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Abstract: High-Temperature Materials Science Experiment Cabinet on the Chinese Space Station
is mainly used to carry out experimental research related to high-temperature materials science in
microgravity. It is equipped with an X-ray transmission imaging module, which is applied to realize
transmission imaging of material samples under microgravity. However, the X-ray light source is far
away from the experimental samples, and the images obtained by the module are blurred, so it is
impossible to accurately observe the morphological changes during the melting and solidification
processes of high-temperature materials. To address this issue, this paper proposed a contrast
enhancement algorithm specifically designed for X-ray images obtained during the experiments of
high-temperature materials. The algorithm is based on gradient three-interval equalization, and
it is combined with a Gaussian function to expand the gradient histogram. Meanwhile, the local
gray level information within each gradient interval is corrected by designing an improved adaptive
contrast enhancement algorithm. By comparing with Adaptive Histogram Equalization (AHE)
and Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithms, EnlightenGAN, and
Wavelet algorithms, the Contrast Enhancement based contrast-changed Image Quality measure
(CEIQ) and Measure of Enhancement (EME) are improved by an average of 56.97%, 10.58%, and
Measure of Entropy (MOE) are improved by an average of 7.74 times. The experimental results
show that the algorithm makes the image details clearer on the basis of image contrast enhancement.
The solid-liquid interface in the image can be clearly observed after contrast enhancement. The
algorithm provides strong support for the study of interface dynamics during the experiment process
of high-temperature materials.

Keywords: image contrast enhancement; gradient three-interval equalization; improved adaptive
contrast enhancement; space materials science experiment

1. Introduction

Microgravity can provide a special experimental environment for materials science
research. Space materials science aims to study in depth the evolution of materials in terms
of, for example, the microstructures, crystal defects, and grain growth, in microgravity, and
at the same time, it pays attention to the changes in the physical and chemical properties
of materials under the environmental factors such as vacuum and strong radiation [1].
Conducting high-temperature material science experiments is an experimental approach in
space material science research. By studying crystal growth and phase transition patterns
of high-temperature materials during the melting and solidification process under micro-
gravity conditions, we can obtain a deeper understanding of the mechanism of material
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growth in microgravity environments and the differences in ground environments, provid-
ing a theoretical basis for the preparation of new materials. High-Temperature Materials
Science Experiment Cabinet (HTMSEC) on the Chinese Space Station (CSS) is used for
experimental research related to high-temperature materials science in microgravity. The
X-ray transmission imaging module in HTMSEC can realize dynamic real-time imaging
and observation of the melting and solidification processes of materials to examine the
morphology and transport efficiency of the solid-liquid interfaces during the opaque phase
transitions of high-temperature materials, so as to gain a deeper understanding of the
dynamic changes of crystal growth.

With the increasing research on the crystal growth of materials, an increasing number
of researchers have combined X-rays with space materials science experiments to explore
the process and properties of crystal growth by utilizing the penetration and absorption
of X-rays. Ngomesse et al. [2] carried out an in situ study of the columnar-to-equiaxed
transitions during directional solidification of Al-Cu alloys in microgravity using X-ray.
It was found that the solidification rate of the alloy in microgravity is slower, while the
grain size is larger, and the columnar crystal region becomes smaller. Soltani et al. [3]
conducted three series of directional solidification experiments on an Al-20wt.%Cu alloy at
different temperature gradients in a horizontal configuration so as to reduce the effects of
gravity-driven phenomena. Real-time in situ characterization was executed using X-ray
transmission. Similarly, Wang et al. [4] characterized eGaIn NDs/TPU composite material
using field emission Scanning Electron Microscope (SEM), X-ray Diffraction (XRD), and
Fourier Transform Infrared spectroscopy (FTIR) techniques.

The solid-liquid interface during melting and solidification of a material is a very
important physical state. It has a great influence on the growth and crystallization processes
of crystals in the melt, and it also determines the microstructures and the kinetic properties
of phase transitions during solidification. By studying the process of solidification and
the formation of solid-liquid interfaces, we can grasp the regularities of crystallization
and control the formation of material solidification structures, distribution of components,
and changes in structure. This provides a theoretical basis for obtaining high-quality
space materials. Observation of the solid-liquid interface morphology of high-temperature
materials in space enables the analysis and study of many problems arising during solid-
ification. Therefore, processing X-ray images of the melting and solidification processes
allows researchers to visualize the crystal growth process more intuitively [5,6].

