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Abstract: This article explores the impact of automation on environmental sensing, focusing on
advanced technologies that revolutionize data collection analysis and monitoring. The International
Union of Pure and Applied Chemistry (IUPAC) defines automation as integrating hardware and soft-
ware components into modern analytical systems. Advancements in electronics, computer science,
and robotics drive the evolution of automated sensing systems, overcoming traditional limitations
in manual data collection. Environmental sensor networks (ESNs) address challenges in weather
constraints and cost considerations, providing high-quality time-series data, although issues in inter-
operability, calibration, communication, and longevity persist. Unmanned Aerial Systems (UASs),
particularly unmanned aerial vehicles (UAVs), play an important role in environmental monitoring
due to their versatility and cost-effectiveness. Despite challenges in regulatory compliance and
technical limitations, UAVs offer detailed spatial and temporal information. Pollution monitoring
faces challenges related to high costs and maintenance requirements, prompting the exploration
of cost-efficient alternatives. Smart agriculture encounters hurdle in data integration, interoper-
ability, device durability in adverse weather conditions, and cybersecurity threats, necessitating
privacy-preserving techniques and federated learning approaches. Financial barriers, including
hardware costs and ongoing maintenance, impede the widespread adoption of smart technology
in agriculture. Integrating robotics, notably underwater vehicles, proves indispensable in various
environmental monitoring applications, providing accurate data in challenging conditions. This
review details the significant role of transfer learning and edge computing, which are integral com-
ponents of robotics and wireless monitoring frameworks. These advancements aid in overcoming
challenges in environmental sensing, underscoring the ongoing necessity for research and innovation
to enhance monitoring solutions. Some state-of-the-art frameworks and datasets are analyzed to
provide a comprehensive review on the basic steps involved in the automation of environmental
sensing applications.

Keywords: deep learning; edge computing; environment sensing; transfer learning

1. Introduction

Automated sensing systems optimize processes, minimizing human intervention,
ensuring uniformity, and facilitating remote surveillance. According to the International
Union of Pure and Applied Chemistry (IUPAC), “automation” denotes mechanization with
systematic control, emphasizing the coordination of sequential manipulations [1]. Modern
analytical systems exhibit varying degrees of mechanization, incorporating both hardware
and software components. However, the interpretation of “automation” in the analytical
systems literature lacks consistency. Advancements in electronics, computer science, and
robotics propel the evolution of automated sensing systems, driving their progression [2].
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Traditionally, data collection was manual, restricted by weather and cost, limiting
coverage. A discussion about traditional methods and the transformative role of envi-
ronmental sensor networks (ESNs) is reported in [3]. These wireless networks enhance
data observation, providing high-quality time-series data. Yet, challenges like interop-
erability, calibration, communication, and longevity hinder the broad use of ESNs and
robots in ecosystem sciences. Solving these problems is crucial for the widespread use of
environmental robots.

Researchers are focusing on creating better smart sensors that can measure things
accurately in tough places like hospitals, space, and weather stations. These sensors
help monitor machines and devices, but there are challenges, especially with wireless
sensors. They face issues like tracking problems, being reliable, and working well in harsh
conditions. Sometimes, they have trouble communicating, leading to delays and signal
loss. Another issue is about how much area they can cover, affecting how well they work.
Solving these problems is important to make a network that works well and is affordable
for Industry 4.0 [4].

The challenges in environmental sensing systems include high costs and maintenance
requirements for traditional monitoring instruments, with a need for cost-efficient solutions.
While expensive systems provide accurate data, low-cost alternatives often compromise
accuracy. Obtaining 3-dimensional air pollution statistics poses challenges due to cost and
power consumption. Passive monitoring systems lack the flexibility and quality offered by
active monitoring. Limited flexibility and scalability in existing systems hinder adaptability
to changes in sensing node classes. Power consumption, particularly in outdoor sensor
networks, remains a concern, requiring sustainable energy sources and ongoing research
efforts [5,6].

Monitoring water pollution through sensor networks offers a simplified approach.
The primary challenge lies in detecting pollution, often determined by monitoring values
surpassing defined thresholds. Distinguishing between natural pollution concentrations
and those from specific sources poses a complexity for sensor nodes. To address this,
cutting-edge techniques are introduced. Methods based on hypothesis testing, as presented
in [7,8], aim to enhance accuracy and reliability in identifying water pollution, thereby
advancing robust monitoring systems.

In smart agriculture, data from various sources need to work together seamlessly.
These data, coming from farms, animal industries, and businesses, often come in different
formats, making integration a challenge. Achieving interoperability—ensuring diverse
data types can work together—is crucial for enhancing the value of widely distributed
agricultural data [9]. For successful communication among different devices, intercon-
nected and interoperable devices play a vital role in improving the overall efficiency of
the system through cross-technology communication [10]. As smart agriculture advances,
addressing these challenges becomes crucial for maximizing the benefits of diverse and
distributed data.

