability and reduce the reliance on expensive annotations in 3D pose estimation
tasks [12,14–16,34–37]. For example, depth images obtained from commodity RGB-D cam-
eras are utilized during training [35], thus reducing the necessity for 3D annotations. A
method [15] is proposed to extract weak 3D information directly from 2D images without
3D pose supervision, which uses 2D pose annotations and perspective prior knowledge
to generate relative depth labels, and a weakly-supervised pre-training strategy based on
a 2D pose dataset to distinguish the depth relationship between two points in an image.
In Spurr et al. [12], a set of losses is developed to constrain the prediction to lie within
the range of biomechanically feasible 3D hand configurations and improve the accuracy
in such a weakly supervised manner. Our work draws inspiration from their approach
to extract biomechanical features. In addition to those weakly supervised techniques, a
Multi-View Video-Based 3D Hand dataset, MuViHand [38], has been proposed. It uses
synthetic images and provides a valuable resource for improving the generalization ability
of pose estimation models.

In addition to weakly supervised and self-learning techniques, many studies [10–13,39]
have utilized multi-datasets to train models jointly. These studies focus on improving per-
formance by exploring unconstrained monocular 3D hand pose estimation [10], developing
novel compressed latent distribution representations [11,39], or leveraging prior hand
biomechanical knowledge [12]. Meanwhile, they utilize multi-dataset joint training to
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enhance the performance of the network. Although it is a straightforward approach, it has
demonstrated efficacy in improving pose estimation performance.

3. Method

In this section, we provide a detailed description of the proposed framework, which
consists of four components: (1) an overview, (2)the Hand Pose Biomechanical Model
(HPBM), (3) the normalization method, and (4) the weakly supervised training strategy.

3.1. Overview

The hand structure, as depicted in Figure 1a, is composed of a set of 21 joints denoted
as [j0, . . . , j20] ∈ R21×3. The datasets, such as the STB dataset [18], provide annotations for
the root joint jP

0 at the center of the palm, while other datasets, such as the HO-3D [40] and
RHD datasets [13], annotate the root joint, jW

0 , at the wrist location.

Figure 1. Overview of the normalization strategy. (a) Hand structure and joint index. jP
0 and jW

0
denote the root joint located in the palmar center and the wrist, respectively. (b) The distributions of
biomechanical features ϕARB1, ϕARB2, and ϕARB3 in the FreiHand, HO-3D, RHD, and STB datasets;
their specific meaning can be found in Section 3.2. (c) Box plots illustrating the distribution of
estimated pose features (ϕARB1, ϕARB2, ϕARB3) and their corresponding ground truth values (ϕ̂ARB1,
ϕ̂ARB2, ϕ̂ARB3) derived from the STB dataset. (d) Relocating j0 position. (e) Computation of normalized
2D–3D pose pairs. (f) Illustrating the mapping rules for lifting model.

Figure 1b depicts the dispersion of distinct individuals from diverse datasets within
a tri-dimensional feature space characterized by variables denoted as ϕARB1, ϕARB2, and
ϕARB3. Notably, this illustration highlights a clustering tendency among individuals of the
same group, whereas considerable variations in features are evident among individuals of
different groups. The box plot in Figure 1c illustrates the discrepancies in features between
the predicted hand pose generated by a model trained on non-normalized datasets and the
ground truth pose. This highlights the inconsistency in biomechanical features resulting
from training the model on non-normalized datasets.

To mitigate disparities in j0 positions and variations in biomechanical features, a
normalization strategy comprising two steps was introduced. First, for a specific detected
individual pose, adjustment of the j0 position of the training data was made based on the
reference j0 location, as illustrated in Figure 1d. Second, normalization of the biomechanical
features of the training data was performed by replacing the static biomechanical parame-
ters with those of the target individual, as demonstrated in Figure 1e. Additionally, data
augmentation was introduced by randomly rotating the normalized 3D pose, resulting in
increased data diversity. By projecting these poses onto a 2D plane, 2D–3D pose pairs were
obtained. These pairs represented the authentic mapping rules for the given individual
and maintained consistent biomechanical features. Training a lifting model using such data
enabled the generation of poses aligned with the features of the target individual.
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3.2. Hand Pose Biomechanical Model

To provide a clearer explanation, the following predefined notation and rules will
be set:

1. The kinematic chain starting from the root joint j0 and extending to the fingertips.
2. The parent joint of a given joint ji is denoted as jp(i).
3. A bone bi is defined as the vector pointing from the parent joint to its child joint,

computed by bi = ji+1 − jp(i+1).
4. The root bones vectors are represented as

Broot = {bi}i∈{0,4,8,12,16}, as indicated by the solid line in Figure 2a.
5. The angular distance between two vectors, υ1 and υ2, is denoted by α(υ1, υ2) and is

calculated using the arccosine function as α(υ1, υ2) = arccos
(

υT
1 υ2

∥υ1∥2∥υ2∥2

)
.

