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Abstract: The multi-armed bandit (MAB) problem is a typical problem of exploration and exploitation.
As a classical MAB problem, the stochastic multi-armed bandit (SMAB) is the basis of reinforcement
learning recommendation. However, most existing SMAB and MAB algorithms have two limitations:
(1) they do not make full use of feedback from the environment or agent, such as the number of arms
and rewards contained in user feedback; (2) they overlook the utilization of different action selections,
which can affect the exploration and exploitation of the algorithm. These limitations motivate us
to propose a novel dynamic grouping within the minimax optimal strategy in the stochastic case
(DG-MOSS) algorithm for reinforcement learning recommendation for small and medium-sized data
scenarios. DG-MOSS does not require additional contextual data and can be used for recommendation
of various types of data. Specifically, we designed a new exploration calculation method based on
dynamic grouping which uses the feedback information automatically in the selection process and
adopts different action selections. During the thorough training of the algorithm, we designed an
adaptive episode length to effectively improve the training efficiency. We also analyzed and proved
the upper bound of DG-MOSS’s regret. Our experimental results for different scales, densities, and
field datasets show that DG-MOSS can yield greater rewards than nine baselines with sufficiently
trained recommendation and demonstrate that it has better robustness.

Keywords: dynamic grouping; multi-armed bandits; exploration and exploitation; reinforcement
learning; recommendation

1. Introduction

Reinforcement learning is a canonical formalism for studying how an agent learns to
take optimal actions by repeated interactions with a stochastic environment [1]. Meanwhile,
reinforcement learning is a branch of artificial intelligence based on reward maximiza-
tion [2]. The goal of an agent is to take actions in an uncertain environment to maximize
the cumulative reward. Therefore, reinforcement learning faces the dilemma of exploration
and exploitation (EE). The multi-armed bandit (MAB) problem is a classical problem of EE
balance in reinforcement learning [3]. As a serialized decision problem, the MAB problem is
applied in many practical scenarios, such as the recommendation algorithm [4,5], keyword
selection in search engines [6], and network channel selection [7]. In recent years, recom-
mendation algorithms have been applied to various cutting-edge fields, such as integrating
cognitive models with recommender systems [8], using binary codes in recommendation
systems [9], and developing personality-aware recommendation systems [10]. Due to the
significant developments of deep learning, many recommender systems equipped with nat-
ural language processing techniques have been emerging in recent years [11,12]. However,
deep learning methods have weak interpretability and require large-scale data training
and do not match the recommendation needs of small and medium-sized e-commerce
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platforms, emerging fields, niche communities, or professional fields. Traditional reinforce-
ment learning recommendation methods are aimed at small and medium-sized scenarios
to meet the needs of strong stability, interpretability, and fast learning. The stochastic
multi-armed bandit (SMAB) problem is a classical MAB problem in which an agent at each
stage chooses one arm (or action) and receives a reward from it. The SMAB problem is
an invaluable sequential decision-making framework, and it serves as an essential tool
in recommendation applications, Internet advertising, information searching, etc. For
example, in recommendation applications, it has been applied to optimize sequential (or
interactive) recommendations of products and news articles [13]. The reward of each arm
is independent and follows an unknown distribution. Since the agent does not know
the process generating the reward, the agents need to explore different arms and exploit
the seemingly most rewarding arms. When we do not choose the best arm, we obtain a
difference between the current reward and the best reward. This difference is the regret.
The goal of reinforcement learning is to not only optimize costs and expenditures but also
to maximize rewards. In the SMAB problem, the agent must balance between exploiting
known policies and exploring randomized ones to achieve good performance.

With the penetration of stochastic problems in the MAB problem, the application of
the SMAB problem in various fields has been extensively studied in different variants [14].
Many problems in recommendation [15,16] are related to the SMAB problem. As a result,
the SMAB problem is widely used to optimize shopping, media streaming, and adver-
tisement [17]. Each round of bandit learning corresponds to an interaction with a user,
where the algorithm selects an arm (e.g., product, movie, or advertisement), observes the
user’s response (e.g., purchase, stream, or read), and determines which arm to recommend
to each user to generate the maximum click revenue. If we choose the best arm every
time, how can new arms be recommended? This is the classic problem with EE. However,
existing algorithms have an insufficiency problem related to the full use of feedback in-
formation [18–20] from the environment or agents, and this along with the problem of
selecting different actions [21] represent two significant issues that need to be considered in
EE recommendation.

To address the above issues, we propose a novel reinforcement learning algorithm
called DG-MOSS, which stands for dynamic grouping within the minimax optimal strategy
in the stochastic case. Our algorithm introduces a dynamic grouping mechanism with
a threshold that is associated with feedback information from agents. At the same time,
we add the exploration probability c that is set to ensure the adaptability to different
environmental datasets. DG-MOSS makes full use of the number of arms, rewards are
contained in user feedback, and the data with different densities are in different value
ranges. It adaptively and dynamically adjusts the balance of exploration and exploitation
through the change of full utilization of feedback from agents. Only arms whose error
falls within an allowable range are added to the dynamic grouping and simultaneously
provided as multiple actions for selection. Moreover, our algorithm does not require
additional context information, ensuring the generalization of various data. However,
making full use of feedback during training requires sufficient training episodes, which
poses a challenge for reducing the training time. Therefore, this paper mainly focuses on the
SMAB problem with EE in recommendation, and our main contributions are summarized
as follows.

1. We propose a new dynamic grouping within the minimax optimal strategy in the
stochastic case (DG-MOSS) algorithm for reinforcement learning and providing mul-
tiple action selections. The algorithm uses dynamic grouping to ensure the balance
of exploration and exploitation, and fully considers the feedback information in the
selection process in a sufficient training recommendation.

2. This paper presents the design of an adaptive episode length to effectively improve
the training efficiency so that the parameters of the episode in the training are auto-
matically rather than manually adjusted.
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3. We analyze and prove DG-MOSS’s upper bound of the regret value, which provides
strong theoretical support for the feasibility of the algorithm.

