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Abstract: Crop digital twin is redefining traditional farming practices, offering unprecedented op-
portunities for real-time monitoring, predictive and simulation analysis, and optimization. This
research embarks on an exploration of the synergy between precision agriculture, crop modeling,
and regression algorithms to create a digital twin for farmers to augment the concentration and
composition prediction-based crop nutrient recovery. This captures the holistic representation of
crop characteristics, considering the intricate relationships between environmental factors, nutrient
concentrations, and crop compositions. However, the complexity arising from diverse soil and
environmental conditions makes nutrient content analysis expensive and time-consuming. This
paper presents two approaches, namely, (i) single-nutrient concentration prediction and (ii) nutrient
composition concentration prediction, which is the result of a predictive digital twin case study that
employs six regression algorithms, namely, Elastic Net, Polynomial, Stepwise, Ridge, Lasso, and
Linear Regression, to predict rice nutrient content efficiently, particularly considering the coexistence
and composition of multiple nutrients. Our research findings highlight the superiority of the Poly-
nomial Regression model in predicting nutrient content, with a specific focus on accurate nitrogen
percentage prediction. This insight can be used for nutrient recovery intervention by knowing the
precise amount of nutrient to be added into the crop medium. The adoption of the Polynomial
Regression model offers a valuable tool for nutrient management practices in the crop digital twin,
potentially resulting in higher-quality rice production and a reduced environmental impact. The
proposed method can be replicable in other low-resourced crop digital twin system.

Keywords: rice nutrient level; fertilizer optimization; nutrient analysis; polynomial regression;
nutrient prediction; environmental impact reduction

1. Introduction

Digital twin technology involves the creation of a virtual duplicate of a physical object
or system, enabling the simulation and analysis of diverse scenarios and outcomes [1–7].
When applied to crop management, a digital twin becomes a powerful tool for modeling
a specific farm, considering variables such as soil quality, weather conditions, irrigation
systems, and crop varieties. This collected data is then utilized to update the digital twin,
facilitating predictions about upcoming crop yields, potential pest outbreaks, and other
influential factors that may impact the farm’s overall success.

Employing digital twins as a primary method for farm management facilitates the
separation of physical processes from their planning and control. Consequently, farm-
ers gain the capability to oversee operations and crop health remotely, relying on (al-
most) real-time digital information rather than depending solely on direct observation
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and on-site manual tasks [6,7]. The deficiency of vital nutrients can lead to reduced crop
yields [8–13]. This empowerment enables prompt action in response to anticipated or
unexpected deviations such as crop nutrient concentration and allows for the simulation of
the effects of interventions such as nutrient recovery based on real-life data [14–18].

In this context, the application of machine learning (ML) offers a promising avenue for
farmers. ML equips them with tools for monitoring soil quality and delivering personalized
recommendations, drawing insights from both experimental and field data. Nonetheless,
the prediction of rice essential nutrients remains a formidable challenge, primarily due to
several factors: (1) the inherent variability in nutrient content, (2) the diversity of analytical
approaches, (3) limitations in data availability, (4) genetic diversity among rice varieties,
and (5) the associated cost and time constraints [16–19]. Consequently, it is imperative to
address these multifaceted challenges to develop accurate and reliable nutrient prediction
models for rice [15–17].

This paper report one of our digital twin case studies on rice nutrient recovery through
two approaches; namely, single-nutrient concentration prediction and nutrient composition
concentration prediction. Regression facilitates the identification of intricate relationships
among essential rice nutrients, ensuring their optimal supply, thereby enhancing rice
growth and nutrient content [20,21]. This study seeks to identify the most effective regres-
sion algorithm for predicting nutrient concentration percentages based on the co-existence
and composition of other nutrients. The incorporation of regression algorithms in the crop
digital twin is mainly because of its efficiency and effectiveness. This endeavor promises
optimized nutrient management practices, culminating in enhanced rice quality and a
reduced environmental footprint through the adjustment of nutrient ratios.

Among the myriad regression algorithms, Elastic Net regression, Polynomial re-
gression, Stepwise regression, Ridge regression, Lasso regression, and Linear regression
hold particular relevance for predicting nutrient concentration by considering the co-
existence and composition of multiple nutrients. These algorithms offer a structured,
data-driven approach to unravel the complexities of rice nutrition, providing accurate
predictions and contributing to the standardization of nutrient management practices.
Moreover, they play a crucial role in fostering sustainable and environmentally friendly rice
cultivation practices.

The singular nutrient prediction method offers advantages in two distinct scenarios.
Firstly, it proves beneficial when a farmer or scientist intends to simulate the concentra-
tion value of a specific nutrient, already possessing knowledge of the concentration of
other nutrient components. Secondly, this approach becomes valuable if the sensor for a
particular nutrient malfunctions. In such cases, the digital twin system promptly alerts
the user regarding the sensor breakdown and provides a predictive value while awaiting
sensor replacement.

Regardless of the scenario, the digital twin system ensures user awareness when
the detected nutrient concentration surpasses the recommended range. Furthermore, the
system recommends nutrient recovery interventions. The nutrient composition prediction
approach serves as a comprehensive intervention preparation tool by informing the farmer
or scientist about the anticipated nutrient concentration. The projected value, in turn, aids
the digital twin system in suggesting the appropriate amount of nutrient recovery, aligning
with best practices.

This paper unfolds in five sections. The Section 2 underscores the significance of
predicting rice essential nutrients and elucidates the challenges in this domain, along with
the role of Linear and Polynomial Regression algorithms in addressing these issues. In
Section 3, the dataset is thoroughly described, highlighting its key attributes. The subse-
quent step involves data pre-processing using Min–Max Normalization to ensure unifor-
mity. Following this, the methodology branches into two main aspects: (1) Single-nutrient
concentration prediction (Section 3.3.1), and (2) Nutrient composition concentration predic-
tion (Section 3.3.2), offering a comprehensive approach to understanding and forecasting
nutrient concentrations in rice. Section 4 presents the experimental results and their com-
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prehensive analysis. Finally, Section 5 of the paper concludes by summarizing the findings
and proposing potential avenues for future research.