6. The normalized vector is defined as norm(x) = x
∥x∥2

.

7. The operator Pxy(v) is used to project a vector v orthogonally onto the x − y plane
where x, y are vectors.

Figure 2. Visualization of the biomechanical architecture of the hand. (a) Hand structure. (b) The
angular distances between root bones. (c) The curvatures of the palmar surface. (d) The local
coordinate system.

The construction of the HPBM was divided into two distinct components: palm
modeling and finger modeling. The palm section encompasses joints {j0, j1, j5, j9, j13, j17},
while the finger section comprises the remaining part of the hand. The approach defines
the palm structure using biomechanical features like root bone length and angles, with j0 as
the reference position. Then the palm is utilized as the foundation to construct coordinate
systems to determine finger flexion.

The palmar structure of a particular individual was observed to remain relatively
static in the spatio-temporal domain, representing a consistent biomechanical feature. To
define the palmar structure, three parameters were used: the length of the root bones ℓroot,
the Angular Distances between the Root Bones (ARB) ϕARB, and the Curvatures of the
Palmar Surface (CPS) ϕCPS.

ℓroot can be determined by calculating the Euclidean distance between the palmar
joints, specifically,

ℓroot = [∥b0∥2, ∥b4∥2, ∥b8∥2, ∥b12∥2, ∥b16∥2]. The ARB features are illustrated in
Figure 2b, and are computed in the following equation:

ϕARBi = α
(

bi·4, b(i+1)·4

)
, for i ∈ {0, 1, 2, 3}. (1)
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The CPS features can represent the curvature characteristics of neighboring bone
surfaces, as illustrated by the two yellow triangles highlighted by dashed lines in Figure 2c.
Based on the physical structure of the hand, ϕCPS can be obtained:

ϕCPSi = arccos(ei · ei+1), for i ∈ {0, 1, 2}. (2)

where ei is normal vector of the surface:

ei = norm
(

bi·4, b(i+1)·4

)
, for i ∈ {0, 1, 2, 3}. (3)

During the transformation of the HPBM-encoded pose to a 3D-coordinate represen-
tation, the arccos function generates two-directional surfaces for each ϕCPSi, potentially
resulting in multiple structural solutions for the palm. To address this, the relative surface
direction di is introduced as a constraint to ensure that the unique pose is defined:

di =

 1, if ei ·
(

b(i+2)·4 − b(i+1)·4

)
> 0

−1, if ei ·
(

b(i+2)·4 − b(i+1)·4

)
< 0

, (4)

where i ∈ {0, 1, 2}.
The morphological arrangement of the finger, delineated by the stippled delineation,

is shown in Figure 2a. The incipient stages of the modeling necessitate the instantiation
of the orientation ascribed to each bone element. To expedite this process, a foundational
requirement entails the instantiation of distinct local reference frames Ai, for each finger, as
shown in Figure 2d.

The establishment of the coordinate system utilizes the palm plane as a reference
framework. Specifically, the root bones b4, b8, b12, b16 are deemed to be situated within
approximate proximity to a common plane. The hyperplane Ph that ostensibly maintains a
predominantly orthogonal orientation concerning the basis vectors e1, e2, e3 is derived by
minimizing the following function:

J = ∑ ∥vhei − 1∥2, (5)

the vh is the normal vector of Ph. Describing the spatial orientation of bi involves creating a
local frame called Ai. Within this frame the x, y, and z-axes of Ai can be defined as:

Ax
i = norm(vh)

Az
i = norm(bp(i))

Ay
i = norm

(
Az

i × Ax
i
) . (6)

Based on the established coordinate, the spatial orientation of bi can be defined by:

θ
f
i = α

(
Pxz(bi), Az

i
)

θa
i = α(Pxz(bi), bi)

, (7)

where θ
f
i and θa

i represent the flexion and abduction angles, respectively. In combination
with the length of each finger, these parameters can define the structure of the hand–
finger part.