Again, setting up a smart farming system in extensive open areas comes with big
challenges. All gadgets like IoT devices, wireless sensors, machinery, and more have to face
tough weather conditions such as heavy rain, extreme temperatures, humidity, and strong
winds. These conditions can harm electronic parts or mess up how they work [11]. One
way to handle this is by making strong and durable covers for these expensive devices. This
helps protect them from real-world conditions, ensuring they can keep working well [12].
This approach focuses on keeping important equipment safe so they can do their job in
tough agricultural settings.

Smart farming, dispersed and vulnerable, encounters cyber threats such as eavesdrop-
ping and denial-of-service attacks, risking privacy and system integrity. Addressing these
concerns requires implementing privacy-preserving techniques and federated learning
approaches [13]. Securing smart agriculture is essential for safeguarding sensitive data and
ensuring the reliable operation of these advanced farming systems.
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Adopting smart technology in agriculture faces challenges due to costs. Setting
up smart systems involves significant expenses for hardware like robots, drones, and
networks. Skilled labor adds to the bill for performing tasks. Subscriptions for networks
and software, even with free options, bring ongoing expenses. Maintenance is crucial,
further increasing costs. Overcoming these financial barriers is essential for successful
adoption in agriculture [14,15].

In various environmental monitoring applications, robots are proving effective in
overcoming limitations inherent in traditional methodologies. Scientists increasingly rely
on robotic systems as indispensable tools for data collection, providing fresh insights into
our planet’s environmental processes. From exploring deep oceans to tracking algal blooms,
monitoring climate variables, and studying remote volcanoes, today’s robots play diverse
roles [16].

New technological developments have made Unmanned Aerial Systems (UASs) a
great choice for monitoring. They can capture the needed information for different tasks us-
ing a small investment. These systems are versatile, adaptable, and flexible, outperforming
traditional manned airborne systems or satellites. Additionally, UASs can be quickly and
repeatedly used to gather detailed information about specific areas [17]. UASs cannot cover
as much area as satellites, but they give highly detailed information in both space and time,
which satellites cannot match. Advancements in Unmanned Aerial Systems (UASs) and
sensor technologies have broadened applications, enabling multispectral, hyperspectral,
thermal, SAR, and LiDAR sensing. Recent UAS uses include land cover mapping, veg-
etation monitoring, precision farming, atmospheric observations, disaster mapping, soil
erosion assessment, and change detection [18–21]. However, using UAVs in construction
comes with challenges. These include dealing with rules and laws, managing technical
limitations, overcoming data processing issues, ensuring proper training, and addressing
safety concerns.

In recent times, there has been an increase in using underwater robots, such as Au-
tonomous Underwater Vehicles (AUVs) [22,23], Remotely Operated Vehicles (ROVs) [24],
and Autonomous Surface Vehicles (ASVs) [25] when on the water’s surface, to assess water
quality. These robots, armed with various sensors, can monitor water quality in oceans,
rivers, and lakes.

Various underwater robots, such as REMUS and AutoSub [26,27], were made to
measure the ocean. Initially, they could only work briefly (e.g., 7 h for REMUS and 12 h
for AutoSub). However, they set the stage for research in designing integrated systems,
navigating without GPS, and planning missions. This allowed them to gather accurate
environmental data in tough conditions for longer periods [28].

An AUV (Autonomous Underwater Vehicle) is a super-smart robot that goes under-
water all by itself. It does cool things like exploring, collecting data, and checking the ocean
floor without needing humans to control it. These robots have special tools and sensors to
do their job and are helpful in areas like marine science, oceanography, and checking the
environment underwater [29].

Scientists developed a system [30] using a special robot (ROV) to check water quality
near hydropower sites. The robot has a dissolved oxygen sensor and moves with a solar-
powered system. It can be controlled through a website showing real-time data on Google
Earth. Tested at McNary Dam, it effectively checks water quality at various depths and
locations, offering a flexible way to monitor challenging aquatic environments.

The historical context of ground robotics traces back to the development of the first
mobile robots in the 1960–70 decade, such as Nilsson’s Shakey and the Laboratory of
Systems Analysis and Architecture’s Hilare robot [31]. Since then, the field has witnessed
significant growth, with rovers and minibots playing important roles in modern robotics.
Rovers, exemplified by notable systems like AIR-K and ROSI, showcase advancements
in autonomous ground inspection and monitoring. These robots employ tracked wheels,
sensors like cameras and gas sensors, and varying maturity levels to execute operations
and observations in emergencies [32]. Additionally, minibots, with their tracked wheels
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and laser scanner sensors, offer versatility in ground exploration [33]. The recent surge
has led to applications in agriculture, industry, military, medical, and logistics, underlining
the need for robust security solutions in robotics [34]. Ground robotic systems are also
gaining prominence in disaster search-and-rescue missions, where autonomous mobile
robotics research plays an important role [35,36]. The integration of advanced technologies,
including artificial intelligence, computer vision, and sensor fusion, is explored to enhance
the autonomy and efficiency of these robotic systems [37].