2. Literature Review

One of the promises of a digital twin in crop management is for the automatic predic-
tion system to support in deciding the appropriate fertilization period [22–24]. Deploying
the sensors which monitor the concentration of nutrients present in soil, humidity, and
temperature in the real fields to make consistent quality checks. Machine learning could
be used as a proactive measure as a predictor of the degradation of crop medium’s and a
crop’s plant nutrients, which could increase the risk of crop pests and diseases [25,26].

Regression algorithms play a central role in rice nutrient prediction by unraveling the
intricate interplay of nutrients in rice cultivation. Elastic Net Regression (EN), Polynomial
Regression (PN), Stepwise Regression (SW), Ridge Regression (RR), Lasso Regression (LS),
and Linear Regression (LR) provide essential insights into the complex relationships among
soil composition, environmental variables, and agricultural practices [27–30]. These algo-
rithms empower researchers to comprehend the often-nonlinear dependencies among these
factors, deepening our understanding of how various nutrients influence rice nutrition.

Regression algorithms are data-driven, offering a robust framework for analyzing
and interpreting nutrient data from diverse sources. By harnessing historical data and
observational insights, these algorithms provide crucial guidance on how different nutrients
impact rice composition. This knowledge is vital for optimizing fertilizer usage, enhancing
nutrient management, and ultimately improving rice quality and yields [27–30].

These algorithms also aid farmers, agricultural experts, and policymakers in making in-
formed decisions about crop management, fertilization strategies, and soil enrichment. This
proactive approach helps in avoiding over-fertilization or under-fertilization, mitigating
their detrimental effects on crop health and environmental sustainability [31,32].

Existing works on rice nutrients have focused on predicting essential nutrient levels
in rice, such as N, P, K, Mg, and Ca, and their effects on rice plant growth and development.
One study employed an artificial neural network-based prediction algorithm to assess
the influence of individual nutrients (N, P, K, Zn, and S) on various rice plant parameters.
The algorithm indicated that optimal growth often occurs with nutrient doses below the
maximum applied levels, while maximum yield is achieved at a 100% nutrient dose [22].

Another study used regression methods and found that random forest regression
algorithms provided the highest accuracy for estimating rice shoot dry matter, leaf area
index, and nitrogen accumulation [23]. A third study evaluated different approaches
for estimating rice above-ground biomass, plant nitrogen uptake, and nitrogen nutrition
index, with the Random Forest algorithm demonstrating a superior performance [25]. An
additional study focused on using machine learning for the early detection of nutrient
deficiency in rice through leaf image processing, achieving high testing accuracy and
roc_auc score [8].

Rice nutrient content prediction, based on the composition of other nutrient informa-
tion, including nitrogen, phosphorus, potassium, and organic matter as input variables,
was addressed in a study [26]. This study compared the EN algorithm with traditional
linear regression methods, including Ordinary Least Squares (OLS) Regression, Ridge
Regression, and Lasso Regression. The results highlighted the superior performance of
the EN algorithm, exhibiting higher R-squared scores (R2) and lower Mean Absolute Error
(MAE). Thus, Elastic Net proves more accurate in predicting rice nutrient content and its
correlation with other nutrients.

Essential nutrient levels in rice can also be predicted using spectral data from remote
sensing [28], considering nutrients like N, P, K, Mg, and Ca. This research compared the
Polynomial Regression algorithm with two other methods: Multi Linear Regression (MLR)
and Partial Least Squares Regression (PLSR). The outcome demonstrated the Polynomial
algorithm’s superiority in predicting nutrient concentrations in rice levels.
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Other studies predicting nutrient content in rice used 16 nutrients as predictors, such
as moisture, crude protein, fat, ash, total dietary fiber, soluble dietary fiber, insoluble dietary
fiber, total sugar, sucrose, glucose, fructose, amylose, amylopectin, total amino acids, lysine,
and thiamine [30]. These studies employed three algorithms: Stepwise Regression, PLSR,
and MLR for prediction. The results favored stepwise regression analysis for its superior
accuracy in predicting nutrient content in rice.

Another study aimed to predict nutrient content in rice based on 14 nutrients, including
moisture, crude protein, fat, ash, total dietary fiber, soluble dietary fiber, insoluble dietary
fiber, total sugar, sucrose, glucose, fructose, amylose, amylopectin, and thiamine. This
research compared three algorithms: Ridge Regression, Principal Component Regression
(PCR), and PLSR. Ridge Regression stood out as the most effective method for predicting
nutrient content in rice, delivering higher accuracy than PLSR and PCR.

Utilizing another set of 14 nutrients, including moisture, crude protein, fat, ash, total
dietary fiber, soluble dietary fiber, insoluble dietary fiber, total sugar, sucrose, glucose,
fructose, amylose, amylopectin, and thiamine, as predictors for nutrient prediction in
rice, another study employed three algorithms: MLR, PLSR, and Lasso Regression [33].
The experimental results highlighted the precision of the lasso regression algorithm in
predicting both yield and nutrient contents in rice, offering potential benefits in optimizing
rice crop cultivation and management.

In a similar vein, another study [34,35] compared three prediction algorithms, namely
MLR, PLSR, and PCR, for nutrient content in rice, considering nutrients such as mois-
ture, crude protein, fat, ash, total dietary fiber, soluble dietary fiber, insoluble dietary
fiber, total sugar, sucrose, glucose, fructose, amylose, amylopectin, and thiamine. The
findings indicated that MLR provided more accurate predictions compared to the other
methods assessed.