In conclusion, the proposed HPBM-encoded pose can be represented as

β =
[
ℓ, ϕARB, ϕCPS, d, θ f , θa

]
, (8)

where ℓ = {∥bi∥2}20
i=0 represents the length of the bones. The parameters [ℓ, ϕARB, ϕCPS, d]

remain constant across the training data for the same individual, while
[
θ f , θa

]
vary with
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pose changes. The former is categorized as static biomechanical parameters and the latter
as dynamic biomechanical parameters.

3.3. Normalization Strategy

The normalization strategy comprises two steps, namely relocating j0 to the refer-
ence position and normalization of biomechanical features, as depicted in Figure 3. In a
subsequent paper, each step will be discussed in detail.

Figure 3. Flowchart of the normalization process. (a) Aligning the joint j9 across various individual
palm and superimposing the planes containing joints j9, j13, and j0, the distribution of the j0 is
depicted by the red dots. (b) 3D Coordinate-Encoded Pose. (c) HPBM-Encoded Pose. Figures (b,c)
depict the normalized process.

The current state of 3D pose annotation standardization is inadequate, as demonstrated
in Figure 1c; the root joint j0 can be marked either at the palmar center or the wrist,
necessitating the initial normalization of j0 position across all training sets. To accomplish
this, a reference coordinate system, denoted as Aroot, is established with j9 as the origin.
Specifically,

Ax
root = norm(j13 − j9)

Az
root = norm((j5 − j9)× Ax

root)

Ay
root = Az

root × Ax
root

. (9)

In the first step, depicted in Figure 3, the reference position of the root joint, denoted as
jr
0, was derived by averaging all target individual samples within the reference coordinate

system Aroot. Subsequently, all j0 within the training samples were adjusted to align with
the location of jr

0. This procedure ensured that the training data adhered to a uniform
annotation standard.

Considering the challenge of neural networks acquiring accurate 2D–3D mapping
knowledge from diverse training sets. An effort is made to preserve the dynamic biome-
chanical parameters while normalizing the static biomechanical features of training sam-
ples to the specific target individual. This process, outlined in Figure 3, involves map-
ping the 3D coordinate-encoded pose X to the HPBM-encoded pose β. The parameters[
ℓ
′
, ϕ

′
ARB, ϕ

′
CPS, d

′
]

are used to characterize the static parameters of the target individual. In

β, the dynamic parameters θ f and θa remain unchanged, while the static parameters are
replaced with the corresponding features of the target individual. The resulting normalized
pose is expressed as:

β
′
= norm(β)

=
[
ℓ
′
, ϕ

′
ARB, ϕ

′
CPS, d

′
, θ f , θa

]. (10)

Next, the normalized pose β
′

is converted into a 3D coordinate-encoded pose Xnorm,
ensuring consistency in biomechanical features across the training set. This procedure
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can be regarded as the inverse operation of mapping Xnorm to β
′
, essentially solving the

solution of the nonlinear function f : Xnorm 7→ β
′
. In this study, the SLSQP algorithm is

employed to solve it. It should be noted that BHPM only represents the biomechanical
features and spatial structure of the hand but does not preserve the absolute orientation
information. This is because 2D–3D pose pairs can be obtained by randomly rotating the 3D
pose in the spatial domain and projecting it onto the 2D plane. Therefore, incorporation of
absolute pose orientation information into the HPBM-encoded pose is deemed unnecessary
for training.

It is possible to randomly rotate Xnorm along the x-axis, y-axis, and z-axis to ob-
tain Xr

norm, from which a 2D projection can be acquired, resulting in pairs denoted as
(Xr

norm, xr
norm), where xr

norm represents the 2D pose projection of Xr
norm. This process is

illustrated in Figure 1e.

3.4. Weakly Supervised Training

As previously discussed, the HPBM can represent biomechanical features and finger
flexion states in an intuitive manner. By fixing static parameters [ℓ, ϕARB, ϕCPS, d] and
randomly generating dynamic parameters [θ f , θa] within a reasonable range, it is possible
to create an infinite number of 2D–3D pose pairs for training. The generated training
dataset is denoted as D.