Therefore, this paper discusses the significant impact of automation on environmental
sensing, focusing on the integration of advanced technologies such as Unmanned Aerial
Systems (UASs) and environmental sensor networks (ESNs). It explores how these technolo-
gies overcome traditional limitations in data collection and analysis. This paper examines
challenges in pollution monitoring, smart agriculture, and cybersecurity in environmental
sensing. It also addresses financial barriers to adopting smart agricultural technology and
stresses the importance of ongoing research and innovation in this area. Additionally,
the integration of robotics, especially underwater vehicles, is highlighted for its crucial
role in enhancing environmental monitoring applications. Overall, this article empha-
sizes the importance of automation and robotics in tackling complexities and advancing
efficient, accurate, and scalable environmental monitoring solutions. Figure 1 shows the
integration and synergies between environmental sensing automation, robotics, and edge
computing technologies.
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This paper is structured as follows: Section 2 outlines the methodologies employed
in formulating this review article. Section 3 introduces emerging technologies such as
deep learning, transfer learning, and edge computing, crucial for achieving automation
in environmental sensing frameworks. Section 4 addresses the challenges associated with
implementing these automated frameworks. Section 5 explores the future of automa-
tion in environmental remote sensing. Finally, Section 6 provides the conclusion of the
review article.

2. Methodology

The literature review on automation for environmental monitoring involves thor-
oughly exploring diverse sources, including esteemed academic journals, conference pro-
ceedings, and scientific publications, employing rigorous selection criteria centered on
relevance, recency, and credibility. Keywords like “environmental monitoring”, “transfer
learning”, “automation”, “sensors”, “UAVs”, “robotics”, “IoT”, “edge computing”, and
“deep learning” guide the identification of pertinent articles, revealing significant advance-
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ments such as unmanned aerial vehicles (UAVs) and underwater robots for data collection,
the integration of wireless sensor networks for real-time monitoring, and the application of
machine learning algorithms for data analysis. Furthermore, the emergence of edge com-
puting for decentralized data processing is noted. Challenges like interoperability, security,
and ethical considerations surrounding autonomous systems in environmental monitor-
ing are also underscored. This synthesis of the literature offers profound insights into
cutting-edge technologies, trends, and future trajectories in automation for environmental
monitoring, with a focal point on enhancing efficiency, accuracy, and sustainability in data
collection and analysis. This comprehensive review was conducted through a thorough
exploration of databases like “Scopus”, “IEEE Explore”, and “Google Scholar”, alongside
scrutiny of reputable journals, including “MDPI”, “Elsevier”, “Sensors”, and “IOPscience”,
reflecting a systematic and exhaustive approach. Initially yielding 200 results, the process
was refined to 128 publications through the classification procedure. This foundational
work will not only expand current understanding but also lay the groundwork for future
research and development in this crucial domain.

3. Emerging Technologies in Environmental Sensing
3.1. Leveraging Transfer Learning for Enhanced Environmental Sensing

In today’s world, people can barely afford to indulge in investing resources in data
assemblage due to its inaccessibility, which is usually expensive and challenging to gather.
Consequently, scientists and researchers uncovered more suitable norms of data collection,
that is, the transfer of learning or knowledge between the tasks [38]. So, this perspective
has encouraged transfer learning (TL) to enhance data collection in machine learning
(ML) using the data gathered before they were introduced. Straightforwardly, TL is the
refinement or advancement of comprehending a new task through knowledge transfer
from a corresponding task that has already been learned, which will lower reliance on
many target domain data for making target learners [39,40]. In TL, the negative transfer of
learning usually occurs if the approach adopted reduces the overall performance. Thus,
producing the positive transfer by avoiding the negative transfer between corresponding
tasks is very essential.

Figure 2 depicts the transfer learning (TL) workflow, which involves pre-training a
model on a large dataset for a related task, extracting relevant features, and adapting it to a
new task by fine-tuning its parameters or using its features as input to a new model. This
process accelerates learning and improves performance in the new task, like how existing
skills aid in learning new tasks. For instance, just as knowing how to play the violin can
help in learning the piano faster, transfer learning allows transferring knowledge from
one task to facilitate learning in another, making adaptation quicker and more effective.
The classification of TL includes two categories, homogeneous and heterogeneous trans-
fer learning [40]. The strategies related to homogeneous transfer learning are developed
and offered for handling situations with identical attributes, otherwise, it is called hetero-
geneous transfer learning. Also, heterogeneous transfer learning is more complex than
homogeneous transfer learning due to its requirement of feature space adaptation [41].