Histogram equalization algorithms achieve visual enhancement of images by redis-
tributing the gray level distributions of image pixels, but the algorithms have shortcomings
such as loss of image details and over-enhancement. In order to overcome these drawbacks,
improved histogram equalization methods have emerged, such as Adaptive Histogram
Equalization (AHE) and Contrast Limited Adaptive Histogram Equalization (CLAHE).
AHE and CLAHE perform histogram equalization based on local features of the image.
They divide an image into smaller regions and then carry out independent histogram equal-
ization for each image region in order to preserve the local details of the image. CLAHE,
based on AHE, introduces a contrast-limiting mechanism to avoid over-enhancement.
However, these histogram equalization algorithms do not fully consider the information
of neighboring regions of each pixel during contrast enhancement, which will generate
noise in the output image. To solve these problems, Tang and Mat Isa [7] proposed a
dual-sub-image equalization algorithm based on histogram modification. This algorithm
enhances the image contrast without losing the details of the image and also maintains
the brightness of the image. However, it results in distortion of the enhanced image when
the gray level probability distributions of the two sub-images are uneven. Deng et al. [8]
put forward a contrast enhancement method based on adaptive histogram correction and
equalization. The method combines adaptive histogram correction and histogram equaliza-
tion and effectively reduces artifacts and insufficient local detail enhancement caused by
traditional methods. In addition, there have been many variants of the CLAHE and AHE
that address the characteristics of low image contrast and blurry images. For example, Al-
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hajlah et al. [9] used CLAHE and adaptive color correction methods to address the problem
of blurred underwater images caused by limited available light, low resolution, and regular
cameras. Ye et al. [10] proposed a bi-histogram equalization algorithm with adaptive image
correction to solve the problems of image brightness bias, image over-enhancement, and
gray level merging that occur in traditional histogram equalization algorithms.

Although the above image contrast enhancement algorithms can effectively enhance
the details of the darker parts of the image, the details of the brighter parts of the original
image are often not enhanced but even weakened. By considering the possible small bright-
ness differences of low-contrast X-ray images, this paper designed a Gradient Three-Interval
Equalization algorithm combined with Improved Adaptive Contrast Enhancement(GTIE-
IACE) suitable for X-ray image enhancement of high-temperature material experiments,
so that the details of both the darker and brighter parts of an image can be effectively
enhanced and preserved, and the changes in the solid-liquid interfaces during melting and
solidification of high-temperature materials can be clearly observed.

This study is based on experimental images from ground laboratories. It is planned to
conduct experiments on BiFeO3 materials on CSS in 2024. Solidification of BiFeO3 materials
in space will be observed in real time using X-ray transmission imaging. Yet, after the
space experiments are conducted in 2024, the corresponding experimental images will be
processed using the proposed method, in order to obtain clear and unambiguous results of
the space experiments.

2. Melting and Solidification Experiment of BiFeO3 Materials

In this paper, the melting and solidification experiments of bismuth ferrite (BiFeO3)
were conducted in HTMSEC. The HTMSEC is shown in Figure 1.
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Figure 1. Schematic diagram of HTMSEC (adapted from [11]). HTMSEC mainly includes a high-
temperature furnace module, a sample management module, an X-ray transmission imaging module,
a control module, and other subsystems (adapted from [12]).

The X-ray transmission imaging module relies on the different thicknesses and X-ray
absorption contrast of the material sample itself to analyze its material structure. Materials
with different chemical compositions absorb X-rays with different degrees of effective-
ness [13]. In this paper, the transmission imaging of BiFeO3 materials was examined. Since
the melting point of BiFeO3 is 960 ◦C, it is not possible to obtain high-definition X-ray
images using close-range transmission imaging. The molten BiFeO3 sample should be kept
at a certain distance from the X-ray source and the detector [14–16]. The imaging principles
are illustrated in Figure 2.
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Figure 2. Schematic diagram of the X-ray transmission imaging module.

The X-ray sample box unit consists of a sample unit for placing the sample, a heating
unit, an insulation unit, and a seal between the lid and the box [17]. The X-ray Sample
Cartridge is mainly composed of a top cover plate and a bottom plate with a transparent
rectangular window to facilitate the observation of experimental phenomena (Figure 3a).
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Figure 3. (a) Schematic diagram of the top cover and the lower plate of the X-ray Sample Cartridge;
(b) The high-temperature-resistant ceramic plate.

The sample heating unit consists of a metal heating wire and a high-temperature-
resistant ceramic plate with equally spaced grooves (Figure 3b). The metal heating wires
are wound around the grooves of the high-temperature-resistant ceramic plate to form
a distribution pattern with varying spacing patterns [17]. X-ray transmission imaging
technology makes use of coherent scattering resulting from the interactions between X-rays
regularly arranged atoms inside the melt, so as to observe the structure and interface of
the metal melt during melting and solidification. In this way, information on the atomic
arrangement of the melt can be obtained, and the characteristic parameters reflecting the
structure can be derived.