We summarize the proposed weakly supervised strategy in the following steps:
Step 1: Determine potential threshold ranges, denoted as [Θmin, Θmax], for dynamic

parameters θ f and θa. These thresholds, established as prior knowledge, can be set based
on experience or calculated from training datasets, specifically Θmin = min

(
Θta) and

Θmax = max
(
Θta), where Θta are sets of [θ f , θa] derived from the target individual.

Step 2: Randomly generate HPBM-encoded poses within the established threshold
ranges.

Step 3: Transform the randomly generated sample into a 3D coordinate-encoded
pose Xnorm.

By utilizing this method, a 2D–3D lifting dataset can be created without the need for
any manually labeled data. Subsequently, weakly supervised training can be performed
based on this dataset.

4. Experiments
4.1. Experimental Setup

Experiments are conducted on several commonly used benchmarks as listed below.
FreiHAND [41] was created to facilitate research on 3D hand pose estimation. The

dataset includes 130,240 training images, each with corresponding 3D annotations for
joint locations. And an additional 3960 evaluation samples are provided for performance
evaluation.

HO-3D [40] comprises color images of human hands interacting with objects. The
dataset consists of 68 sequences, encompassing a total of 77,558 frames. The training set
includes 66,034 images, while the test set comprises 11,524 images. This large-scale dataset
provides a valuable resource for research in hand-object interaction and related computer
vision tasks.

RHD [13] contains 41,258 training samples and 2728 testing samples, each of which is
a synthetic image of a hand in a specific pose. It provides information on keypoint visibility
and occlusion/cropping, as well as camera parameters, segmentation maps, and depth
maps for algorithm development.

STB [18] provides both 2D and 3D annotations for 18,000 stereo pairs. For the evalua-
tion process, 12,000 images captured using the Point Grey Bumblebee2 stereo camera from
the “B1Counting”, “B1Random”, “B2Counting”, and “B2Random” categories are utilized.
This set of stereo image pairs includes both left and right images.

To evaluate the effectiveness, we adopt a cross-dataset training and evaluation method-
ology. Models are trained on the HO-3D and FreiHAND official training datasets and
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assessed on the RHD and STB datasets. This approach allows us to assess generaliza-
tion of the models across new datasets, considering the diverse sources of training and
testing data.

For evaluation, the STB dataset consists of samples from a single individual, while the
RHD evaluation dataset includes samples from four distinct individuals, designated as
RHD-A, RHD-B, RHD-C, and RHD-D, corresponding to individuals A, B, C, and D, and
specifically covering hand poses numbered 923, 898, 979, and 981.

Quantitative evaluations employ the following metrics:
MPJPE: Mean Per Joint Position Error (MPJPE) is a metric that quantifies the error,

measured in Euclidean distance (mm), between the predicted joint positions and the
corresponding ground truth joint positions, with respect to the root-relative coordinates.
The computational methodology aligns with Zimmermann et al. [13].

PA-MPJPE: Procrustes Analysis Mean Per Joint Position Error (PA-MPJPE) is a variant
of MPJPE that employs Procrustes analysis [42] to align the predicted and ground truth
poses while ignoring global variation.

PCK: Percentage of Correct Keypoints (PCK) quantifies the percentage of correctly
predicted keypoints that fall within a specified threshold from the ground truth keypoints.

AUC: Area under the curve (AUC) quantifies the overall accuracy by calculating the
area under the curve of the Percentage of Correct Keypoints (PCK) versus error thresholds.

4.2. Implementation Details

At evaluation, the 2D keypoints were obtained from both ground truth values and the
MediaPipe framework for comparative analysis. MediaPipe is an open-source platform
developed by Google that offers advanced and robust hand pose estimation capabilities.
The proposed normalization and weakly supervised method are generic and adaptable to
different 3D pose estimators. To demonstrate this, two representative 3D pose estimators
were utilized as backbones: (1) ST-GCN [3] (1-frame), a pioneering network that leverages
GCN-based architecture to encode global and local joint relations, and (2) VPose3D [23]
(1-frame), a fully-convolutional advanced network. The specific model settings were
referenced from PoseAug [43].