Table 1 provides a comparative analysis of the advantages and disadvantages of
regression algorithms [26–35] for rice nutrient prediction. These algorithms effectively
capture both linear and nonlinear correlations among various nutrients.

Table 1. Advantage and disadvantage of Linear Regression algorithm.

Linear Regression Types Proficiency Advantage Disadvantage

Simple Linear Regression
(LR) [25]

Identifying the correlation
between two variables

- Computationally efficient
- Required fewer parameters

- Unable to deal
with nonlinearity

- Sensitive to outlier

Elastic Net Regression (EN) [26]
Constructed by combination of

Lasso and Ridge
Regression models.

- Able to deal with large
number of features

- Prevent overfitting using
L1 and L2
regularization methods

- Computationally expensive
- Unsatisfactory results when

the number of predictors is
more than sample size

Polynomial Regression (PR) [28] Captures nonlinearity
between variables

- Ability to deal with
small dataset

- Computationally expensive
- Overfit if the degree of

polynomial is high

Stepwise Regression (SW) [30]

Built by combination of backward
and forward selection methods,
which is beneficial to select best

subset of features

- Provide balance between
features and algorithms’
predictive power

- Time demanding
- Unstable due to overfitting

Ridge Regression (RR) [31] Considered a
regularization method

- Able to deal with
large dataset

- Prevent overfitting

- Issue with finding optimal
value for lambda

Lasso Regression [33] Known as regularization method - Mitigate overfitting

- Challenging while
dealing with large dataset
that has large number
of observations



Appl. Sci. 2024, 14, 3383 5 of 24

These diverse regression algorithms collectively share a common aim: to enhance
the precision and reliability of predictions concerning rice nutrient content, a critical step
in optimizing fertilizer application, ensuring a balanced nutrient supply, and ultimately
elevating rice crop quality and yield while reducing environmental impact.

However, very limited works have addressed the crop’s nutrient prediction by focus-
ing on the co-existent and composition nutrient’s concentration. For a digital twin system
equipped with crop nutrients surveillance, this comes to our advantage to enable crop
nutrient recovery. Our exploration and application of these regression techniques serve to
address prevailing research disparities and foster a more standardized and comprehensive
approach to predicting rice nutrient content. By employing a variety of regression mod-
els, our objective is to gain a deeper understanding of the intricate relationships among
different nutrients in rice. This, in turn, promotes more sustainable and efficient rice
cultivation practices.

3. Materials and Methods

This part splits into three subsections. First, we explain the dataset and its at-
tribute. Next, we present the setting of the regression models. Then, we discuss the
evaluation metrics.

3.1. Dataset Description

A self-collected rice dataset was used as described in Table 2, comprising 348 observations
and nine attributes. This multivariate dataset features a combination of categorical and
numerical data, including spatiotemporal factors such as Season, Day, Plot, and Subplot.

Table 2. Rice dataset descriptions.

Name of Dataset Rice Dataset

Dataset Characteristics Multivariate
Attribute Characteristics Categorical Data (Nominal), Numerical and Continual Data

Number of Instances 348
Attributes Number 9

Missing Values No

The Season attribute categorizes data into two distinct seasons, denoted by the values
1 and 2, enabling the exploration of how seasonal changes influence rice nutrient levels,
a fundamental aspect of rice production optimization. Additionally, the Day attribute,
with three distinct values, 30, 60, and 90, introduces temporal granularity, facilitating an
examination of nutrient content variations within each season. This temporal dimension is
essential for understanding the influence of specific days on nutrient levels.

Furthermore, the Plot attribute categorizes data into four distinct plot locations rep-
resented by values 1, 3, 4, and 5, enabling the assessment of nutrient distribution across
different areas within the study site, thus adding a spatial context to the analysis. Sub-
plot further refines the spatial information by specifying 15 sublocations within each plot,
denoted by values such as 1A, 1B, 1C, and so forth.

This fine-grained attribute is invaluable for scrutinizing nutrient variation within
specific subregions of the plots, enhancing spatial precision. Additionally, the dataset
incorporates nutrient concentration, composition, and co-existence (“N%”, “P%”, “K%”,
“Mg%”, “Ca%”), which is vital for understanding rice growth and health. The dataset’s
integrity is maintained, as it contains no missing values.

An example of the data content is shown in Figure 1, which shows the concentration
of each nutrient based on the spatial information. The best range of the nutrients are
N: [1.17, 2.47], P: [0.25, 0.3], K: [1.85, 2.52], Mg: [0.11, 0.17], and Ca: [0.23, 0.33], which
has produced the maximum weight grain at the planting plot with range [29.26, 39.42] at
the end of the planting cycle. These values are considered the best practice to guide the
intervention plan for the user (farmer or scientist).
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Figure 1. Example content of the dataset.

Figure 2 shows the dashboard that presents the average rice nutrient concentration
across the growth period and the rice anatomical values at harvesting time, while Figure 3
shows the nutrient value distribution. From Figure 2, we can identify the relationship of
the nutrient con-existence, composition, and concentration with the yield. The digital twin
supports a three-staged insight for crop intelligence. First, we could also see the average
values of nutrients that have led to the yield, and the nutrient values from the plant with
the best yield become the benchmark.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 26 
 

 
Figure 1. Example content of the dataset. 

Figure 2 shows the dashboard that presents the average rice nutrient concentration 
across the growth period and the rice anatomical values at harvesting time, while Figure 3 
shows the nutrient value distribution. From Figure 2, we can identify the relationship of 
the nutrient con-existence, composition, and concentration with the yield. The digital twin 
supports a three-staged insight for crop intelligence. First, we could also see the average 
values of nutrients that have led to the yield, and the nutrient values from the plant with 
the best yield become the benchmark.  