Transfer learning in computer vision makes use of pre-trained models and datasets to
effectively address new tasks. By utilizing a pre-trained model as a foundational frame-
work, known as a backbone model, practitioners minimize the necessity for extensive new
data and annotations, thereby enhancing performance on the target task. This strategy
streamlines the learning process, mitigating challenges such as data scarcity and anno-
tation expenses. Drawing parallels with human learning, where skills transfer across
contexts, pre-trained neural networks such as VGG, ResNet, Inception, and MobileNet
are widely employed as starting points. These models, accessible via platforms like Ten-
sorFlow Model Garden and PyTorch Hub, facilitate efficient model adaptation [42–46].
Both local and cloud-based training strategies offer benefits, with local training granting
control over configurations and cloud-based training providing scalability and poten-
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tially expedited processing times. Table 1 summarizes the key features of various neural
network architecture.
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Table 1. Description of various neural network architectures.

Architecture Description Applications

MobileNetV2 ■ Lightweight architecture for mobile and embedded vision applications.
■ Uses depthwise separable convolutions and inverted residuals for efficiency.

Mobile and embedded
vision apps

Inception-ResNet ■ Hybrid architecture combining elements from Google’s Inception and ResNet.
■ Incorporates inception modules for parallel processing of filter sizes.

Image classification

DenseNet201 ■ Builds upon DenseNet architecture with dense connections between layers.
■ Facilitates feature reuse and improved gradient flow.

Image classification, object
detection, image segmentation

VGG-16 ■ Proposed by the Visual Geometry Group (VGG) at the University of Oxford.
■ Consists of 16 layers, including 13 convolutional layers and 3 fully connected layers.

Image classification

EfficientNetV2S ■ Part of the EfficientNet family, optimized for resource-constrained environments.
■ Employs compound scaling for balancing network depth, width, and resolution.

Resource-constrained
environments

Transfer learning relies on three aspects: what, how, and when the data should be
transferred. Due to the variability of the settings in the source dataset and target data in the
transfer learning, the transfer learning subsets can be classified as inductive, transductive,
and unsupervised learning [47]. When the tasks are dissimilar, any resemblance between
the source and target domains is called inductive learning. Again, when the tasks are
identical, but the feature spaces are different, it is called transductive learning, and when
no labeled data can be used for training, it is called unsupervised learning. The various
transfer learning methods include fine-tuning, domain adaptation, multi-task learning,
feature extraction, training the model, the direct use of a pre-trained model, etc. Table 2
presents an overview of publicly accessible datasets frequently utilized for transfer learning
investigations in the field of remote sensing.

Environmental sensing involves various tools and processing techniques to charac-
terize the environment, including hyperspectral monitoring, atmospheric propagation,
pollution monitoring, temperature and humidity monitoring, air quality measurement, soil
monitoring, wind speed and direction monitoring, rainfall, radiation, gas, water pressure,
forest fire detection, landslide detection, etc. [48]. For environmental studies, various
satellites have also been widely employed [49]. The emergence of sensing methods like
Synthetic-Aperture Radar (SAR) is beneficial for forest monitoring and disaster manage-
ment due to its capability to penetrate via clouds and work effectively in all weather
conditions [50]. Light Detection and Ranging (LiDAR) can capture 3D data and has been
employed for harvest and topographic mapping [51,52]. Nowadays, unmanned aerial
vehicles (UAVs) mounted with high-resolution sensors have seen vast applications in
precision agriculture [53,54] as they provide high flexibility and permit real-time data acqui-
sition. Therefore, the advancement of sensing technologies revolutionized how someone
observes the Earth’s surface and delivered strategies for comprehending environmental
transformations that may not be noticeable from the ground.
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Table 2. Commonly used datasets for transfer learning in remote sensing.

Ref. Dataset Name Location Purpose Number of
Images

Number
of Classes Bands Resolution Pixel

Count

[55] DeepWeeds Australia Weed detection
and classification 17,509 8 RGB NA 40.3 B

[56]
The Crop/Weed

Field Image
Dataset (CWFID)

Global Crop and weed
discrimination 60 2 RGB NA 0.08 B

[57]
Aerial

Image Data
Set (AID)

Global

Land use
classification
from aerial

images

10,000 30 RGB 8 M/0.5 M NA

[58] Agriculture-Vision
Dataset USA

Field anomaly
pattern

segmentation
94,986 9

RGB and
Near-Infrared

(NIR)
10/15/20/Cm/Px 22.6 B

[59] Satlas Global/
USA

Land use
classification
from satellite

imagery

856,000 137
RGB and

Near-Infrared
(NIR)

10 m/1 m 5 M

3.2. Harnessing the Power of Deep Learning in Environmental Sensing

The Fourth Industrial Revolution generally concentrated on technology-driven “in-
dustrialization, smart and intelligent systems”, where deep learning (DL) [60] has evolved
as one of the vital technologies. It is a frontier for AI, based on linear regression and
artificial neural networks (ANNs) followed by some activation function, which trains the
systems to process data in a manner motivated by the human brain. DL is widely applied
in various application areas like automated driving to medical devices, automatic facial
recognition systems, digital assistants and fraud detection, healthcare, cybersecurity, and
many more [61]. Hence, its automation capability and understanding from prior knowledge
can transform the globe and our daily lives.