The models were trained by the PyTorch deep learning framework. During the
training process, the AdamW optimizer with a weight decay of 0.05 was used to optimize
the network. The input image size was 224 × 224, and the initial learning rate was set to
0.001. An RTX3090 GPU was employed for training the model, utilizing a batch size of 512
across a total of 500 epochs. Mean Squared Error (MSE) was employed as the loss function
for model training. These settings remain consistent for both the weakly supervised training
and the normalization strategy. Regarding the weakly supervised training, 200,000 samples
were generated for each individual.

4.3. Evaluation of Normalization Strategy

Table 1 provides a comprehensive comparison of the effects of the normalization
strategy on the VPose3D and ST-GCN models across different 2D pose sources and datasets.
In terms of PJ errors, both VPose3D and ST-GCN consistently exhibit lower errors on
the STB and RHD datasets when trained with normalization (w/norm). Specifically, by
employing the normalization strategy and utilizing GT 2D pose inputs, a substantial
reduction in joint position errors of 45.1% and 43.4% is observed in the STB and RHD
datasets, respectively. When MediaPipe 2D poses are used as input, the estimation errors of
VPose3D decrease by 11.3% and 14.3% in the STB and RHD datasets, respectively. Higher
AUC values are also observed across all scenarios, further emphasizing the effectiveness
of the normalization approach. This consistent enhancement in performance metrics
underscores the importance of the normalization strategy in improving the accuracy of
lifting models.
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Table 1. The effect of normalization strategy. At the inference process, both ground truth (GT) 2D
keypoints and those generated by the MediaPipe framework were fed to the lifting model. “w/ norm”
denotes the training dataset with normalization, while “w/o norm” signifies the dataset without
normalization. “PJ” denotes PA-MPJPE, the “↑”/“↓” denote the lower/higher, the better. The AUC
has a threshold ranging from 20 to 50 mm.

2D Pose Model Datasets
w/o norm w/ norm

PJ ↓ AUC ↑ PJ ↓ AUC ↑

GT

VPose3D

STB 12.37 0.960 6.78 0.995
RHD-A 9.91 0.984 5.21 0.996
RHD-B 9.03 0.988 5.24 0.996
RHD-C 7.87 0.992 4.70 0.997
RHD-D 7.62 0.993 4.33 0.998

ST-GCN

STB 13.52 0.958 6.77 0.995
RHD-A 11.18 0.970 4.48 0.995
RHD-B 10.35 0.977 4.76 0.994
RHD-C 7.89 0.988 4.07 0.996
RHD-D 7.47 0.990 3.71 0.998

MediaPipe

VPose3D

STB 11.39 0.964 10.10 0.989
RHD-A 13.53 0.945 11.35 0.949
RHD-B 13.07 0.947 11.43 0.946
RHD-C 10.83 0.971 9.18 0.971
RHD-D 10.92 0.968 9.45 0.966

ST-GCN

STB 12.42 0.963 12.33 0.951
RHD-A 14.70 0.929 12.23 0.931
RHD-B 14.29 0.930 12.11 0.930
RHD-C 11.58 0.958 9.50 0.962
RHD-D 11.54 0.957 9.66 0.959

The lifting models serve as projection functions that capture mapping rules between
2D and 3D joints. Therefore, evaluating model accuracy based on GT 2D keypoints is
more reliable, as the 2D–3D pose pairs {XGT, xGT} adhere to true mapping rules, while
{XGT, xmp} pairs with 2D keypoints estimated by MediaPipe may not reflect accurate
2D–3D mappings. This signifies that there are inherent 2D errors from the keypoints
detector, and experiments using 2D pose xGT as input can more effectively assess the model
performance. In Table 1, when the model is provided with GT 2D keypoints, the estimation
accuracy significantly decreases, demonstrating that our model closely adheres to the
actual mapping rules. When the model fed with MediaPipe 2D keypoints, the accuracy
also improves, albeit to a lesser extent compared to when fed with GT data. It can be
inferred that the errors primarily arise from inaccuracies in the 2D keypoints, given the
strong performance of the model when using GT 2D keypoints.