So, this has motivated us towards the second intelligence by predicting the co-exist-
ence, concentration, and composition of the plant at each plot and subplot to know about 
their health. The third intelligence is nutrient recovery during the growth as an interven-
tion mechanism, so that the predicted values can be a guide on precise additional nutrients 
to be added into the crop medium to optimize the yield. The precision of values for addi-
tional nutrients can mitigate unnecessary excess in fertilizer usage and waste pollution. 

 
Figure 2. Dashboard about the average nutrient values and the content in the rice. Figure 2. Dashboard about the average nutrient values and the content in the rice.

So, this has motivated us towards the second intelligence by predicting the co-existence,
concentration, and composition of the plant at each plot and subplot to know about their
health. The third intelligence is nutrient recovery during the growth as an intervention
mechanism, so that the predicted values can be a guide on precise additional nutrients to
be added into the crop medium to optimize the yield. The precision of values for additional
nutrients can mitigate unnecessary excess in fertilizer usage and waste pollution.

The nutrient concentration distribution, as depicted in Table 3, highlights the range
of values for the key nutrients N (%), P (%), K (%), Mg (%), and Ca (%) that is essential
for agricultural productivity. The minimum (MIN) and maximum (MAX) values illustrate
the variability in nutrient levels, emphasizing the complexity of nutrient dynamics in
agriculture. Standard deviation (STDEV) values quantify the degree of variability around
the mean. This information is instrumental in precision agriculture, guiding targeted inter-
ventions based on specific nutrient needs. In the context of environmental sustainability,
understanding these distributions enables our digital twin system to issue timely alerts and
recommend nutrient recovery interventions when concentrations exceed recommended
ranges. This proactive approach optimizes crop yield while minimizing the environmental
impact associated with nutrient imbalances.
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Table 3. Value distribution for the nutrients.

N (%) P (%) K (%) Mg (%) Ca (%)

MIN 0.15 0.15 1.61 0.09 0.16
MAX 4.59 28.00 3.89 0.20 0.38

STDEV 0.77 1.48 0.45 0.02 0.04

3.2. Data Pre-Processing Using Min–Max Normalization

Before visualization, the data exhibited variations in nutrient concentrations that
prompted the need for exploration. The raw data contained outliers, which are data points
significantly different from the majority of the observations. These outliers, if not addressed,
can impact the understanding of the overall nutrient distribution and make it challenging
to discern patterns and trends in the data.

The Min–Max normalization method is applied to rescale the input features between
0 and 1 during the pre-processing phase. This normalization technique is suitable for the
prediction models of this study because it helps to ensure that all the input features are on
the same scale and have the same range, which helps the linear regression models of this
study converge faster and boost their performance. This approach removes noises from
data and prevents the big scales from data by giving the range of [0, 1]. Equation (1) shows
the formula of the Min–MAX method.

XNorm =
(X − XMin)

(XMax − XMin)
(1)

where X is the original value of a data point, XMin is the minimum value in the dataset,
XMax is the maximum value in the dataset, and XNorm is the normalized value of the data
point. This formula ensures that the minimum value in the dataset is scaled to 0 and the
maximum value is scaled to 1, with all other values falling between these two limits.

By applying a pre-processing method to the dataset, we can improve the stability and
performance of the regression models. Once this stage is complete, we can proceed to the
next stage, where we design a regression model based on the different variables in the
dataset. This stage involves selecting an appropriate regression method and specifying the
independent and dependent variables. Finally, we analyze the model and provide informa-
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tion on its performance and accuracy. Figure 3 illustrates the rice nutrients data before and
after applying the Min–Max normalization method. The visual representation of the data
highlights the impact of normalization on the distribution of nutrient concentrations.

The dataset under analysis consists of nutrient concentration data for rice samples,
including attributes like nitrogen (N%), phosphorus (P%), potassium (K%), magnesium
(Mg%), and calcium (Ca%). Prior to visualization, the data exhibited variations in nutrient
concentrations that prompted the need for exploration. The raw data contained outliers,
which are data points significantly different from the majority of the observations. These
outliers, if not addressed, can impact the understanding of the overall nutrient distribution
and make it challenging to discern patterns and trends in the data.

Therefore, to gain a deeper understanding of the nutrient concentration data and
visualize its distribution, we employed box plots both before and after applying Min–Max
normalization. The original box plots revealed the presence of outliers in the dataset, which
was affecting the clarity of the distribution. To address this issue, Min-Max normalization
was applied to scale the data. The box plots after normalization effectively showcased the
distribution of nutrient concentrations without displaying outliers. This approach allows
for a more accurate and informative representation of the data, aiding in the identification
of central tendencies and variations while providing a clearer view of the data’s overall
structure. The use of box plots before and after normalization aids in the assessment of
data quality and the impact of data pre-processing techniques.

3.3. Nutrient Concentration and Composition Prediction

We present two approaches, namely, (i) single nutrient concentration prediction
and (ii) nutrient composition concentration prediction, which are developed using EN,
PN, SW, RR, LS, and LR algorithms. This section describes the development of the
prediction models.

3.3.1. Single-Nutrient Concentration Prediction

We call the first approach single-nutrient concentration prediction, where five (5)
models are developed based on different feature sets of the rice dataset, as shown in
Table 4, by exploiting the nutrient concentration, co-existence, and composition. In Table 4,
“Y” indicates that the spatiotemporal factors and nutrient features are used in the model
building, while “N” indicates otherwise.

Table 4. Single-nutrient concentration prediction setting.