The sparse and dense winding of the heating wire, the design of the insulation unit,
and the electronically controlled heating make it easier to attain a controlled temperature
gradient. By heating some parts of the sample at high temperatures, the sample is subjected
to different temperature gradients, and a semi-molten and semi-solidified state can be
achieved. Afterward, the experimental process is observed through the distinctive densities
of the same substance in different states and the principles of X-ray transmission imag-
ing [17]. The melting point of pure BiFeO3 is about 960 ◦C. Co-solvent addition can reduce
the melting point up to as low as 800 ◦C. By utilizing this property, low-melting-point
BiFeO3 is placed on the left and the high-melting-point counterpart is placed on the right.
Upon heating, the low-melting-point BiFeO3 becomes molten, and the solid-liquid interface
appears. The solid-liquid interfaces of the unmelted and molten BiFeO3 can be observed
using the X-ray transmission imaging module. The heating process is shown in Figure 4.
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Figure 4. Schematic diagram of the heating process of high-temperature materials.

After visualizing the data obtained by the X-ray transmission imaging module, the
images of the melting and solidification processes of BiFeO3 are obtained as shown in
Figure 5. Due to the low contrast of the image obtained by the X-ray transmission imaging
module, the solid-liquid interface is unclear, and it is not possible to accurately determine
the morphological transformations of BiFeO3 during melting and solidification based
on the image. Therefore, it is necessary to propose effective algorithms to process the
X-ray images.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 18 
 

 
Figure 4. Schematic diagram of the heating process of high-temperature materials. 

After visualizing the data obtained by the X-ray transmission imaging module, the im-
ages of the melting and solidification processes of BiFeO3 are obtained as shown in Figure 
5. Due to the low contrast of the image obtained by the X-ray transmission imaging module, 
the solid-liquid interface is unclear, and it is not possible to accurately determine the mor-
phological transformations of BiFeO3 during melting and solidification based on the image. 
Therefore, it is necessary to propose effective algorithms to process the X-ray images. 

 

 

 
Figure 5. X-ray image sequence of the experimental process of melting and solidification of BiFeO3. 

3. Image-Enhancement-Related Algorithms 
3.1. Histogram Equalization 

Histogram equalization is an image processing technique used to adjust the contrast 
of an image in order to transform the histogram of the original image into a balanced 
distribution. An image with a non-uniform gray level probability density distribution is 
turned into a target image with a uniform probability density distribution by seeking a 
certain gray level transformation. The gray level histogram of an image can be represented 
as a one-dimensional discrete function, and it describes the frequency or number of each 
gray level in the image [18]. It can be wri en as: 

ℎ(푘) = 푛          푘 = 0,1,2, . . . , 퐿 − 1 (1)

where, 푛  is the number of pixels with a gray level of 푘 in image 푓(푥,푦), 퐿 denotes the 
total number of gray levels, and the height of each bin column of the histogram corre-
sponds to 푛 . The gray level histogram tells the distributions of all gray levels in the orig-
inal image. Based on the histogram, the normalized histogram is further defined as the 
relative frequency of occurrences of gray levels: 

푝 (푘) =
푛
푁

   푘 = 0,1,2, . . . , 퐿 − 1 (2)

where, 퐿 is the total number of gray levels, 푛  denotes the number of pixels of the 푘 th 
gray level, and 푁 is the total number of pixels in the original image. Subsequently, the 
cumulative distribution function of the normalized histogram of the image is calculated: 

푠 = 푇(푟 ) = ∑ 푃 푟 = ∑      0 ≤ 푟 ≤ 1    푘 = 0,1,2, . . . , 퐿 − 1  (3)

Figure 5. X-ray image sequence of the experimental process of melting and solidification of BiFeO3.

3. Image-Enhancement-Related Algorithms
3.1. Histogram Equalization

Histogram equalization is an image processing technique used to adjust the contrast
of an image in order to transform the histogram of the original image into a balanced
distribution. An image with a non-uniform gray level probability density distribution is
turned into a target image with a uniform probability density distribution by seeking a
certain gray level transformation. The gray level histogram of an image can be represented
as a one-dimensional discrete function, and it describes the frequency or number of each
gray level in the image [18]. It can be written as:

h(k) = nk k = 0, 1, 2, . . . , L − 1 (1)

where, nk is the number of pixels with a gray level of k in image f (x, y), L denotes the total
number of gray levels, and the height of each bin column of the histogram corresponds
to nk. The gray level histogram tells the distributions of all gray levels in the original
image. Based on the histogram, the normalized histogram is further defined as the relative
frequency of occurrences of gray levels:

pr(k) =
nk
N

k = 0, 1, 2, . . . , L − 1 (2)
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where, L is the total number of gray levels, nk denotes the number of pixels of the k th
gray level, and N is the total number of pixels in the original image. Subsequently, the
cumulative distribution function of the normalized histogram of the image is calculated:

sk = T(rk) = ∑k
j=0 Pr

(
rj
)
= ∑k

i=0
ni
N

0 ≤ rk ≤ 1 k = 0, 1, 2, . . . , L − 1 (3)

where, rk =
k

L−1 , and it denotes the gray level after normalization, and k denotes the gray
level before normalization. The original gray level is mapped to the new gray level by the
transformation function T(rk), while the new gray level is used to replace the corresponding
gray level in the original image to obtain an equalized image.