Figure 3 depicts the deep learning workflow, which includes data preparation, model
design, training, validation, testing, and deployment stages. It begins with data collection
and preprocessing, followed by the design of a neural network architecture tailored to
the task. The model is then trained using labeled data to minimize error, validated for
generalization to unseen examples, and tested on new data. Upon successful validation,
the trained model is deployed for real-world applications.
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DL has emerged as a universal learning due to its capability to perform in approxi-
mately all application domains. Figure 4 represents the various DL applications in envi-
ronment sensing. The DL applications are found in object detection and recognition [62],
predictive maintenance [63], agriculture [64], robotic surgery [65], medical applications [66],
autonomous driving [67], etc. The robots can recognize and categorize things in their
surroundings with increased precision, by training neural networks with huge quantities
of labeled data. Also, by analyzing sensor data, predictive maintenance algorithms can
foresee when a robot’s segments may fail, permitting proactive repairs or replacements. DL
has the prospect of revolutionizing the farming industry by allowing more efficient crop
production by autonomously guiding and managing crops and lowering labor expenses in
agribusiness, such as planting, harvesting, spraying, etc. [68].
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Traditional farming incorporates agroforestry, crop rotation, intercropping, polycul-
tures, and water harvesting practices. Before scientific advancements, traditional agri-
culture relied on tools, organic fertilizers, indigenous knowledge, and cultural beliefs.
Traditional farming depletes soil nutrients, with practices like slash and burn reducing
soil organic matter. Traditional farming causes deforestation in tropical rainforests for
agriculture, and it leads to soil erosion, removing fertile topsoil that takes decades to
replenish [69].

Deep learning, revolutionary across industries, transforms agriculture by integrat-
ing innovative solutions into traditional farming practices. Employing deep learning
with drone technology is crucial for convenient crop monitoring through high-quality,
high-resolution image capture [70]. This technology facilitates the identification of field
advancements and quality assessment. For instance, using images from drone technology,
agriculturalists can ascertain the readiness of crops for harvesting. The integration of
this technology in agriculture has revolutionized farming. Researchers are particularly
motivated to explore the applications of deep learning in enhancing efficiency, especially in
farming, harvesting, and yield predictions.

Precise fruit counting is vital for growers as it allows for yield estimation, facilitating
effective yard management. Employing automated fruit detection and algorithms, as out-
lined in [71], becomes instrumental in optimizing agricultural production and streamlining
the harvest process.

In [72], the researchers proposed an automated yield estimation method using efficient
robotic agricultural techniques. Achieving a high 91% accuracy with Inception-ResNet,
the approach eliminates the need for an extensive dataset, benefiting farmers in efficient
and precise fruit counting and decision-making. Undesirable plants, known as weeds, can
hamper crop production by competing for resources. DL techniques, detailed in [73,74],
provide efficient weed identification, diminishing the need for weedicides and tackling
herbicide resistance. Through the utilization of SVMs and CNNs, DL aids in classifying
weeds, alleviating farmers’ workload, and ultimately improving crop yields. Therefore,
while deep learning has the potential to revolutionize agriculture, addressing robustness,
interpretability, data modality integration, and implementing few-shot learning is crucial.
Further research in these areas is necessary for unleashing the full power of deep learning
in agriculture.

Forecasting air pollution provides reliable data on upcoming pollution levels, assisting
in the efficient implementation of air pollution control measures and enabling proactive
planning. The intricacies of air pollution dynamics are commonly influenced by factors such
as temperature, humidity, wind direction, wind speed, snowfall, rainfall, etc., intensifying
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the complexity of grasping changes in air pollutant concentration. Global concerns over air
pollution stem from its adverse effects on human health, climate, agriculture, ecosystems,
and visibility [75–77]. Particulate matter with an aerodynamic diameter of less than 2.5 µm
(PM2.5) and ozone (O3) are major contributors to premature mortality globally, especially
in the case of PM2.5 pollution. Outdoor fine particulate and ozone air pollution are
estimated to cause 8.34 million excess deaths annually, with O3 pollution accounting for
nearly half a million deaths [78]. Table 3 summarizes various studies addressing air and
water pollution monitoring and mitigation strategies. Each study is labeled with relevant
information provided regarding the location of the study, the model or approach utilized,
the performance measure used to evaluate effectiveness, and the key findings or outcomes.

Table 3. Summary of various studies addressing air and water pollution monitoring and mitigation
strategies.