4. Extensive experiments were conducted on four different scales, densities, and field
datasets with total rewards and average rewards evaluation metric settings. The ex-
perimental results demonstrate that the proposed approach outperforms nine baseline
competitors. Furthermore, random attacks and average attacks prove that DG-MOSS
has better robustness with sufficiently trained recommendation.

2. Related Works

The problem in recommendation is to determine which arm or action should be
selected each time to maximize the reward [22]. The best way to solve this problem, rather
than attempting every possible solution blindly, which is a lengthy process, is by utilizing
policies. These policies are called bandit algorithms. Over time, a bandit algorithm learns
to maximize the user response and then to update its policy [17]. To date, a number of
bandit algorithms have balanced the problems of EE in the MAB and SMAB problems.

The ε-greedy algorithm [20] is the first introduced by Watkins to explore with a
small probability ε and to exploit with the probability of 1-ε. However, it does not take into
account the feedback information after arm selection, such as average rewards and selection
times. The Boltzmann algorithm [18] controls the exploration probability according to the
temperature parameter t, which also has the above problem.

The CNAME algorithm [19] computes exploration probabilities and selects the number
of actions with the smallest reward. However, it only considers one kind of feedback
information for the number of arms. The Upper Confidence Bound (UCB) algorithm [3]
focuses on the classic SMAB setting where each arm has a fixed but unknown reward
distribution. It directly calculates the arm to be selected based on the known average
rewards and selection times of each arm rather than selecting randomly. When using the
UCB algorithm, all arms must be selected once in the initial stage, so the generalization
ability is weak. Therefore, many improved algorithms are proposed based on the UCB
algorithm. The FP-UCB algorithm [23] uses the underlying parameter set for faster learning
based on the UCB algorithm. Considering the stochastic case, the minimax optimal strategy
in the stochastic case (MOSS) algorithm [24] is worthy of further study. It is based on the
UCB algorithm, and each arm has an index to measure its performance so that it selects
the arm with the maximum index. The R-MOSS algorithm [25] extends MOSS with time
slots for SMAB problems. The BBANK algorithm [26] and the BSMAB algorithm [27] are
batched, stochastic, multi-armed bandit algorithms. BBANK gives specific conditions for
dynamic time steps. The BSMAB expects regrets that improve over the best known regret
bounds for any number of batches, but the paper only provides theoretical proof.

3. Problem Formulation

First, we formulate the problem. At each time step t ∈ {1, 2, · · · , T}, the agent selects
each arm (or action) k once in the set A of K possible arms. When the action is at time t,
a(t) ∈ [K] = {1, 2, · · · , K}. We assume that a random true reward Xk(τ) from arm k is
selected in its τth selection. We denote the average experience reward at the current round
as Xk−cur(τ) and return 0 at the beginning of each round. Xk−history(τ) is the historical
value of the average experience reward, which changes once during every round and does
not include the reward at the current round. Meanwhile Xk(τ) is pulled according to a
probability distribution Pi

(
·; θ 0) with a mean µi

(
θ0) as µi

0. We set an array Ak in order to
put the arm whose absolute value of the difference between Xk−history and Xk−cur is less
than the expected error of the current arm mis and obtain average expected error avg in
this process. The mis from the current round denotes that is the threshold between the
total number of arm pulls S and the number of the current arm pulled s. Then, by using
this probability of the number in Ak, we choose the process of exploring or exploiting. Let
X̂k,s be the empirical mean of arm k after s pulls of this arm. When the explore process
begins, we control index value Vk,s through X̂k,s, and the problem is parameterized by
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Pi
(
·; θ0) on [0, 1]. The goal of the agent is to select a sequence of actions that maximizes

the expected cumulative reward E
[

T
∑

t=1
ua(t)

(
θ0)], where the reward vectors are identically

distributed and independent at different times. When the agent does not know the true
parameter θ0, the optimal arm from parameter θ is denoted as a∗(θ) = argmaxk∈[K]µk(θ).
Clearly, the optimal choice is to select the best decision or the best arm that with the
maximum mean value (µi

(
θ0)), at this time a(t) = a∗

(
θ0). We assume that the agent knows

the set of possible parameters Θ and Θ is a finite set. We denote the set A = {a∗(θ|θ ∈ Θ)},
which is the collection of optimal arms corresponding to all parameters θ. The expected
cumulative regret of a stochastic bandit algorithm with respect to the best constant decision
is defined as

E[R(T)] = E
[

T

∑
t=1

(
ua∗(θ0)

(
θ0
)
− ua(t)

(
θ0
))]

(1)

The minimax rate of the expected cumulative regret is to minimize E[R(T)], where the
minimal E[R(T)] is taken over all cases and the supremum over Pi(·; θ) for the stochastic
case with rewards in [0, 1].

4. DG-MOSS

Firstly, the classical stochastic multi-armed bandit algorithms of UCB and UCB1 [3]
are introduced. The MOSS [24] based on UCB1 is used to solve the stochastic case. These
two kinds of classical algorithms are not explored and exploited in the whole range as they
do not deal with the differences of data in different ranges in recommendation. To solve
those shortcomings, we propose DG-MOSS and prove the upper bound of the regret.

4.1. Action Selection

In the SMAB problem, the value of each action can be estimated by the reward obtained,
and then the action with the largest value can be selected. Due to the uncertainty of action
estimates, the UCB algorithm and its variants have been developed.

4.1.1. UCB

The UCB [3] in Algorithm 1 introduces exploration in the process of action selec-
tion and considers the estimated value of the non-greedy action to ensure the effect of
exploration. When c_ratio =

√
2, this algorithm is the UCB1 algorithm.