3.2. Wavelet Denoising

Wavelet denoising performs local denoising of signals or images by combining wavelet
transform and thresholding. Wavelet denoising has the advantages of multi-scale adaptive-
ness, time-frequency localization, and non-stationary signal processing. Wavelet denoising
can better preserve the detailed information of the signal or image while removing noise.
Its flowchart is shown in Figure 6.
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Figure 6. Schematic diagram of wavelet denoising.

The original signal is represented as a discrete wavelet transform (DWT):

X = ∑N−1
i=0 aN,iϕN,i(t) + ∑J

j=1 ∑2j−1−1
k=0 dj,kψj,k(t) (4)

where, aN,i denotes the coefficient of the wavelet function ϕN,i(t) at scale N, dj,k is the
coefficient of the wavelet function ψj,k(t) at scale 2−j, N denotes the lowest resolution level,
and J is the total level of wavelet decomposition.

The soft thresholding method is a thresholding technique commonly used in wavelet
denoising to reduce the magnitude of the wavelet coefficients and thus reduce noise. It can
effectively suppress noise while preserving the details of the signal. This method is based
on thresholding the magnitude of the wavelet coefficients. Specifically, smaller wavelet
coefficients are set to zero, thus suppressing the effects of noise. In the meantime, larger
wavelet coefficients preserve the detailed features of the signal, so that the denoised signal
is high-quality and high-definition.

For wavelet coefficient dj,k, soft thresholding is expressed as follows:

d′ j,k = sign
(

dj,k

)
·max

(∣∣∣dj,k

∣∣∣−T, 0
)

(5)

where, d′ j,k is the wavelet coefficients after soft thresholding, sign
(

dj,k

)
is the sign function

of dj,k,
∣∣∣dj,k

∣∣∣ is the absolute value of dj,k, and T is the soft threshold. The core of soft
thresholding is that if the absolute value of dj,k is less than the threshold T, then it is set
to zero. Otherwise, its original value is retained. The soft thresholding method helps to
remove the low-amplitude noise components in the wavelet coefficients while retaining the
larger-amplitude components of the signal, thus realizing signal denoising. Choosing the
right threshold value T usually requires adjustments according to the specific applications
and signal characteristics.
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4. Gradient Three-Interval Equalization Image Contrast Enhancement Algorithm
Combined with Improved Adaptive Contrast Enhancement

In order to enhance the contrast of X-ray images in melting and solidification experi-
ments of high-temperature materials, this paper proposes the GTIE-IACE. This algorithm
aims to improve overall image contrast and enhance local detail definition. The flowchart
of the GTIE-IACE algorithm is shown in Figure 7.
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4.1. Image Preprocessing

First of all, the images are denoised. Images of melting and solidification experiments
of high-temperature materials are preprocessed via wavelet denoising with the help of soft
thresholding. The threshold is selected based on the average noise intensity to filter out
the noise below the threshold. The mean value of an image is calculated and used as an
estimate of the noise. The threshold is then selected based on the noise level. The process
can be expressed using the following equations:

T = α·λ = α· 1
N ∑N

i=1 Ii (6)

d′ j,k = sign(dj,k)·max(|dj,k| − α· 1
N ∑N

i=1 Ii, 0) (7)

where, N is the number of pixels in the image, Ii is the intensity of the i th pixel, and α
denotes a constant with a value of 2.

4.2. Improved Adaptive Contrast Enhancement(IACE)

Different from traditional global contrast enhancement algorithms, the adaptive con-
trast enhancement algorithm [19] adjusts the intensity of contrast enhancement based on
local features. Combined with the adaptive contrast enhancement algorithm to improve
the dynamic range utilization of the image, the local gray level information within each
gradient level is corrected. Assuming x(r, c) is a pixel point in the image, the image win-
dow size is set to (2n + 1) ∗ (2n + 1) centered on x(r, c). The local mean and local variance
within each gradient level are represented as follows:

µx(r, c) =
1

(2n + 1)2 ∑r+n
k=r−n ∑c+n

l=c−n x(k, l) (8)

σ2
x(r, c) =

1

(2n + 1)2 ∑r+n
k=r−n ∑c+n

l=c−n[x(k, l)− µx(r, c)]2 (9)

where, µx(r, c) is the mean value in the window region centered on pixel point x(r, c),
σ2

x(r, c) is the variance in the window region centered on pixel point x(r, c), and (2n + 1)2

is the total number of pixels in the window region centered on pixel point x(r, c). The
mean value can be approximated as the background part, when x(k, l)− µx(r, c) is the
high-frequency part. Multiplying the gain factor for the high-frequency part can enhance
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the details in the image. In this paper, we modified the calculation method of the gain factor
based on adaptive contrast enhancement so that the gain factor is inversely proportional to
the local mean-square error. This processing can be represented as follows:

f (r, c) = µx(r, c) +
D

σx(r, c)
[x(r, c)− µx(r, c)] (10)

In the high frequency part of the image, the local variance is larger and the value of
the gain factor is smaller. However, in the smoothed region, the local mean-square error
is smaller, and the gain factor increases, which causes the amplification of the noise, so it
is necessary to make some limitations on the maximum value of the gain factor to obtain
better results. In this paper, the global mean-square error is used as the value of parameter
D to avoid the gain factor being too large.