Ref. Location Model/Approach Performance Measure Key Findings

[79] California Support Vector Regression
with radial basis function Accuracy Precise prediction of pollutants

[80] N/A LSTM, LSTM-MVR Forecasting LSTM-MVR superior in forecasting

[81] N/A Random Forest,
Encoder–Decoder, LSTM Precision LSTM showed enhanced precision for

PM2.5 correlation
[82] Delhi BiLSTM-A Forecasting Promising foresight for NO2, PM10, and PM2.5
[83] Taiwan RNN with LSTM RMSE Comparable RMSE values for PM2.5 prediction
[84] South Korea RNN with GRU Forecasting Successful PM10 and PM2.5 forecasting

[85] Seoul N/A MSE Fine dust forecasting achieved with MSE
below 10.7%

[86] N/A Various factors considered N/A Pollution mitigation in water bodies and air

[87] N/A Evolutionary
IoT-based approach PCA, SVM, KNN Detection of water pollution with sensors

and algorithms

[88] N/A Automated IoT-driven
water quality analysis N/A Introduction of an automated water quality

analysis system

[89] N/A Deep learning
for biomonitoring N/A Detection of water pollution through

Caenorhabditis elegant swimming behaviors

3.3. Edge Computing in Environmental Sensing

The surge in data and processing reveals drawbacks in cloud-based big data process-
ing. Challenges include real-time constraints due to amplified data transmission from edge
devices, jeopardizing privacy and causing delays. Figure 5 presents the edge computing
workflow that involves real-time data processing, data caching, buffering, and optimiza-
tion, and decision-making, followed by storage and communication for data transmission,
ultimately enabling iterative refinement for enhanced efficiency and effectiveness. The
growing number of smart devices leads to substantial energy consumption in data centers,
hampering efforts to boost energy efficiency. These issues underscore the need for alterna-
tive solutions to address the evolving demands of our intelligent society. As human needs
continually evolve, and smart societies advance, intelligence becomes an integral part of
our daily routines, as seen in smart homes, autonomous vehicles, transportation, cameras,
and industrial manufacturing components. The rapid progression of IoT, AI, big data, and
cloud computing has given rise to edge computing, a distinctive open forum networking
philosophy. This model harnesses network, computing, storage, and application core
capabilities in the proximity of physical surroundings, aiming to achieve faster network
service responses by reducing latency and bandwidth utilization [90].

Before edge computing, traditional cloud computing centralized data transfer to the
cloud center. The concept originated in 2006 when Google’s CEO introduced it at a search
engine conference. With Google’s influence, cloud computing became a robust platform
with distributed computing, load balancing, and virtualization. Despite strengths, the
IoT’s rise challenges cloud computing with increased device data, impacting bandwidth
for time-sensitive and real-time systems [91,92]. This affects load management, real-time
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performance, bandwidth, energy consumption, and data security [93–95]. The escalating
number of mobile and IoT devices strains network bandwidth, resulting in delays in data
delivery. Consequently, ref. [96] introduces a strategy aimed at selecting high-performance
cloudlets within edge computing frameworks. Edge computing improves scalability issues
in IoT platforms by decentralizing data processing, reducing latency, optimizing band-
width, and increasing security. By dispersing computation nearer to the data source, edge
computing enables instantaneous decision-making, diminishes data transmission expenses,
and enhances system robustness.

Therefore, edge computing expands on cloud computing, offering distinct features.
Cloud computing excels in comprehending the entirety, processing extensive data, and
contributing to non-real-time data processing, such as in business decision-making. In
contrast, edge computing focuses on the local context, proving more effective in small-
scale, real-time intelligent analysis, especially in meeting the immediate needs of local
businesses. In applications involving intelligence, cloud computing is better suited for
the centralized processing of voluminous data, while edge computing can be applied for
compact intelligent analysis and localized services [97].
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Smart agriculture envisions leveraging diverse Information and Communication Tech-
nologies (ICTs) to enhance productivity in a sustainable and economically feasible way.
Edge computing [98] presents a method by which the farming community could more
efficiently tap into and make use of smart agriculture services.

In their research [99], the authors presented a budget-friendly solution for the ex-
tensive monitoring of environmental parameters through the utilization of flying IoT
and edge–cloud computing. Implemented and evaluated on an actual Medenine farm in
Tunisia, the system assists farmers, government entities, or manufacturers in anticipating
environmental conditions across the vast farm area. This contributes to improving crop
productivity and farm management in a cost-effective and timely manner.

An advanced, cooperative, and hierarchical UAV-WSN system for intelligent crop
monitoring in precision agriculture was proposed in [100]. The system demonstrated both
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resilience and efficiency, with improved performance and optimized trajectories, allowing
for the effective utilization of limited resources within the ground sensor network.

The effectiveness of edge computing in scalable data analytics is demonstrated in [101].
Utilizing a Raspberry Pi as both a base station and an edge node, cherry tomato growth
states are predicted by the system. These predictions are then transmitted to a central cloud
server for consolidation, model integration, and analysis, leading to yield predictions. This
approach minimizes data traffic and provides farmers with the capability to secure and
selectively share their data.