Algorithm 1 UCB
Input: all arms

1: loop

2: Pull arm k that maximizes X̂k,s + c _ ratio
√

ln(s)
S

3: end loop
Output: X̂k,s

Where X̂k,s is the average reward obtained from arm k, S is the number of times arm k
has been played so far, arm k is one of arm from all arms, and s is the overall number of
times that all arms have been played so far.

4.1.2. MOSS

MOSS [24] in Algorithm 2 is inspired by UCB1 for the stochastic case, where each arm
selects the maximum index Vk,s at each round. The symbols appearing in MOSS are defined
in Section 3.
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Algorithm 2 MOSS (minimax optimal strategy in the stochastic case)
Input: all arms

1: loop
2: Pull an arm maximizing

3: V k,s = X̂k,s +

√
max(log ( T

K s ),0)
s , s ≥ 1

4: end loop
Output: X̂k,s

4.2. DG-MOSS Algorithm Description

DG-MOSS in Algorithm 3 uses dynamic grouping to ensure the balance between
exploration and exploitation. In any particular environment, DG-MOSS needs to ensure a
balance between exploration and exploitation. Whether the effect of exploration is better
or worse than that of exploitation depends on the accurate value of the estimation, the
uncertainty of the environment, and the number of remaining operations. Therefore, we
use multiple feedback information to reduce the dependence of the algorithm on the data
context. Aiming at balancing between exploration and exploitation, we propose a new
exploration calculation method based on dynamic grouping in Algorithm 3 with some
details explained below.

Algorithm 3 DG-MOSS
Input: Select each arm k in the set A once of K possible arms.
Initialize: episode number i = 1, episode length T i = 10, number of iterations t = 0.

1: while j < T i : do
2: |A k| = 0
3: for each arm k in A: do
4: mis =

√
3 log (S)

s

5: if
∣∣∣X k−history−X k−cur

∣∣∣ <= mis then
6: Ak ← Ak ∪ armk
7: end if
8: end for
9: if |A k| >= P1K then

10: action← select best arm in A
11: else
12: if already explore every arm then

13: V k,s = X̂k,s + c ∗
√

max(log T
k s

,0)
s

14: action← argmax(V k,s) + 1
15: else
16: action← select the arm with s = 0
17: end if
18: end if
19: T i = 8 log

(
T∗(T+1) 2

(avg−mis) 2

)
20: t = t + T i−1
21: end while
Output: X k−history, X k−cur

Steps 2∼8 are dynamic grouping processes. Steps 9∼18 are the action selection pro-
cesses, which keep the balance between exploration and exploitation. Steps 10, 14, and 16
represent three different action sections. Step 1 utilizes T to control the training process.
In step 2, we use an array Ak to measure the current value of each arm. In step 4, mis is
the threshold between the total number of arm pulls S and the number of the current arm
pulled s. In step 5, the absolute value is used to save the allowable error between the true
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reward and the expected value of each round in selecting an arm, and it is lower than
the corresponding value in the mis. During each round, Ak records the error between the
true reward and expected value of this round in arm pulling. In step 6, only arms within
the allowable error are added to achieve grouping. The allowable error is defined as the
error between the true reward and the expected value of the current round in arm pulling.
Each arm is calculated separately at the end of the arm selection process. Steps 9∼10 are
to select the arm with the maximum reward value from A using the dynamic array Ak.
Steps 12∼14 are to select the arm with the maximum reward value from V k,s. If steps
9∼14 are not executed, then step 16 selects the arm with s = 0. Then, we choose exploration
or exploitation based on whether the number of values in the array is greater than a certain
threshold at this time. The threshold is related to the number of arms and can be regarded
as a fixed parameter. The probability parameter P1 is a selectable probability related to K.
In the experiment of DG-MOSS, 0 < P1 < 1.

Sufficient training is required for the full utilization of feedback information; hence,
the reasonable reduction in training episodes should be taken into consideration. In
Section 4.3, we designed the idea of Ti derived from the inference of the upper bound of
the DG-MOSS regret, including f (u) and Equations (13) and (20). Based on the function

f (u) = 8 log
(√

T
K u
)

/u2, we introduce the total time step T, grouping parameter mis,

and feedback information avg to jointly affect the episodes in the calculation of the 8 log
confidence interval width. Considering the differences of learning process, the episode

length Ti = 8 log
(

T∗(T+1)2

(avg−mis)2

)
related to the return value of the agent is proposed. The

implementation of dynamic grouping uses Ti to calculate the number of control episodes
each time when the array is updated.

4.3. The Upper Bound of the DM-MOSS Regret

In this section, we provide the upper bound of the regret of DG-MOSS.

Lemma 1. Chernoff–Hoeffding inequality
Let X1, X2, · · · , Xn be independent and identically distributed random variables with values

on the interval [0, 1], and let Sn = ∑n
i=1 Xi. For all r > 0, a = 0, b = 1, we have

P(Sn −E(Sn) ≥ r) ≤ exp
(
− 2r2

∑n
i=1(b− a)2

)
and

P(E(Sn)− Sn ≥ r) ≤ exp
(
− 2r2

∑n
i=1(b− a)2

)

Theorem 1. DG-MOSS satisfies supremun E[R(T)] ≤ P1 ∗ 48.28
√

TK + (K− 1)P1 + 1, where
P1 is a probability, and 0 < P1 < 1. The supremum is selected from all sets of K probability
distributions on the interval [0, 1].

Proof. Without loss of generality, we assume that the true optimal arm is arm1,
a∗ = a∗

(
θ0) = 1, P1 and P2 are probability parameters, and we rewrite the expected regret

E[R(T)] in Equation (1) as follows:

E[R(T)] =
[

T

∑
t=1

(
u0

1 − u0
a(t)

)]
= P1 ∗ max

i=1,···K
E

T

∑
t=1

(
u0

1 − u0
a(t)

)
+ P2 ∗ 1 (2)

Let K ≥ 2 be the number of actions (or arms) and T ≥ K be the time horizon. The
algorithm follows at each time step t ∈ [1, · · · T].