Spatiotemporal Factors Nutrients

Feature Set Season Day Plot Subplot N (%) P (%) K (%) Mg (%) Ca (%)

FS1 (Ca%) Y Y Y Y Y Y Y Y N
FS2 (Mg%) Y Y Y Y Y Y Y N Y
FS3 (K%) Y Y Y Y Y Y N Y Y
FS4 (P%) Y Y Y Y Y N Y Y Y
FS5 (N%) Y Y Y Y N Y Y Y Y

Referring to Table 4, the single-nutrient concentration setting has been constructed
based on the selection of different features from spatiotemporal factors and nutrient features.
These settings will be used for single-nutrient concentration prediction using six methods:
EN, PN, SW, PR, LS, and LR. Table 5 presents the parameter specifications applied to the
six regression approaches of EN, PN, SW, PR, LS, and LR in single-nutrient concentration
and composition concentration prediction.

Table 5 outlines the parameter specifications for six regression algorithms of EN, PN,
SW, PR, LS, and LR in the context of predicting both single-nutrient concentration and
composition concentration.

For EN, the parameters include an alpha value of 0.1 and an L1_ratio of 0.5. PN em-
ploys a degree of 2 for modeling. The SW automatically selects features without involving
direct parameters. PR is characterized by an alpha value of 0.1, and LS also utilizes an
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alpha value of 0.1. LR, on the other hand, involves no additional parameters, as indicated
by the dashed line in the “Values” column.

Table 5. Parameter specification for six regression algorithms of EN, PN, SW, PR, LS, and LR in
single-nutrient concentration and composition concentration prediction.

Model Parameter Values

EN
alpha 0.1

L1_ratio 0.5
PN degree 2

SW Sequential Feature Selector Automatically select features (no
direct parameters involved)

PR alpha 0.1
LS alpha 0.1
LR No additional parameters ---------

The steps for the single-nutrient concentration prediction are described in Algorithm 1,
based on the parameters setting for the machine learning algorithms described in Table 5.

Algorithm 1: Single-nutrient concentration prediction

Input: Nutrient concentration dataset
Process:

1. Apply the Min-Max normalization method (Equation (1))
2. Set training ratio = 80%
3. For each feature set, fs in Table 4: FS1,. . ., FS5

a. Load FSx to be the predictors
b. ModelENx = Develop Elastic Net regression using FSx with parameters in Table 5
c. ModelSWx = Develop Polynomial regression using FSx with parameters in Table 5
d. ModelSWx = Develop Stepwise regression using FSx with parameters in Table 5
e. ModelRRx = Develop Ridge regression using FSx with parameters in Table 5
f. ModelLSx = Develop Lasso regression using FSx with parameters in Table 5
g. ModelLRx = Develop Linear regression using FSx with parameters in Table 5

4. End For

Output: ModelENCa, ModelENMg, ModelENK, ModelENP, ModelENN, ModelPNCa,
ModelPNMg, ModelPNK, ModelPNP, ModelPNN, ModelSWCa, ModelSWMg, ModelSWK,
ModelSWP, ModelSWN, ModelSWCa, ModelSWMg, ModelSWK, ModelSWP, ModelSWN,
ModelRRCa, ModelRRMg, ModelRRK, ModelRRP, ModelRRN, ModelLSCa, ModelLSMg,
ModelLSK, ModelLSP, ModelLSN, ModelLRCa, ModelLRMg, ModelLRK, ModelLRP, ModelLRN.

In relation to Algorithm 1, the process for single-nutrient concentration prediction,
outlined in Algorithm 1, involves applying Min-Max normalization to the nutrient con-
centration dataset and setting an 80% training ratio. For each of the five feature sets (FS1
to FS5) detailed in Table 3, the algorithm loads the respective features and employs six
regression models (Elastic Net, Polynomial, Stepwise, Ridge, Lasso, Linear), each with its
parameters specified in Table 4. The result is a set of trained models for predicting nutrient
concentrations (Ca, Mg, K, P, N) denoted by prefixes such as ModelENCa, ModelENMg,
and so on. The models are developed using various regression techniques tailored to each
feature set, creating a comprehensive framework for nutrient concentration prediction.

3.3.2. Nutrient Composition Concentration Prediction

In the second approach, a model is developed based on different feature sets of the
rice dataset, as shown in Table 6, based on solely the spatiotemporal factors.

Referring to Table 6, the nutrient composition concentration prediction setting has
been constructed by incorporating features from both spatiotemporal factors and
nutrient features.
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Table 6. Nutrient composition concentration prediction setting.

Spatiotemporal Factors Nutrients

Feature Set Season Day Plot Subplot N (%) P (%) K (%) Mg (%) Ca (%)

FS6 (All) Y Y Y Y N N N N N

These settings will be utilized for nutrient composition concentration prediction using
six methods: EN, PN, SW, PR, LS, and LR. The parameter specifications for these models
in nutrient composition concentration prediction are consistent with those applied for
single-nutrient concentration prediction (refer to Table 5).

The steps outlined in Algorithm 2 illustrate the processes for nutrient composition
concentration prediction, developed based on the similar parameter specifications listed in
Table 4 for single-nutrient concentration prediction.

Algorithm 2: Nutrient composition concentration prediction

Input: Nutrient concentration dataset
Process:

1. Apply the Min-Max normalization method (Equation (1))
2. Set training ratio = 80%
3. Load FS6 from Table 6
4. ModelENx = Develop Elastic Net regression using FSx with parameters in Table 5
5. ModelSWx = Develop Polynomial regression using FSx with parameters in Table 5
6. ModelSWx = Develop Stepwise regression using FSx with parameters in Table 5
7. ModelRRx = Develop Ridge regression using FSx with parameters in Table 5
8. ModelLSx = Develop Lasso regression using FSx with parameters in Table 5
9. ModelLRx = Develop Linear regression using FSx with parameters in Table 5

Output: ModelENAll, ModelPNAll, ModelSWAll, ModelRRAll, ModelLSAll, ModelLRAll

Algorithm 2, designed for nutrient composition concentration prediction, starts by nor-
malizing the input nutrient concentration dataset using the Min–Max method and setting
an 80% training ratio. It then exclusively utilizes features from FS6 in Table 6 to develop six
regression models—Elastic Net, Polynomial, Stepwise, Ridge, Lasso, and Linear—each con-
figured with parameters specified in Table 5. The resulting output comprises comprehensive
models denoted as ModelENAll, ModelPNAll, ModelSWAll, ModelRRAll, ModelLSAll, and
ModelLRAll. This algorithm provides an efficient means of predicting nutrient composition
concentrations based on the designated features and regression techniques.