After being processed by the IACE, the contrast of the image is enhanced, resulting in
a new gray level mapping.

4.3. Gradient Three-Interval Equalization Algorithm Combined with Improved Adaptive Contrast
Enhancement (GTIE-IACE)

After applying the IACE to obtain a new gray level mapping of the image, the image
gradient is divided into three intervals. By dividing the gradient into three intervals, the
details and contrast of the image in different gradient ranges are better displayed and
enhanced.

First, the gradient information of the pixel points in the image is obtained by perform-
ing a convolution operation on the image by the Sobel operator. Given that the gradient
of the image at (x, y) is denoted as G(x, y), and that I is the input image, the following
is obtained:

Gx = gx ∗ I =

−1 0 1
−2 0 2
−1 0 1

 ∗ I Gy = gy ∗ I =

−1 −2 −1
0 0 0
1 2 1

 ∗ I (11)

G(x, y) =
√

Gx
2 + Gy

2 (12)

After calculating the gradient of each pixel, the Canny edge detection algorithm is
used to further emphasize the edges of the image, retain the edge gradients, and set the
non-edge regions to zero.

The gradient strengths are categorized into three classes. Smaller gradient strengths
indicate smooth regions or insignificant edge structures in the image. Regions with moder-
ate gradient strengths contain some slight edges or texture features in the image. Lastly,
regions with higher gradients have noticeable edges, textures, or structures. The gradient
strength is divided into three intervals by two thresholds, T1 and T2:

Glg = {G(x, y)|0 < G(x, y) ≤ T1, ∀G(x, y)ϵG} (13)

Gmg = {G(x, y)|T1 < G(x, y) ≤ T2, ∀G(x, y)ϵG} (14)

Ghg = {G(x, y)|G(x, y) > T2, ∀G(x, y)ϵG} (15)

Edge points often correspond to the boundaries of objects, textures, or structures in an
image, while these boundaries are associated with details of interest, so a large number of
edge points are usually present when a region contains rich details [20]. In this paper, the
ratio of the number of edge point pixels within each gradient interval to the total number
of edge point pixels was used as the weighting factor for each gradient interval. This can
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more accurately reflect the degree of contribution of each gradient interval to the image
details. This processing is expressed as:

w(x, y) =


w1, 0 < G(x, y) ≤ Glg
w2, Glg < G(x, y) ≤ Gmg
w3, otherwise

(16)

where, w1, w2, and w3 are the weighting factors of the three gradient intervals. Each pixel
in the original image is assigned a specific gradient weighting factor based on the gradient
strength, and the weighting coefficient is determined according to the percentage of edge
points in the corresponding gradient interval. This processing is expressed as:

wi =
Ni

∑3
i=1 Ni

i = 1, 2, 3 (17)

where, Ni is the number of edge points for each gradient level. The number of edge point
pixels for each gray level in each gradient interval is shown in Figure 8.
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The histogram of edge points in the gradient interval for an X-ray image with unclear
texture details is usually in the form of a single narrow peak, as shown in the three panels
of Figure 8. If the peak shape becomes flat, the distribution of pixels of different gray levels
within the gradient level will be more even and the texture details of the image become
sharper. The distribution of the number of pixels at the edge points of each gray level in
the gradient interval is processed using a Gaussian function, which is defined as:

f (x) =
1√
2πσ

e−
(x−µ)2

2σ2 (18)

where, x is a random variable, and µ and σ are the parameters of the Gaussian function. µ
is the mean value of x and it is used to adjust the positions of the Gaussian peaks, while σ
is the variance of x and it determines how flat the peaks are. The larger the value of σ is,
the flatter the peak becomes. In this paper, the values of µ and σ are defined as follows:

µ = ∑l−1
i=0 i·p(i) (19)

σ =
1
β

√
∑l−1

i=0(i − µ)2 p(i) (20)

where, l denotes all gray levels, i denotes the i th gray level. p(i) is the probability density
of the i th gray level, which is the number of edge points within the i th gray level divided
by the total number of edge points, and β is a constant. When σ becomes larger, the
image detail enhancement is more significant. To prevent excessive sharpening of the
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image, a value of β = 1.5 is adopted. According to Figure 9, after using the Gaussian
function to process the histograms of edge points in different gradient intervals, the peaks
become flatter.
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After obtaining the numbers of edge pixel points for all grey levels in different gradient
intervals, weighted summation is performed using the relative weights of the gradients
and the numbers of edge pixel points. This can be expressed by the below equation:

N = ∑3
i=1 wini (21)

where, ni denotes the number of edge points in the i th gradient interval, and wi denotes
the relative weight of the edge points in the i th gradient interval.