Let RT = P1 ∗ max
i=1,···k

T
∑

t=1

(
u0

1 − u0
a(t)

)
.
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We assume u1 ≥ u2 ≥ · · · ≥ uk, and△k = u1 − uk.
By Wald’s identity [28], we have BT = P1 ∗E∑ k△k Tk(T) for an arm k. Then, we

define its index value Vk,s as

Vk,s = X̂k,s + c ∗

√√√√(
max

(
log T

ks

)
, 0
)

s
(3)

where X̂k,s is the empirical mean of arm k after s pulled of this arm.
Tightly upper bounding BT is difficult because of the heavy dependence on the random

variables Tk(T).
For an arm k0, to decouple the arms, we introduce the key thresholds zk = u1 − △k

2
for k0 ≤ k ≤ K + 1 and zk0 = +∞. By defining

Z = min
1≤s≤T

V1,s (4)

Wj,k = Iz∈(zj+1,zj)
△k Tk(T). (5)

we obtain

K
∑

k=k0+1
△kTk(T) =

K
∑

k=k0+1

K
∑

j=k0

Wj,k=
K
∑

j=k0

j
∑

k=k0+1
Wj,k +

K
∑

j=k0

K
∑

k=j+1
Wj,k. (6)

The Abel transformation was proposed by Norwegian mathematician Abel in the 19th
century. Given a function f (x)and a real number y, the Abel transformation can be defined
as F(y) =

∫ ∞
y f (x) dx√

x2−y2
. F(y)is the Abel transformation of function f (x). By using an

Abel transformation in Equation (6), we have

K
∑

j=k0

j
∑

k=k0+1
Wj,k ≤

K
∑

j=k0

Iz∈(zj+1,zj)
T△j= T△k0 +T

K
∑

j=k0+1
Iz<zj

(
△j −△j−1

)
. (7)

To bound the second sum of Equation (7), we adopt the stopping times
τk = min

{
t : Bk,t < zk

}
and remark that, in the process, by the definition of DG-MOSS,

we have {Z ≥ zk} ⊂ {Tk(T) ≤ τk}. Because once we choose the τk-th arm k, its index is
always lower than that of arm1, and we can safely come to the following conclusion:

K
∑

j=k0

K
∑

k=j+1
Wj,k =

K
∑

k=k0+1

k−1
∑

j=k0

Wj,k=
K
∑

k=k0+1
IZ≥zk △k Tk(T) ≤

K
∑

k=k0+1
τk△k. (8)

By combining (6) and (7) with (8) and adding the expectation, we can obtain Equation (9).

1
P1

RT ≤ 2T△k0 +
K
∑

k=k0+1
△kEτk+T

K
∑

k=k0+1
P(Z < zk)(△k −△k−1) (9)

Let δ0 = e1/16
√

K
T and set k0 to meet the condition△k0 ≤ δ0 ≤ △k0 + 1.

Bounding Eτk meets k0 + 1 ≤ k ≤ K.
Let log+ (x) = max(log (x), 0). When ℓ0 ∈ N, we obtain

Eτk − ℓ0 =
+∞
∑
ℓ=0

P(τk > ℓ)− ℓ0≤
+∞
∑

ℓ=ℓ0

P(τk > ℓ) =
+∞
∑

ℓ=ℓ0

P(∀t ≤ ℓ, Bk,t > zk)

≤
+∞
∑

ℓ=ℓ0

P
(

X̂k,l − µk ≥ △k
2 − c ∗

√
log+(T/Kℓ)

ℓ

) (10)
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Now, let us assign a value
⌈

8 log
(

T
K△2

k

)
/△2

k

⌉
to ℓ0, where ⌈x⌉ is the smallest integer

larger than x. For ℓ ≥ ℓ0, because k > k0, we have ℓ ≥ △−2
k , and 8 log+ (T/Kℓ) ≤ ℓ△2

k .
Therefore:

△k
2
−

√
log+ (T/Kℓ)

ℓ
≥ △k

2
− △k√

8
= m△k (11)

where m = 1
2 −

c√
8

and c is the parameter from Equation (3). By using Chernoff–Hoeffding’s
inequality [29] in Lemma 1 and Equation (10), we obtain:

Eτk − ℓ0 ≤
+∞
∑

ℓ=ℓ0

P
(
∧
X
k,ℓ
−µk ≥ m△k

)
≤

+∞
∑

ℓ=ℓ0

exp
(
−2ℓ(m△k)

2
)
=

exp(−2ℓ0(m△k)
2)

1−exp(−2(m△k)
2)
≤ 1

1−exp(−2m2△2
k)

(12)

By substituting ℓ0 with
⌈

8 log
(

T
K△2

k

)
/△2

k

⌉
in Equation (12), we obtain:

△kEτk ≤ △k

(
1 +

8 log ( T
K△

2
k)

△2
k

)
+ △k

1−exp(−2m2△2
k)
≤ 1 + 8

log ( T
K△k2)
△k

+ 1
2m2(1−m2)△k

(13)

Because for any x ≥ 0, we have 1− exp
(
−x
)
≥ x− x2/2 , we obtain

1
1− exp

(
−2m2△2

k
) ≤ 1

2m2△2
k −2m4△4

k
≤ 1

2m2△2
k (1−m2)

(14)

This is a convention to check whether 2
e

√
T
K is the maximum of x 7→ x−1 log

(
T
K x2

)
when using△k ≥ e1/16

√
K/T, and we finally have

K max
k>k0
△kEτk ≤ K +

(
16
e + e−1/16

− c4
32+

c3
2
√

8
− c2

8 −
c√
8
+ 3

8

)
√

TK≤ K + 28.28
√

TK (15)

Thus, T∑K
k=k0+1 P(Z < zk)(△k −△k−1) is bounded.