4. Experimental Setting

This section presents the experimental results for Elastic Net Regression, Polynomial
Regression, Stepwise Regression, Ridge Regression, Lasso Regression, and Linear Regres-
sion to predict rice nutrient levels using FS one until six. Table 4 and Figure 4 display the
RMSE scores of all six models, where Polynomial Regression has the best performance in
four models to predict Ca%, K%, P%, and N%, with an average of 0.1502 RMSE, except in
Model 2 (prediction of Mg%), with very little standard deviation (0.1980).

4.1. The Performance of the Single-Nutrient Concentration Approach

We present Tables 7–11 to explain the performance of the single-nutrient concentration
approach by using R2, MAE, and RMSE. A larger R2 value is generally considered better.
An R2 value closer to one suggests that a larger proportion of the variation in the dependent
variable is accounted for by the independent variables in the model, indicating a better
fit. However, it is important to note that a high R2 does not necessarily imply causation
or the absence of model errors, and other factors should be considered in evaluating the
overall validity of the regression model. MAE represents the average absolute difference
between the predicted values and the actual values. The smaller the MAE, the better the
model performance. MAE is less sensitive to outliers compared to RMSE. Lower values of
MAE and RMSE indicate better model performance.
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Table 7. Performances of Ca prediction using approach 1.

Algorithm R2 Score MAE RMSE

ModelENCa 0.0 0.0297 0.0362
ModelPNCa 0.5017 0.0204 0.0255

ModelESWCa 0.0257 0.0292 0.0357
ModelRRCa 0.0869 0.0281 0.0345
ModelLSCa 0.0 0.0361 0.0297
ModelLRCa 0.0931 0.0279 0.0345

AVG 0.1179 0.0286 0.0327
STDEV 0.1942 0.0050 0.0042

Table 8. Performance of Mg prediction using approach 1.

Algorithm R2 Score MAE RMSE

ModelENMg 0.0 0.0154 0.0193
ModelPNMg −3.1900 0.0301 0.0395

ModelESWMg 0.0879 0.0151 0.0184
ModelRRMg 0.1734 0.0142 0.0176
ModelLSMg 0.0 0.0154 0.01934
ModelLRMg 0.1742 0.0141 0.0175

AVG −0.451 0.0174 0.0219
STDEV 1.3401 0.0063 0.0086

Table 9. Performance of K prediction using approach 1.

Algorithm R2 Score MAE RMSE

ModelENK 0.1967 0.3101 0.3991
ModelPNK 0.8496 0.1275 0.1726

ModelESWK 0.0926 0.3464 0.4241
ModelRRK 0.5873 0.2266 0.2860
ModelLSK 0.1391 0.3235 0.4131
ModelLRK 0.5895 0.2261 0.2852

AVG 0.4091 0.2600 0.3300
STDEV 0.3087 0.0823 0.0993

According to Table 7, the optimal model for predicting Ca is ModelPNCa, demonstrat-
ing consistent performance across all evaluation metrics of R2 Score, MAE, and RMSE. The
bold highlighting in Table 7 indicates the significantly superior performance of the PN
algorithm compared to other algorithms, emphasizing its effectiveness in capturing the
variability of nutrient values. Two algorithms, EN and LS, could not capture the variability
in the dataset for predicting Ca, based on the zero R2 value.

Table 10. Performance of P prediction using approach 1.

Algorithm R2 Score MAE RMSE

ModelENP 0.0 0.0529 0.0651
ModelPNP 0.8308 0.0212 0.0267

ModelESWP 0.4180 0.0377 0.0497
ModelRRP 0.6193 0.0311 0.0402
ModelLSP 0.0 0.0529 0.0651
ModelLRP 0.6202 0.0312 0.040

AVG 0.4147 0.0378 0.0478
STDEV 0.3468 0.0128 0.0153
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Table 11. Performance of N prediction using approach 1.

Algorithm R2 Score MAE RMSE

ModelENN 0.3006 0.4524 0.6326
ModelPNN 0.5862 0.3808 0.4866

ModelESWN 0.4240 0.4388 0.5741
ModelRRN 0.5508 0.3657 0.5070
ModelLSN 0.1994 0.4948 0.6768
ModelLRN 0.5532 0.3661 0.5056

AVG 0.4357 0.4164 0.5638
STDEV 0.1574 0.0535 0.0777

Contrary to its performance in Table 7, the PN algorithm shows a bad performance
for magnesium. The best for magnesium prediction is the LR algorithm. The negative R2

value of PN implies that the model is so inadequate that it is worse than a naive model that
merely predicts the mean of the dependent variable for all observations. This indicates that
PN could have been overfit and too complex for the given data, and it fits noise rather than
the underlying patterns.

The performances of LR and RR are very similar, which reflects their high similarity.
Both algorithms assume a linear relationship between the independent variables and
the dependent variable. The models are expressed as linear combinations of the input
features. Both methods aim to minimize a certain objective function to find the optimal set
of coefficients that best fits the data. In LR, this is typically done by minimizing the sum
of the squared differences between the predicted and actual values. In RR, the objective
function includes an additional regularization term.