Lastly, the number of edge points at each grey level within different gradient intervals
is statistically analyzed to obtain the distribution of edge points at each grey level within
each gradient interval. It can be written as:

num(i, j) = ∑M
r=1 ∑n

c=1 δ(g(r, c)− g)·δ( f (r, c)− f ) (22)

Assuming the size of the image is M ∗ N and the position of pixels is x (r, c). num(i, j)
denotes the total number of edge points in the j th grey level and the i th gradient level.
g(r, c) denotes the gradient value at pixel point x(r, c). As shown in Equation (10), f (r, c)
denotes the gray level at pixel point x(r, c). For each pixel point, δ(g(r, c)− g) is used to
determine whether the gradient level is equal to g, and δ( f (r, c)− f ) is used to determine
whether the grey level is equal to f . When both the gradient value and gray level satisfy
the condition, the value of the item is 1; otherwise, it is 0. Due to the use of the Canny edge
detection algorithm to set the gradient value of non-edge pixels to zero, by summing up all
the pixel points that satisfy the condition, the number of edge points in the j th grey level
and the i th gradient interval can be obtained.

In the GTIE-IACE process, the number of edge points in each gradient interval is used
as the relative weight and then multiplied by the number of edge points at each grey level
in each gradient interval. This aims to emphasize the edges in each gradient interval in
order to better preserve and enhance these features. It can be written as:

Hj = ∑3
i=1 wi·numij (23)

H =
[
w1 w2 w3

]num1,1 num1,2 · · · num1,256
num2,1 num2,2 · · · num2,256
num3,1 num3,2 · · · num3,256

 (24)

where, wi is a row vector, in which each element represents the ratio of the number of edge
points in the corresponding gradient level relative to the total number of edge points, and
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numij is a 3 × 256 vector, where each row corresponds to a gradient level and each column
corresponds to a grey level. As shown in Equation (22), in the numij matrix, the element
represents the number of edge points in the i th gradient interval and the j th grey level.
numij can be expressed more intuitively using a histogram (Figure 8). Each element of Hj
represents the degree of contribution of the different gradient levels to the image details.
This vector serves as a comprehensive representation of the edge point information at all
different gradient levels. Based on this, the relative frequency of gradient level occurrences
is further defined as follows:

pr(j) =
Hj

N
j = 0, 1, 2, . . . , L − 1 (25)

Finally, the cumulative distribution function of the normalized image is computed.
The original gradient levels are mapped to the new gradient levels through transformation,
and the gradient levels in the original image are replaced by the new ones. The GTIE-IACE
algorithm is illustrated in Figure 10.
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5. Evaluation Metrics

In the process of melting and solidification experiments of high-temperature mate-
rials, there is no reference image available for comparison. Therefore, the solid-liquid
interface image contrast enhancement algorithm was evaluated in this paper using the
Non-Reference Image Quality Assessment (NR-IQA).

5.1. Contrast Enhancement Based Contrast-Changed Image Quality Measure (CEIQ)

In the existing NR-IQA studies, image contrast is a very important metric [21]. Jia Yan
et al. [22] proposed an effective metric to evaluate the performance of contrast enhancement
algorithms in the absence of reference images.

The method first generates an enhanced image and calculates the similarity between
the original and enhanced images using the structural similarity index (SSIM) as the first
feature. Subsequently, the entropy and cross-entropy between the original and enhanced
images are calculated separately to obtain the sum of the four features. Finally, a regression
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module is used to fuse these five features to obtain the evaluation score. The similarity
calculation of SSIM is as follows:

SSIM
(

Ig, Ie
)
= L

(
Ig, Ie

)α ∗ C
(

Ig, Ie
)β ∗ S

(
Ig, Ie

)λ (26)

where, Ig and Ie are two images, L, C, and S represent the similarity between the two
images in terms of brightness, contrast, and structure, and α, β, and λ denote the relative
importance of the brightness, contrast, and structural similarity in SSIM. CEIQ uses SSIM
as its first evaluation feature.