Let Xt denote the reward obtained by arm1, when it is pulled for the t-th time. The ran-
dom variables X1, X2, · · · , Xn are independent and identically distributed. Using Chernoff–
Hoeffding’s inequality in Lemma 1 for any x > 0 and n ≥ 1, we have

P
(
∃s ∈ {1, · · · , n},

s

∑
t=1

(
µ

1
−Xt

)
> x

)
≤ exp

(
−2x2

n

)
(16)

With zk = µ1 −△k/2 and µ 7→ P(Z < µ1 − µ/2) satisfying a non-increasing function,
we get

K
∑

k=k0+1
P(Z < zk)(△k −△k−1)≤ δ0 −△k0 +

∫ 1
δ0
P
(
Z < µ1 − µ

2
)
du (17)

Since µ ∈ [δ0, 1] and f (u) = 8 log
(√

T
K u
)

/u2 are fixed, we obtain

P
(

Z < µ1 − 1
2 µ
)

= P
(
∃1 ≤ s ≤ T :

s
∑

t=1
(µ1 − Xt) >

√
s log+

(
T
Ks

)
+ su

2

)
≤ P

(
∃1 ≤ s ≤ f (u) :

s
∑

t=1
(µ1 − Xt) >

√
s log

(
T
Ks

))
+P
(
∃ f (u) < s ≤ T :

s
∑

t=1
(µ1 − Xt) >

su
2

)
(18)
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We use a stripping parameter s with the form 1
2ℓ+1 f (u) ≤ s ≤ 1

2ℓ
f (u) :

P
(
∃1 ≤ s ≤ f (u) :

s
∑

t=1
(µ1 − Xt) >

√
s log

(
T
Ks

))
≤

+∞
∑
ℓ0

P
(
∃ 1

2 ℓ+1 f (u) ≤ s ≤ 1
2 ℓ f (u) :

s
∑

t=1
(µ 1−X t) >

√
f (u)
2 ℓ+1 log

(
T2 ℓ

K f (u)

))

≤
+∞
∑
ℓ=0

exp

−2
f (u) 1

2 ℓ+1 log
(

T2 ℓ
K f (u)

)
f (u) 1

2 ℓ

=
+∞
∑
ℓ=0

K f (u)
T

1
2 ℓ = 2 K f (u)

T

(19)

Next, let us integrate f (u):

∫ 1

δ 0

f (u)du =

[
8 log

(
e
√

T/Ku
)

u

]δ 0

1

≤ 17e−1/16

2

√
T/K (20)

We use a stripping parameter again with the form 2 ℓ f (u) ≤ s ≤ 2 ℓ+1 f (u), and set

ω(u) = 2 ℓ+1 f (u) :
s
∑

t=1
(µ1 − Xt) > 2 ℓ−1 f (u)u.

P
(
∃s ∈ {⌈ f (u)⌉, · · · , T} :

s
∑

t=1
(µ1 − Xt) >

su
2

)
≤

+∞
∑
ℓ=0

P
(
∃2 ℓ f (u) ≤ s ≤ω(u)

)
≤

+∞
∑
ℓ=0

exp
(
−2 (

2 ℓ−1 f (u)u) 2

f (u)2 ℓ+1

)
=

+∞
∑
ℓ=0

exp
(
−2 ℓ f (u)u 2 /4

)
≤

+∞
∑
ℓ=0

exp
(
−(ℓ+ 1) f (u)u 2 /4

)
= 1

exp( f (u)u 2 /4)−1

(21)
From the choice of f (u), we finally use the upper bounded by 1

Tu 2 /K−1 . When we
integrate this quantity again, we can obtain

∫ 1

δ 0

1
Tu 2 /K− 1

du ≤1
2

log

(
e 1/16 +1
e 1/16−1

)√
K
T

(22)

Eventually, we have a conclusion

T
K
∑

k=k 0 +1
P(Z < z k)(△ k−△ k−1)

≤ T
(
δ 0−△ k 0

)
+
(

17e −1/16 + 1
2 log

(
e 1/16 +1
e 1/16 −1

))√
TK≤ T

(
δ 0−△ k 0

)
+ 17.8

√
TK

(23)

Combining (9), (15) and (23), we obtain

1
P1

RT ≤ 48.28
√

TK + K

From Algorithm 3, P1 + P2 = 1, 0 < P1 < 1 and 0 < P2 < 1, we obtain the upper
bound of the regret value from Equation (2)

RT + P2 ∗ 1 ≤ RT + (1− P1) ≤ P1 ∗ 48.28
√

TK + P1K + (1− P1) (24)

Combining (2) with (24), and the definition of RT , we obtain

E[R(T)] ≤ P1 ∗ 48.28
√

TK + (K− 1)P1 + 1 (25)



Appl. Sci. 2024, 14, 3441 10 of 18

The probability 0 < P1 < 1, E[R(T)] is bounded regardless of the value of P1. There-
fore, we conclude that the DG-MOSS algorithm has an upper bound of the regret value, so
this algorithm is stable.

The proof of the upper bound of DG-MOSS confirms that the actions selected based
on DG-MOSS satisfy this theorem, providing a solid theoretical basis for recommendation
for small and medium-sized datasets.

5. Experiments

The goal of the agent is to take actions against the environment to maximize the reward.
So, this section illustrates the progress of DG-MOSS in recommendation and compares
the total rewards and average rewards of this algorithm with the other nine algorithms on
four datasets of different sizes and sparsity. The analysis of parameters and adaptive Ti are
presented in this section too.

5.1. Experiment Platform and Data Preprocessing

We implemented our experiments in PowerLeader PR4865P server with an Intel XEON
Gold 6132 CPU and 1T memory. The experiments were developed on Reinforcement Learn-
ing architecture in the CentOS 7 system. Importing numpy, matplotlib, math, pandas and
time modules helps Python programmers to efficiently perform numerical computations,
data analysis, visualization, and handle tasks related to time. Different low coupling
modules were implemented in the code to ensure the scalability of the experiments.