To comprehensively assess the efficacy of the proposed normalization method, the
distribution of static biomechanical features in both the normalized and non-normalized
datasets is visually depicted. By utilizing PCA to project features onto a 2D plane, as illus-
trated in Figure 4, a clear alignment emerges between the distribution in the normalized
training dataset and the testing datasets, while the distribution of training data without nor-
malization exhibits significant differences from that of the testing datasets. This illustrates
the successful normalization of static biomechanical features to match the target individual.
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Figure 4. Illustration of the distribution of static biomechanical features in non-normalized dataset,
normalized dataset, and the testing dataset. The visualization is achieved using principal component
analysis (PCA). A random selection of 500 samples from each dataset was conducted, where each
sample encompasses static features {ℓ, ϕARB, ϕCPS} ∈ R27.

The comparison in Figure 4 also reveals that static biomechanical features within
the same individual exhibit minimal variation, with fluctuations largely attributed to the
annotation process. Notably, the disparities between non-normalized training data and
STB datasets exhibit a greater margin compared to those of RHD datasets. This observation
substantiates why models trained on non-normalized datasets exhibit better performance
on the RHD dataset than on the STB dataset.

Table 2 compares the errors in static biomechanical features between models trained
with and without normalization on different datasets. Across all datasets (STB, RHD-A,
RHD-B, RHD-C, RHD-D), the model trained with normalization (w/ norm) consistently
demonstrates lower errors in biomechanical features compared to the model trained with-
out normalization (w/o norm). For instance, in the STB dataset, the error in ℓ is reduced
from 71.05 to 8.43, showcasing a substantial improvement. Similar trends are observed
in other biomechanical features, such as ϕARB and ϕCPS. These results emphasize the
effectiveness of the normalization method in enhancing the accuracy.

Table 2. Comparison of errors in static biomechanical features. The model VPose3D employed for this
analysis was trained on both non-normalized and normalized datasets. The comparison encompasses
biomechanical features {ℓ, ϕARB, ϕCPS}, with the errors {eℓ, eCPS, eARB} computed by evaluating the
averaged Euclidean distance between the predicted biomechanical features and their corresponding
ground truth values.

Datasets
w/ norm w/o norm

eℓ eCPS eARB eℓ eCPS eARB

STB 8.43 0.0001 0.036 71.05 0.245 0.818
RHD-A 9.89 0.0169 0.006 33.75 0.079 0.062
RHD-B 10.10 0.0162 0.007 31.51 0.067 0.053
RHD-C 8.69 0.0083 0.007 22.73 0.122 0.044
RHD-D 8.08 0.0057 0.007 21.03 0.118 0.035

The consistency in the palmar structure of the training data, constrained by
[ℓ, ϕARB, ϕCPS, d], leads to significantly improved accuracy in estimating the palmar joints
[j0, j1, j5, j9, j13, j17], as evident in the heatmap in Figure 5. This improvement is particularly
pronounced for j0. Similarly, when trained on a dataset constrained by

[
ℓ, θ f , θa

]
, the

prediction accuracy of finger joints is also improved. For instance, the position of j5 is
constrained by the predefined palmar structure, and the position distribution of [j6, j7, j8] is
closer to that of the target individual due to the constraints |b5|, |b6|, |b7|.
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Figure 5. Joint error heatmaps in the STB dataset and the graphic example of pose normaliza-
tion. (a) Joint error diagram with normalization. (b) Joint error diagram without normalization.
(c) Normalization diagram illustrating key points localization of the palm and finger joints.

Figure 6 presents qualitative results illustrating the impact of the normalization strat-
egy. The estimated poses (green line) on both the STB and RHD datasets show a closer
alignment with the ground truth (GT) poses (red line) compared to the model trained
without the normalized dataset (blue line).

Figure 6. Qualitative results of poses generated by the models trained on normalized dataset,
the models trained without normalized dataset, and GT poses. (a) Results from the STB dataset.
(b) Results from the RHD-A dataset. (c) Results from the RHD-B dataset.
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4.4. Evaluation of Weakly Supervised Approach

The evaluation results of the model trained on D are presented in Table 3. The dataset
D is constructed solely based on prior knowledge, without any manual labeling. Notably,
the model attained satisfactory performance despite the absence of manually annotated
data. When the model was fed with GT and MediaPipe 2D keypoints, it both achieved
higher accuracy compared to the model trained on non-normalized datasets. Here, the Dn
is used to denote the normalized HO-3D and FreiHAND datasets. Furthermore, weakly
supervised training was conducted on the joint dataset D+Dn, resulting in even more
accurate estimation results, as shown in Table 3; the errors reduced from 7.19 to 4.57 and
from 11.29 to 10.03 for GT and MediaPipe 2D keypoints, respectively.