The primary difference between RR and LR lies in how they handle multicollinearity
and overfitting. RR uses regularization terms and penalizes large coefficients, helping to
mitigate the effects of multicollinearity and prevent overfitting. The regularization term is
controlled by a hyperparameter (usually denoted as “alpha” or “lambda”). LR does not
include a regularization term in the objective function. It is more prone to overfitting when
dealing with highly correlated features (multicollinearity) or when the number of features
is close to or exceeds the number of observations.

PN maintains the best algorithm for K prediction, and, again, the performances of RR
and LR are very similar for predicting K. As explained, RR is a modified version of LR that
adds a regularization term to address certain issues, particularly multicollinearity. If the
correlation between independent variables is high, RR can provide more stable and reliable
coefficient estimates compared to LR. Since the performance of RR is better in predicting K,
this indicates that the dataset for the training possesses multicollinearity.

Likewise, the best technique for P prediction is PN, and it is observed that the perfor-
mance of PN in this nutrient prediction is the best compared to other nutrients. All the
other algorithms also had better scores, which indicates that the values in the features used
for training the P prediction are more homogeneous compared to the earlier models.

Similarly, PN achieved the best performance in comparison with the other models.
All models had lower performances in predicting N compared to predicting P. It is also
observed that the performance of SW in predicting N is similar to that predicting P, when
compared against RR and LR. Although LR and RR show stability and generalizability
across different datasets, SW has better performance in this nutrient compared to Ca and Mg
because of its simplicity drawback and tendency to assume that the relationship between
variables is best represented by a combination of selected features.

Figures 4–8 depict the Streamlit outputs for the single-nutrient prediction of Ca,
Mg, K, P, and N, respectively, based on the best-performing model, PN. The predicted
values for each nutrient are computed utilizing the PN model, taking into account spatial–
temporal parameters and other relevant nutrient inputs. The diagrams illustrate that the
predicted nutrient concentrations are used to recommend the amount of nutrient recovery,
by comparing them against the benchmark nutrient values.
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Referring to the aforementioned Streamlit interface for individual nutrients, including
Ca, Mg, K, P, and N, the application provides essential values for “predicted”, “Best
practice (Range)”, “Best practice (Average)”, and “Intervention.” The predicted values for
each nutrient are computed utilizing the PN model, taking into account spatial–temporal
parameters and other relevant nutrient inputs.

The “Best practice Range” and “Best practice Average” values specify the optimal
ranges and averages of nutrient concentrations, offering valuable benchmarks for nutrient
levels. To further enhance precision in nutrient management, the intervention value is
calculated by estimating the difference between the best practice average and the predicted
value derived from the PN model. This intervention value serves as a critical metric for
nutrient recovery interventions, providing insights into the precise amount of nutrients
required for optimal crop growth.

Therefore, in the context of precision agriculture and environmental sustainability, the
crafted Streamlit tool for predicting individual nutrients, utilizing prior knowledge of other
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nutrient concentrations, offers advantages to farmers and scientists seeking specific insights
into individual nutrient levels. This method proves especially advantageous when a sensor
dedicated to a specific nutrient experiences a malfunction. As a result, our digital twin system
promptly alerts users about sensor malfunctions and supplies predictive values while waiting
for sensor replacement. This immediate functionality guarantees continuous monitoring,
safeguarding data accuracy and ensuring the effectiveness of precision agriculture practices.

4.2. The Performance of the Nutrient Composition Concentration Approach

ModelPNAll appears to be the best-performing model based on R2, MAE, and RMSE. It
explains a significant proportion of variability and provides accurate predictions. ModelRRAll
and ModelLRAll have the same R2, MAE, and RMSE values, indicating similar performance.
They both exhibit a moderate level of explained variability and reasonable predictive accuracy.
ModelENAll, ModelESWAll, and ModelLSAll have lower R2 values, suggesting limited ability
to explain variability. They also have higher MAE and RMSE values, indicating higher
prediction errors compared to the better-performing models. The choice of features included
in the models can significantly impact performance. Models that incorporate irrelevant or
highly correlated features may exhibit lower accuracy. The results (Table 12) also indicate that
the features incorporated have a complex relationship with each other and the target variable.

Table 12. Performance of approach 2 to predict all nutrients.

Algorithm R2 Score MAE RMSE

ModelENAll 0.0771 0.1814 0.2376
ModelPNAll 0.5237 0.1211 0.1502

ModelESWAll 0.0450 0.2054 0.2572
ModelRRAll 0.3066 0.1477 0.1949
ModelLSAll 0.0377 0.1918 0.2494
ModelLRAll 0.3066 0.1477 0.1949

AVG 0.2161 0.1659 0.2140
STDEV 0.1957 0.0321 0.0412

The experiment results led us to the conclusion that regression models have good
performance in informing nutrient co-existence, concentration, and composition. This
insight allows interventions to increase nutrient recovery to optimize the crop’s yield. PN
generally outperformed the other tested algorithms in terms of producing higher R2 values
and lower MAE and RMSE values for almost all models. This is due to the ability of
the polynomial function to capture nonlinear relationships among variables. However, it
should be noted that for Mg, the Polynomial Regression algorithm produced a negative R2

value, indicating that it explained less variance in the dependent variable than a horizontal
line. Therefore, the polynomial function was not well suited for predicting nutrient content
in Mg. In contrast, LR produced better performance compared to the other methods for Mg,
signifying that this model was better approximated by a straight-line relationship. This
finding highlights the significance of considering the specific nature of the data and the
relationships between variables when selecting the most appropriate regression model for
nutrient prediction.

Figure 9 illustrates the Streamlit outputs for the prediction of nutrient composition
concentrations, based on the best-performing model, PN.