Amidst the rapid proliferation of IoT devices, the significance of edge computing
as a viable alternative to cloud computing has grown considerably. Edge computing
involves technologies that enable computation at the network’s edge. In a study [102], the
researchers created a prototype to evaluate pollution using an Arduino board and the IBM
Watson IoT platform. With edge computing, their model aims to reduce the computational
load on the cloud. Merging low-cost sensors with Wireless Sensor Networks (WSNs) forms
a comprehensive system. These models enhance the efficient detection of air pollutant
dispersion, enabling individuals, including community users, to assess personal exposure
to pollutants through wearable sensor nodes [103]. Various methodologies exist for air
quality assessment.

Edge computing tackles issues like delays and network instability in cloud comput-
ing, finding applications in smart transportation, urban settings, and water conservancy.
Research by [104] efficiently predicted ecological water demand by combining edge com-
puting and GIS. Ref. [105] successfully minimized service response times through mobile
edge computing. Additionally, ref. [106] proposed a framework integrating blockchain
and edge computing to promote water-saving practices, fostering conservation efforts
intelligently. Table 4 showcases how edge computing techniques are applied across differ-
ent domains in agriculture and environmental monitoring. From livestock management
to environmental sensing, edge computing is utilized for tasks such as reducing latency,
offloading computation, and managing data traffic. These applications highlight the crucial
role of edge computing in enhancing efficiency and effectiveness across various sectors,
from agriculture to wildlife protection.

Table 4. Utilization of edge computing techniques in agricultural and environmental domain.

Sl. No. Application Theme Domain Edge Computing Techniques

[107] Animal welfare Livestock management Latency reduction
[108] Aquafarming Aquaponics Offloading computation
[109] Forestry Environmental monitoring and fire detection Offloading computation

[110] Safety Wildlife protection Reduction of latency and computational load,
as well as data traffic

[111] Smart farming Environmental sensing Utilization of flexible layered IoT-assisted
PA architecture

3.4. Evaluating Advantages and Addressing Limitations

This section explores three key technologies—transfer learning, deep learning, and
edge computing—in environmental sensing, each bringing distinctive advantages to
Table 5. The ensuing table delineates their applicability and potential limitations in di-
verse environmental sensing scenarios, marking a paradigm shift in monitoring for smarter
and more sustainable solutions.
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Table 5. Advantages and disadvantages of technologies in environmental sensing.

Technology Advantages Limitations

Transfer Learning

- Efficient data collection: enhances machine
learning (ML) data collection by leveraging
knowledge from previous tasks, reducing the
need for extensive target domain data.

- Positive transfer: avoids negative transfer,
improving overall performance.

- Categorization: homogeneous and
heterogeneous transfer learning strategies cater
to situations with identical or
different attributes.

- Negative transfer risk: the approach may lead
to negative transfer, diminishing
overall performance.

- Complexity: heterogeneous transfer learning is
more intricate, requiring feature
space adaptation.

- Classification challenges: inductive,
transductive, and unsupervised learning face
variations in source and target datasets.

Deep Learning

- Broad application domains: applicable across
various domains, including object detection,
predictive maintenance, agriculture, robotic
surgery, and autonomous driving.

- Automation capability: contributes to
transformative advancements in agriculture
and other industries.

- Precision in agriculture: facilitates precise fruit
counting, optimizing production and
harvest processes.

- Robustness challenges: needs to address
challenges related to robustness,
interpretability, and data modality integration.

- Data efficiency: achieving high accuracy may
require extensive datasets, impacting efficiency.

- Privacy concerns: applications may raise
privacy concerns, especially in smart
agriculture and autonomous systems.

Edge Computing

- Real-time analysis: enables real-time intelligent
analysis by processing data in proximity to
physical surroundings, reducing latency and
bandwidth utilization.

- Energy efficiency: minimizes energy
consumption in data centers, boosting
energy efficiency.

- Localized services: focuses on local context,
effective for small-scale, real-time intelligent
analysis and localized services.

- Privacy and security: poses challenges related
to privacy and security, especially with
amplified data transmission from edge devices.

- Energy consumption: growing smart device
numbers can lead to substantial energy
consumption in data centers,
impacting efficiency.

- Load management: may face challenges in
load management, real-time performance, and
bandwidth during extensive data processing.

4. Challenges and Solutions in Implementing Automation

The successful implementation of automation in environmental sensing and moni-
toring is challenged by various obstacles that must be addressed. It is essential to ensure
that automated sensors and monitoring systems can collect data accurately and precisely.
Factors like changes in environmental conditions, sensor drift, and calibration issues can
affect the accuracy of measurements, so regular calibration and maintenance are necessary.
Bringing together data from different sources, such as remote sensors, satellite images,
and ground-based stations, is difficult due to differences in data formats, resolution, and
quality. Effective strategies for data integration are needed to create a unified picture of
environmental conditions. The upfront and ongoing costs of automation technologies
can be too high for many organizations, especially in areas with limited resources. More-
over, identifying cost-effective solutions that maintain data quality without compromise
is essential. Keeping automated sensors and systems running smoothly requires regular
upkeep, including sensor calibration, software updates, and hardware fixes. Managing
maintenance costs while minimizing downtime is a significant challenge. Deploying auto-
mated monitoring systems in remote or hazardous areas can be tricky. Access to power,
network connections, and infrastructure for data storage and transmission are fundamental
considerations. Scaling up automated monitoring to cover large areas or handle more data
can strain existing resources and infrastructure. Ensuring the system can scale while still
performing well and remaining reliable is a complex task.