Table 3. Comparison of the weakly supervised method with advanced techniques using the PA-
MPJPE metric. Dn denotes the normalized training dataset. “GT” and “MediaPipe” represent 2D
keypoint sources, and VPose3D is employed as lifting model in this evaluation.

Methods
Datasets

RHD-A RHD-B RHD-C RHD-D RHD

LDR [11] - - - - 11.63
SS-GCN [17] - - - - 13.29
RC2CHP [44] - - - - 13.14

GT D 5.97 6.52 7.67 8.51 7.19
D +Dn 4.73 4.93 4.42 4.25 4.57

MediaPipe D 11.19 11.70 10.69 11.63 11.29
D +Dn 10.92 11.14 9.01 9.22 10.03

It should be noted that the generated weakly supervised data may not strictly adhere
to physical plausibility. Despite the dynamic parameters {θ f , θa} being confined within the
range [Θmin, Θmax], there exists interdependence among these parameters. For instance,
when the index finger is angled to a certain degree, it consequently affects the permissible
range of angles for the other fingers. Restricting {θ f , θa} to [Θmin, Θmax] does not necessar-
ily guarantee physical plausibility. Currently, the method for quantitatively assessing the
plausibility of poses has not yet been developed, and it will be addressed in future work.

From Tables 1 and 3, it can be observed that despite the weakly supervised data not
being strictly physically plausible, their incorporation with Dn leads to further improve-
ments in model performance compared to a model solely trained on Dn. For instance,
with GT 2D keypoints as input, the PJ errors for individual RHD-A, RHD-B, RHD-C, and
RHD-D exhibit reductions of 0.48, 0.31, 0.28, and 0.08, respectively. This improvement can
be attributed to the broader range and diversity of poses included in the training data.

To provide a more comprehensive understanding of the efficacy of the proposed
method, a thorough comparison is conducted with numerous other state-of-the-art tech-
niques. This comparison is presented in Table 3 and Figure 7. Compared to advanced
methods [13,31,35,44–47], in terms of PJ and AUC metrics, the proposed method showed
fewer errors. This achievement is accomplished without the need to incorporate train-
ing data from the RHD dataset. Solely leveraging the static biomechanical features of
individuals enables the approach to achieve higher estimation accuracy.
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Figure 7. Comparative analysis with state-of-the-art methods [13,31,35,45–47] on the RHD dataset.
The x-axis represents the threshold, while the y-axis denotes the PCK at the corresponding threshold.

5. Conclusions

This study addresses critical challenges in the domain of 3D hand pose estimation,
specifically focusing on discrepancies in root joint positions and variability in biomechanical
features of training samples. The proposed concept of HPBM proves to be an effective
method in overcoming these challenges.

Through the normalization strategy, significant improvements in accuracy have been
achieved, evidenced by evaluations on the RHD and STB datasets. Specifically, two bench-
mark models, VPose3D and ST-GCN, were assessed across both normalized and non-
normalized datasets. The findings reveal a noteworthy decrease in PJ errors. When using
GT 2D keypoints, substantial reductions of 45.1% and 43.4% in errors are evident for the
STB and RHD datasets, respectively.

The static biomechanical features of the estimated pose predicted by the model
trained on normalized datasets also show more accurate results. On the STB dataset,
the {eℓ, eCPS, eARB} are reduced from 71.05, 0.245, 0.818 to 8.43, 0.0001, 0.036, respectively,
indicating a significant improvement in hand structure accuracy for the target individual.

Moreover, the deployment of a weakly supervised methodology is facilitated by the
HPBM, allowing for dataset expansion and improved estimation capabilities. Evaluation
results of the model trained on D show that even without manual labeling, using MediaPipe
2D keypoints as input, the model obtains a PJ of 11.29, which is competitive with other
advanced methods. Joint training with dataset Dn yields even more accurate estimation
results, further reducing from 11.29 to 10.03.

The rigorous experiments reveal a substantial enhancement in model performance
compared to baseline methods. It demonstrates that the proposed normalization strategy is
effective in addressing existing non-normalized problems and enhancing the performance
of the model. While this study encodes hand poses from a biomechanical perspective,
it does not assess their validity within human biomechanical constraints. This aspect
warrants further investigation in future research.
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