Histograms provide image contrast information, so CEIQ utilizes histograms as the
second metric. Entropy is a concept in information theory used to measure the uncertainty
or information content of a random variable. It is a metric that quantifies the probability
distribution of the random variable. The histograms of both high-contrast and contrast-
enhanced images tend to have uniform distributions. In other words, they have high
entropy. The entropy of a histogram can be expressed as:

E = −∑b
i=0 h(i)log2h(i) (27)

where, b denotes the value of the bin of the histogram. By using cross-entropy, the re-
lationship between the input grey level histogram hg and the equalized histogram he is
considered, and it is calculated by the formula below:

Ege = −∑b
i=0 hg(i)log2he(i) (28)

Eeg = −∑b
i=0 he(i)log2hg(i) (29)

For any image, CEIQ utilizes image similarity Sge, histogram-based entropy Eg and
Ee, and cross entropy Ege and Eeg to give a feature vector f . Next, with the help of feature
vectors and subjective scores of k images {( f1, Q1), ( f2, Q2), · · · , ( fk, Qk)}, a training set
can be constructed, and a regression function can be learned. CEIQ uses the LIBSVM
package and linear kernels to implement support vector regression and uses the regression
model to evaluate the quality of input images.

5.2. Measure of Enhancement (EME)

Panetta et al. [23] proposed another NR-IQA, a contrast-based enhancement metric
to quantify the value of contrast enhancement obtained in an image. The EME can be
expressed as:

EME =
1

k1k2
∑k1

m=1 ∑k2
n=1 20log

Iw
max;m,n

Iw
min;m,n

(30)

where, k1, k2 are the number of blocks in the horizontal and vertical directions of the image.
Iw
min;m,n, Iw

max;m,n are the maximum and minimum gray levels within the image blocks. A
higher EME score indicates that the algorithm gives a better contrast enhancement effect.

5.3. Measure of Entropy (MOE)

The entropy of an image can be considered as a statistical parameter characterizing
the complexity of the image texture and information density. The entropy of an image can
be expressed as:

H(x) = −∑M
i=1 p(i) ∗ log2 p(i) (31)

where, H(x) represents the entropy of the image, p(i) represents the probability of the i th
gray level occurring in the image. H(x) is utilized to assess the amount of information in
the image. A higher entropy value indicates a more uniform distribution of pixel values,
resulting in a higher level of texture and detail in the image [24].
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6. Experimental Results

As shown in Figure 11, more detailed information can be observed after image en-
hancement using the GTIE-IACE algorithm. In contrast, although HE and CLAHE [21] can
equalize the histogram of the image, these two algorithms are not effective in processing
the microstructural changes during melting and solidification of BiFeO3.
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Figure 11. Processing of BiFeO3 solid-liquid interface images using different contrast enhancement
algorithms.

Oscillations and artifacts appear during wavelet decomposition and reconstruction.
The wavelet transform is an operation based on local windows. When the window intersects
with the image boundary, this results in incomplete data at the boundary, thus introducing
oscillations and artifacts.

EnlightenGAN is an efficient unsupervised generative adversarial network that pro-
vides satisfactory low-light image enhancement by using deep learning and generative
adversarial network techniques [25]. However, EnlightenGAN is not effective in processing
images of melting and solidification of high-temperature materials. Although the overall
brightness of the image is improved, there is no significant change in the contrast and the
detail information is not clear.

The GTIE-IACE algorithm proposed shows a better performance. The algorithm is
able to more effectively enhance the details of the melting and solidification processes while
improving the brightness and contrast of the image. This means that the GTIE algorithm
has an advantage in extracting and enhancing the key details and hence is a better choice
for processing this particular type of image.

According to the histograms, the grey level values of the image enhanced using
the GTIE algorithm effectively cover the entire grey level range. This indicates the best
enhancement performance among different algorithms (Figure 12).

A gradient histogram is a statistical graph that describes the distribution of gradients
of an image. In image processing, the gradient indicates the magnitude of pixel intensity
changes in an image. The shape of the gradient histogram reflects the edge features and
texture information of the image, and it helps to understand the structure and content of
the image. Analyzing gradient histograms is a common means in image processing and
computer vision tasks. The gradient histograms of enhanced high-temperature material
images using different contrast enhancement algorithms are shown in Figure 13. The gradi-
ent histograms of the image processed using GTIE-IACE have a more uniform distribution,
highlighting image details at different gradient levels.
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Figure 13. Gradient histograms of BiFeO3 solid-liquid interface images processed by different contrast
enhancement algorithms.

CEIQ, EME, and MOE are used to evaluate the effectiveness of the image processing
algorithms in contrast enhancement. A higher score indicates that the algorithm gives a
better contrast enhancement effect. The NR-IQA for each image in Figure 11 is shown in
Table 1. Evaluation scores of different image enhancement algorithms, according to which,
the GTIE-IACE algorithm performs the best in terms of image contrast enhancement.

After processing using the proposed solid-liquid interface image contrast enhancement
algorithm, the image sequence of the BiFeO3 melting and solidification processes is shown
in Figure 14.
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Table 1. Evaluation scores of different image enhancement algorithms.