We used four datasets: a random dataset with a normal distribution of reward (Random
data-ND), the Alibaba Tianchi dataset (Alibaba) (Available online: https://tianchi.aliyun.
com/dataset/dataDetail (accessed on 15 March 2024)), MovieLens (Available online: https://
grouplens.org/datasets/movielens (accessed on 15 March 2024)), and the advertising dataset
(Ads-CTR-Optimisation) (Available online: https://segmentfault.com/a/1190000018871668
(accessed on 15 March 2024)). The datasets were preprocessed for recommendation as follows
before the experiments.

Random data-ND simulates normal distribution data by using the normal function
in numpy and then obtains a value randomly. The input parameters are the mean and
variance of the normal distribution. In these experiments, we established nine normal
distributions with different means and variances to represent the nine arms and performed
the functions with different parameters according to the selected arms.

Alibaba randomly samples the advertising display click logs (26 million records) of
1.14 million users within 8 days from the Taobao website to form the original backbone
of the sample. This dataset was preprocessed before use. First, we removed unnecessary
columns, such as user_ID (desensitized by user ID), and pid (resource bit), and noclk
(1 means no click and 0 means click). Then, we processed the remaining data in rows,
removed the advertisements that had not been clicked, that is, the rows where clk (0 means
no click and 1 means click) is 0, and then removed the clk column. After processing,
adgroup_id was classified. Every 10,000 IDs were grouped into one group and integrated
into one arm. The number of advertising data in this group is the reward number of this
arm. We expanded the current column; one column represents one arm. Meanwhile, we
filled the excess blanks with 0 and set the ID to 1. Finally, we used the sample function
in pandas to deal with confusion. This completes the dataset with only 0, 1, and 85 arms.
The dataset includes 430,000 rows and 85 columns, but each row has only one arm with a
reward value, so the data of this dataset are relatively sparse.

Movielens is actually a recommendation system and virtual community website.
It was founded by the GroupLens project team at the School of Computer Science and
Engineering at Minnesota University. It is a non-commercial experimental site for research
purposes. The GroupLens research group has produced a MovieLens dataset based on the
data provided by the MovieLens website, which contains multiple movie scoring datasets.
After decompressing the file, we obtained three files: movies.dat, ratings.dat, and user.dat.

https://tianchi.aliyun.com/dataset/dataDetail
https://tianchi.aliyun.com/dataset/dataDetail
https://grouplens.org/datasets/movielens
https://grouplens.org/datasets/movielens
https://segmentfault.com/a/1190000018871668
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We integrated the data into a table with user ID, movie ID, and score. We specified that
when the score is greater than 3, the value of the arm is 1; otherwise, it is 0.

Ads-CTR-Optimisation collects the click data of 10 advertising spaces within a certain
period of time, with a total number of 10,000. There are multiple advertising spaces for
clicking at the same time. The format of this dataset is complete, but the problem is that
the number of arms and the amount of data need to be expanded into rows and columns.
First, we expanded the rows. We copied an existing piece of data and added it to the end
until the number of rows reached 100,000 and then expanded the columns in the same way.
We also added some empty columns to prevent the data from being too dense. After this
processing, we obtained an advertising dataset of 80 columns and 100,000 rows.

5.2. Experimental Results and Analysis

In this section, the experiments show two advantages of DG-MOSS over other common
models and the performance of DG-MOSS with the same parameters. We compare it with
the standard state-of-the-art models that have been explained and introduced in the related
work as baselines: ε-greedy [20] and Boltzmann [18], CNAME [19], UCB [3], UCB1 [3],
FP-UCB [23], BBANK [26], MOSS [24], and R-MOSS [25].

5.2.1. Total Rewards

Reinforcement learning is based on the reward hypothesis. All goals can be described
by maximizing the expected cumulative rewards. In order to obtain the best behavior in
reinforcement learning, we need to maximize the expected cumulative reward. Therefore,
the algorithm with a large total reward value can perform the best. Figure 1a–d correspond
to Random data-ND, Alibaba, MovieLens, and Ads-CTR-Optimisation datasets, respec-
tively. Figure 1a is a data-dense dataset in which the total reward value of DG-MOSS is
slightly higher than that of Boltzmann controlled by random parameters and extended
time slots approaching R-MOSS. Figure 1b,c represent sparse datasets with a medium
data scale. With the increase in the number of iterations, the total reward value increases
steadily and is finally better than all compared algorithms. Figure 1d is a small-sized sparse
dataset. In Figure 1a–d,we can observe significant variations in the total rewards among
the nine contrasting methods across four distinct datasets. This disparity arises from the
distinct scenarios considered by each strategy and the disparate methodologies employed
in computing rewards. Particularly in Figure 1b, which entails more intricate shopping
data, fluctuations during training may occur due to the complexity of information involved.
Regarding Figure 1c, given the heightened subjective nature of music data, DG-MOSS can
leverage post-interaction feedback more effectively as training progresses. In the iteration,
the total reward value not only maintains linear growth but is also better than other algo-
rithms. Due to the different densities of datasets in different parts, DG-MOSS can adapt
to different datasets with sufficiently trained recommendation, particularly when dealing
with sparse datasets.