To overcome these challenges, experts from various fields like engineering, data
science, environmental science, and economics need to collaborate. Working together,
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researchers, practitioners, policymakers, and industry players can find innovative solutions
and overcome obstacles to automation in environmental sensing and monitoring. Automa-
tion technologies, along with advanced methods like machine learning (ML), deep learning
(DL), transfer learning, and edge computing, offer promising solutions to enhance environ-
mental monitoring effectively. ML algorithms can analyze extensive environmental data,
identify patterns, and anomalies, and predict changes, which helps create early warning
systems for natural disasters or pollution events [106]. DL techniques, especially Convo-
lutional Neural Networks (CNNs), excel at recognizing images, making them valuable
for tasks like monitoring wildlife habitats or identifying pollution sources from satellite
imagery or drone footage accurately. Transfer learning allows adapting pre-trained models
to specific environmental monitoring tasks by transferring knowledge from one domain to
another, speeding up model training and enhancing performance, especially when labeled
environmental data are limited. Edge computing, bringing computational capabilities
closer to data sources, enables real-time processing and analysis, reducing latency and
bandwidth requirements, making it ideal for air quality monitoring or wildlife tracking
in remote areas. Sensor fusion techniques integrate data from various sensors to improve
the reliability and depth of environmental monitoring data, offering a more comprehen-
sive understanding of environmental conditions. Deploying IoT-enabled sensors creates
interconnected systems that continuously monitor environmental parameters in real time,
providing valuable insights for environmental management and decision-making [112–114].
Engaging citizens in environmental monitoring through crowdsourcing initiatives empow-
ers communities to contribute data and observations, enhancing traditional monitoring
efforts and enabling broader coverage and increased spatial resolution [115]. Using these
solutions in environmental monitoring can help us understand nature better and improve
how we conserve and manage it.

5. Future of Automation in Environmental Remote Sensing

The adoption of IoT technology and smart sensors in agriculture has revolutionized
farming practices, empowering farmers to monitor environmental conditions, crop health,
and soil quality in real time. This advancement has resulted in heightened productivity
and sustainability [116]. A review on wearable devices for environmental monitoring [117]
discusses key pollutants, sensor types, and uses, emphasizing the move toward fully
wearable tech to link pollution levels with personal data for estimating individual exposure,
despite challenges in standardizing air quality assessments. By 2032, it is expected to
reach $508.64 billion, showing a big increase in how much it is used and how innovative it
becomes. The market for IoT sensors is expected to grow fast. It is supposed to go from
being worth $11.1 billion in 2022 to $29.6 billion by 2026 [118]. This quick growth is because
more people are using IoT technology to watch the environment.

Advancements in technology, particularly the integration of unmanned aerial vehi-
cles (UAVs) and artificial intelligence (AI) with machine learning (ML) algorithms, have
revolutionized environmental monitoring and management [119]. UAVs equipped with
sophisticated sensors collect high-resolution data over vast areas, enabling comprehensive
surveillance of environmental parameters such as air and water quality, biodiversity, and
land use. These data are then processed using AI and ML algorithms to perform predictive
modeling for environmental changes. By analyzing historical and real-time data, these
algorithms can forecast future environmental trends, anticipate potential threats such as
natural disasters or habitat degradation, and inform proactive mitigation strategies [120].
This synergy between UAVs, AI, ML, and predictive modeling represents a powerful tool
for addressing environmental challenges and promoting the sustainable stewardship of
our planet.

6. Conclusions

In conclusion, automation and advanced technologies have brought about transfor-
mative changes in environmental sensing and monitoring. From environmental sensor
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networks (ESNs) to Unmanned Aerial Systems (UASs) and smart agriculture, automation
plays a crucial role in overcoming traditional limitations and enhancing data collection
and analysis. Despite challenges such as cost, maintenance, and scalability, collaborative
efforts across various fields are essential to address these obstacles and advance automation
in environmental monitoring. Emerging technologies like machine learning (ML), deep
learning (DL), transfer learning, and edge computing offer promising solutions to enhance
monitoring accuracy and efficiency. Furthermore, the future of automation in environ-
mental remote sensing looks promising, with the integration of the IoT, smart sensors,
unmanned aerial vehicles (UAVs), and artificial intelligence (AI) expected to revolutionize
environmental monitoring and management. By harnessing the power of automation
and technological innovations, we can better understand and protect our environment for
future generations.
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