Method
Evaluation Scores

CEIQ EME MOE

Original image (a) 2.289 3.765 6.065
HE (b) 4.493 12.037 7.801

CLAHE (c) 4.975 6.181 7.139
EngligntenGAN (d) 4.201 14.2223 7.009

Wavelet (e) 3.303 1.8334 6.412
GTIE-IACE (f) 6.512 41.0593 7.804
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Figure 14. BiFeO3 solid-liquid interface images processed by GTIE-IACE. (a) shows the beginning of
heating BiFeO3; (b–f) shows the heating process of BiFeO3; (g) shows the stop of heating BiFeO3 and
the beginning of solidification; (h) shows the solidification process of BiFeO3; (i) shows the complete
solidification of BiFeO3 and the end of the experiment.

Crystal growth kinetics describes the relationship between the velocity of solid-liquid
interface movement and the driving force, where the driving force is usually expressed as
undercooling, which can be obtained through temperature gradients. In order to accurately
study crystal dynamics, a clear solid-liquid interface is a necessary condition. If the solid-
liquid interface is not clear, it will affect the accuracy of the kinetic function.

The algorithm proposed in this paper significantly improves the contrast of the solid-
liquid interface in the image, thereby obtaining a clearer solid-liquid interface. It can
better understand the growth mechanism of crystals and extract more accurate crystal
dynamics functions. By gaining a deeper understanding of the crystal growth mechanism,
we can develop corresponding plans to change and optimize the growth process, in order
to improve the performance of the crystal. The solid-liquid interface contrast enhance-
ment algorithm plays a crucial role in this process, helping us better understand crystal
dynamics and providing important support for optimizing growth mechanisms to improve
crystal performance.

During the melting and solidification of BiFeO3, the solid-liquid interface marks the
boundary between solid crystals and liquid melts. In Figure 14a–i, low-melting-point
BiFeO3 is on the left side of the images. The material starts to melt at 800 ◦C. On this side,
BiFeO3 is in the liquid or semi-solid state during the melting process. On the right side is
high-melting-point BiFeO3, which does not melt during the experiment. When BiFeO3 on
the left side begins to melt, a BiFeO3 solid-liquid interface will be created so that the crystal
growth process can be observed.

Changes in the density of the melt cause changes in the X-ray transmission images,
usually because heating causes varying densities over different areas of the melt and
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changes in X-ray absorption. The denser melts appear as darker areas in the images. In
Figure 14a, the marked area on the left side of the image is darker and denser, and it shows
stronger X-ray absorption. In the meantime, BiFeO3 still maintains a solid structure at this
time and has not begun to melt. The color of BiFeO3 in Figure 14b becomes lighter, and the
crystals start to melt. The melting phenomenon of BiFeO3 in Figure 14c is more obvious.
After heating, some crystals of BiFeO3 have completely melted. The molten BiFeO3 absorbs
less X-rays, and it is in a transparent state. Furthermore, it exhibits a tendency to migrate
to the right. From Figure 14b–f, it can be observed that, with the increase in temperature,
BiFeO3 melts, and bubbles generated during the melting process appear in the red marked
area on the left side. After melting, cooling and solidification are carried out, as shown in
Figure 14g–i, with the gradual decrease in temperature, gradual solidification of the melt
is observed. The melt region gradually shrinks and eventually changes to a solid state.
Eventually, a solidified state is noted in Figure 14i. It marks the completion of the phase
transition process.

By observing changes in melting density and X-ray transmission images, the melting
and solidification characteristics of BiFeO3 during heating and cooling processes can be
revealed. These observation results can provide guidance for space material design and
process control.

7. Conclusions

A gradient three-interval equalization image enhancement algorithm combined with
improved adaptive contrast enhancement was proposed to enhance the contrast and edge
details of X-ray images. The algorithm adjusts the intensity of contrast enhancement based
on local features and improves the calculation method of the gain factor in the adaptive
contrast enhancement algorithm. Lastly, it introduces a weight calculation strategy for
the three gradient intervals. The degrees of contribution of different gradient levels to
the image details are adopted as the weights, so the image enhancement process is more
targeted. X-ray images of BiFeO3 melting and solidification processes were used for testing
the proposed algorithm. The experimental results show that, from the images enhanced by
the GTIE-IACE, the detail changes during melting and solidification can be more clearly
observed. It should be pointed out that the details of image regions with small differences in
brightness changes are also well enhanced. Compared with the traditional image contrast
enhancement algorithms, the proposed GTIE-IACE effectively avoids issues such as over-
enhancement of global contrast and insignificant contrast enhancement of image regions
with small gradient changes. From the processed X-ray images of BiFeO3 melting and
solidification processes, distinct solid-liquid interfaces, and crystal growth processes can be
clearly observed. By enhancing the contrast and edge details of images, researchers can
analyze the phase transition behavior of crystalline materials more easily. This is of great
significance for carrying out research based on real-time observation of high-temperature
material experimental processes on the space station.
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