5.2.2. Average Rewards

The average reward is the average of reward values of all rounds, which can better
reflect the convergence and stability of the algorithm. Figure 2a–d correspond to Ran-
dom data-ND, Alibaba, MovieLens, and Ads-CTR-Optimisation datasets, respectively. In
Figure 2a, DG-MOSS is better than Boltzmann [18], CNAME [19], UCB1 [3], FP-UCB [23],
BBANK [26], and R-MOSS [25], which all perform stably on this dataset, and the average
reward is higher than MOSS [24] up to 2. In Figure 2b, the average reward of DG-MOSS is
better than CNAME [19], which also has gradually stable performance. In Figure 2c, the
average reward of DG-MOSS gradually exceeds ε-greedy [20], which performs stably in
this dataset. All algorithms are stable, as shown in Figure 2d. For the datasets Figure 2a,b,d,
the average reward remains stable, and the value obtained is the maximum. For the dataset
Figure 2c, the average reward increases in learning and reaches a stable peak in all algo-
rithms. It is worth noting that, in the initial period, the average reward value of DG-MOSS
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fluctuates drastically rather than evolving steadily. This may be because initially, a large
number of arms does not interact with the reinforcement learning agent, resulting in less
stable feedback. In Figure 2, the red line represents DG-MOSS, which performs well on
all four datasets after sufficient training due to its ability to not only fully utilize feedback
information but also to employ multiple action selection.
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(a) Random data-ND dataset
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(b) Alibaba dataset
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(c) MovieLens dataset
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(d) Ads-CTR-Optimisation dataset

Figure 1. Total rewards. (a–d) The X axis represents the value of total rewards, and the Y axis
represents the training epochs.
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Figure 2. Average rewards. (a–d) The X axis represents the value of total rewards, and the Y axis
represents the training epochs.

5.2.3. Parameter Analysis

There are some algorithms whose parameter sizes and ranges are specified, such as
ε-greedy [20], Boltzmann [18], and UCB1 [3]. We kept the basic parameters (Parameters 1)
and exploration coefficient parameters (Parameters 2) of each algorithm consistent to ensure
the fairness of the experiment. The basic parameters (Parameters 1) exist in the original
algorithm; some Parameters 2 exist and some do not. In DG-MOSS, Parameters 1 are
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fixed
√

3 in mis =
√

3 log (S)
s , and Parameters 2 are the exploration probability c. The term

mis in the current round signifies the threshold demarcating the total number of arm
pulls, denoted as S, and the number of pulls from the current arm, denoted as s. As the
exploration probability c undergoes alterations, there are corresponding shifts in both
the average reward and average regret. Consequently, for fairness in comparison, the
selection of identical parameter values was made. This approach ensures consistency across
different exploration probabilities, facilitating a more precise evaluation of outcomes under
varied conditions. Here, the exploration probability c = 0.1 was used. Although random
algorithms ε-greedy [20], Boltzmann [18] and CNAME [19]; upper bound of confidence
algorithms UCB [3] and UCB1 [3]; grouping algorithms FP-UCB [23] and BBANK [26];
and optimal strategy algorithms MOSS [24] and R-MOSS [25] have better performance,
DG-MOSS has the maximum average reward and the lowest average regret. This shows
the stability of the algorithm.

In the analysis of these parameters, the average rewards and average regrets of DG-
MOSS are shown in Table 1. We used the dynamic grouping to improve reinforcement
learning algorithm of MOSS by increasing the exploration coefficient.

Table 1. Description of parameters.

Algorithms Parameters 1 Parameters 2 Average
Rewards Average Regrets

ε-greedy 0.05 NULL 0.1690 0.8310
Boltzmann 1 NULL 0.1318 0.8669
CNAME

√
3 0.1 0.2648 0.7342

UCB
√

3 NULL 0.2103 0.7897
UCB1

√
2 NULL 0.1510 0.8490

FP-UCB
√

3 0.1 0.1237 0.7562
BBANK

√
3 0.1 0.2654 0.7346

MOSS
√

3 NULL 0.1703 0.8297
R-MOSS

√
3 0.1 0.2631 0.7369

DG-MOSS
√

3 0.1 0.2681 0.7319

According to step 9 of Algorithm 3, it can be inferred that the value of probability
parameter P1 is related to the control of action selection. The quantity of dynamically
grouped data also plays a significant role, and the varying impacts of different parameters
on the final results further indicate the intentional design of probability parameters in
DG-MOSS. Here, the selection of exploration parameters is related to K. The K used in
this Ads-CTR-Optimisation datasets experiment is 85. We can choose according to the
actual situation. Through experimental comparison, we use 6

85 as the probability parameter
0 < P1 < 1. The average rewards of different probability parameters are shown in Table 2.

Table 2. Probability parameters.

Parameters Average Rewards

4/85 0.2076
5/85 0.2673
6/85 0.2681
7/85 0.2656
8/85 0.2659

5.2.4. Adaptive Ti

In Algorithm 3, we set episode length Ti = 8 log
(

T∗(T+1)2

(avg−mis)2

)
related to the return

value of the agent, which is adaptively proposed. Compared with the initial 1000 in
different scenarios, Random data-ND is a dense dataset, Alibaba and Movie are sparse
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datasets with large scale, and Ads-CTR-Optimisation is a medium-sized sparse dataset.
The number of episodes is reduced, as shown in Table 3.

Table 3. Number of training episodes.

Datasets Episode

Initial 1000
Random data-ND 24

Alibaba 44
Movie 34

Ads-CTR-Optimisation 638

The experimental results show that the episode difference with large-scale and dense
datasets can reach more than 956 (1000-44), and the episode difference between medium-
scale datasets can also reach more than 362 (1000-638). So, the optimization effect is obvious.
Thus, significant improvements are attributed to the combined influence of the total time
step T, grouping parameter mis, and feedback information avg to jointly affect the episodes,
which synergistically complement each other when integrated with the dynamic grouping
process in recommendation interactions. There is no need to adjust the parameters manually
and adjust the episode in the training automatically.

5.2.5. Robustness

Regardless of the type of user data, such as movies, shopping, or advertising, which
has an open nature, some businesses or individuals inject fake data into the recommen-
dation system from the perspective of their own interests, attempting to alter the recom-
mendation results. This is known as a recommendation attack. Common recommendation
attacks include random attacks and average attacks. Random attacks involve adding 1%,
3%, 5%, and 10% of random entries to attack. Average attacks involve adding 1%, 3%, 5%,
and 10% of entries to attack, with the mean of the dataset being added as one of the entries.
Under attack conditions with 1%, 3%, and 5% data, the fluctuations of DG-MOSS remain
within a small range. The attack with 10% data is relatively strong and has some impact
on all models. Since this study focuses on maximizing rewards for recommendations, the
robustness is demonstrated by achieving the maximum reward value even under different
attack conditions, which helps in selecting the arms. As shown in Tables 4–6. DG-MOSS
performs the best under all attack conditions, which indicates that this algorithm has good
robustness.

Table 4. Random attacks (R) and average attacks (A) on the movie dataset.

Algorithms Original 1% R 3% R 5% R 10% R 1% A 3% A 5% A 10% A

ε-greedy 0.1944 0.1932 0.2015 0.2070 0.2186 0.1969 0.2131 0.2291 0.2574
Boltzmann 0.0139 0.0192 0.0276 0.0368 0.0546 0.0143 0.0157 0.0181 0.0266
CNAME 0.2296 0.2266 0.1671 0.2496 0.2562 0.2420 0.2347 0.2696 0.2860

UCB 0.0778 0.0815 0.0870 0.0962 0.1092 0.0850 0.1022 0.1179 0.1504
UCB1 0.0262 0.0357 0.0356 0.0415 0.0614 0.0310 0.0406 0.0411 0.0678

FP-UCB 0.0568 0.0421 0.0496 0.0546 0.0706 0.0636 0.0498 0.0547 0.0792
BBANK 0.1983 0.2379 0.2526 0.2562 0.2643 0.2421 0.2441 0.2494 0.2978
MOSS 0.0809 0.0847 0.0908 0.0983 0.1130 0.0887 0.1073 0.1220 0.1541

R-MOSS 0.0653 0.0621 0.0710 0.751 0.0908 0.0667 0.0752 0.0865 0.1430
DG-

MOSS 0.2378 0.2396 0.2539 0.2585 0.2720 0.2422 0.2609 0.2729 0.2996
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Table 5. Random attacks (R) and average attacks (A) on the advertising dataset.

Algorithms Original 1% R 3% R 5% R 10% R 1% A 3% A 5% A 10% A

ε-greedy 0.1690 0.1720 0.1756 0.1846 0.1935 0.1774 0.1896 0.2052 0.2405
Boltzmann 0.1318 0.1332 0.1460 0.1503 0.1568 0.1346 0.1469 0.1587 0.1805
CNAME 0.2648 0.2657 0.2712 0.2725 0.2829 0.2698 0.2841 0.3006 0.3315

UCB 0.2103 0.2088 0.2113 0.2289 0.2312 0.2091 0.2344 0.2409 0.2753
UCB1 0.1510 0.1581 0.1584 0.1681 0.1780 0.1572 0.1695 0.1768 0.220

FP-UCB 0.1237 0.1180 0.1314 0.1400 0.1576 0.1190 0.1340 0.1392 0.1614
BBANK 0.2654 0.2684 0.2711 0.2755 0.2850 0.2745 0.2867 0.3011 0.3317
MOSS 0.1703 0.1736 0.1780 0.1855 0.1987 0.1786 0.1938 0.2082 0.2440

R-MOSS 0.2631 0.2640 0.2678 0.2719 0.2831 0.2704 0.2834 0.2983 0.2766
DG-

MOSS 0.2681 0.2693 0.2723 0.2762 0.2853 0.2748 0.2868 0.3013 0.3322

Table 6. Random attacks (R) and average attacks (A) on the shopping dataset.

Algorithms Original 1% R 3% R 5% R 10% R 1% A 3% A 5% A 10% A

ε-greedy 0.0036 0.0075 0.0089 0.0076 0.0096 0.0041 0.0037 0.035 0.0040
Boltzmann 0.0133 0.0158 0.0153 0.0155 0.0199 0.0144 0.0151 0.0154 0.0155
CNAME 0.015 0.0156 0.0223 0.0178 0.0176 0.0284 0.0235 0.0252 0.0206

UCB 0.0136 0.0152 0.0195 0.0178 0.0182 0.0154 0.0189 0.0188 0.0196
UCB1 0.0123 0.0148 0.0163 0.0157 0.0173 0.0155 0.0149 0.0158 0.0148

FP-UCB 0.0188 0.0202 0.0235 0.0233 0.0246 0.0214 0.0287 0.0265 0.0265
BBANK 0.0220 0.0241 0.0283 0.0266 0.0265 0.0291 0.0333 0.0343 0.0315
MOSS 0.0038 0.0071 0.0090 0.0078 0.0096 0.0038 0.0038 0.0038 0.0038

R-MOSS 0.0172 0.0145 0.0229 0.0220 0.0243 0.0228 0.0275 0.0239 0.0286
DG-

MOSS 0.0223 0.0250 0.0283 0.0268 0.0280 0.0295 0.0339 0.0344 0.0316

6. Conclusions

For reinforcement learning recommendation for small and medium-sized data scenar-
ios, considering dynamic interactive feedback, this paper presents a novel SMAB algorithm
called DG-MOSS that utilizes adaptive episode in training, which is based on improved
MOSS by incorporating dynamic grouping from environment feedback information to
ensure the balance of exploration and exploitation and maximizing rewards for recommen-
dations. This algorithm can increase the degree of exploration and exploitation according to
the dynamic grouping, solving the insufficiency problem and making full use of feedback
information. On the one hand, through analysis and proof, this paper gives the upper
bound of the regret value of DG-MOSS, which provides strong theoretical support. On the
other hand, extensive experiments were undertaken on four datasets (Random data-ND,
Alibaba, MovieLens, and Ads-CTR-Optimisation) with total rewards and average rewards.
The maximum reward improvement compared to the second-best model reaches 1.02%,
while the improvement compared to the worst baseline model can reach up to 36.32%. In
summary, DG-MOSS is a stable and robust SMAB algorithm in recommendation. Extensive
studies focus on combining deep learning and reinforcement learning to address problems.
In the future, we will continue to investigate adaptive approaches based on big data by
adding deep learning.
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