Referring to the Figure 9 interface for nutrient composition concentrations, similar to
the single-nutrient prediction (see Figures 4–8), the application furnishes crucial values for
“predicted”, “Best practice (Range)”, “Best practice (Average)” and “Intervention”. The
predicted values for each nutrient are calculated employing the PN model, considering
spatial–temporal parameters and other pertinent nutrient inputs.

The “Best practice Range” and “Best practice Average” values delineate the optimum
range and averages of nutrient concentrations, providing valuable benchmarks for nutrient
levels. Furthermore, this information serves as a comprehensive intervention preparation
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tool by informing farmers or scientists about the anticipated nutrient concentration. The
projected value, in turn, facilitates the digital twin system in suggesting the appropriate
amount of nutrient recovery, aligning with established best practices.
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So, the provided streamlit for rice nutrient’s composition concentrations’ prediction
serves as a powerful intervention preparation tool. By informing farmers and scientists
about the anticipated nutrient concentrations, this approach enables the digital twin system
to suggest the precise amount of nutrient recovery aligned with best practices. This
proactive and informed approach not only optimizes crop yields but also minimizes the
environmental footprint associated with excessive fertilizer application.

4.3. RMSE Analysis and Approach Performance Highlights

To identify the best model, we provide an analysis of RMSE across both approaches.
The best performance of an algorithm for FS2 is Linear Regression. In terms of the

performance of predicting each nutrient, FS2 is the easiest to be predicted, based on the
average (AVG) of RMSE for this model, at 0.0219 (Figure 10). On the contrary, according to
Figure 11, the percentage of N is the most difficult and inconsistent performance across the
regression models, with an average of RMSE at 0.5638. Table 13 presents the Root Mean
Square Error (RMSE) along with average and standard deviation (STDEV) values for six
Linear Regression algorithms.
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Table 13. RMSE with averages and STDEV.

Method Ca Mg K P N All AVG STDEV

EN 0.0362 0.0193 0.3991 0.0651 0.6326 0.2376 0.2305 0.2738
PN 0.0255 0.0395 0.1726 0.0267 0.4866 0.1502 0.1502 0.1979
SW 0.0357 0.0184 0.4241 0.0497 0.5741 0.2572 0.2204 0.2601
RR 0.0345 0.0176 0.2860 0.0402 0.5070 0.1949 0.1771 0.2152
LS 0.0297 0.0193 0.4131 0.0651 0.6768 0.2494 0.2408 0.2934
LR 0.0345 0.0175 0.2852 0.0400 0.5056 0.1949 0.1766 0.2146

AVG 0.0327 0.0219 0.3300 0.0478 0.5638 0.2140
STDEV 0.0042 0.0086 0.0993 0.0153 0.0777 0.0412

4.4. Statistical Analysis

For this investigation, this study chose to use parametric statistical analysis because
the assumptions of normality and equal variance are likely to be met given the data and the
fact that we are comparing means within each regression model. Additionally, parametric
tests are generally more powerful than non-parametric tests, meaning they have a greater
ability to detect differences between groups when they exist.
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The normality assumption was evaluated through the Shapiro–Wilk test, which is
a commonly used test for normality. This test checks whether the data follows a normal
distribution. The equal variance assumption was examined using Levene’s test. The
Shapiro–Wilk test for normality was applied to the residuals of the regression models,
and the results indicated that the residuals were normally distributed (p-value > 0.05).
Additionally, Levene’s test was employed to assess the equality of variances among the
groups, and the results did not suggest any significant deviation from homogeneity of
variances (p-value > 0.05).

The application of these tests supports the validity of the ANOVA results presented
in Table 14. These tests, along with the reported F-statistics and p-values, confirm that the
assumptions necessary for ANOVA were satisfied. Therefore, we can observe differences
among the six designed regression models that are statistically significant and not a result
of violations of normality or equal variance assumptions. Table 14 presents the ANOVA
test for six designed regression models using different regression methods of “Elastic Net
Regression”, “Polynomial regression”, “Stepwise regression”, “Ridge regression”, “Lasso
regression” and “Linear Regression”.

Table 14. ANOVA test for performance analysis.

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

FS1 6 0.1961 0.0327 1.77137 × 10−5

FS2 6 0.13164 0.0219 7.46328 × 10−5

FS3 6 1.9801 0.3300 0.0098
FS4 6 0.2868 0.0478 0.0002
FS5 6 3.3827 0.5638 0.0060
FS6 6 1.2842 0.2140 0.0017

ANOVA

Source of Variation SS df MS F p-value

Between Groups 1.394 5 0.2787 93.3932 2.3253 × 10−17

Within Groups 0.0895 30 0.0030
Total 1.4833 35

Based on the ANOVA test with a p-value of 2.3253 × 10−17 and an alpha level of 0.05,
we can conclude that there is a statistically significant difference among the six designed
regression models. Therefore, we reject the null hypothesis that there is no significant
difference and accept the alternative hypothesis that at least one of the regression models
has a different performance value than the others.

Post hoc analysis was conducted using the Tukey Honestly Significant Difference
(Tukey HSD) test to determine specific pairwise differences between the regression models.
This test accounts for multiple comparisons and provides valuable insights into which
models significantly differ in performance.

Based on the results of the ANOVA test, Model 5 demonstrated better performance
compared to other designed feature set models (refer to Table 4). As a result, to gain
insight into the impact of each nutrient on N% nutrient concentration, we utilized SHAP
visualization. Figure 12 illustrates the effect of each nutrient on N% nutrient concentration.

Referring to Figure 12, the attributes K (potassium), Mg (magnesium), Day, Season, Ca
(calcium), Plot, SubPlot, and P (phosphorus) appear to have varying levels of impact on N%
nutrient concentration. Potassium (K) has the highest impact, followed by magnesium (Mg),
indicating that their concentrations in the soil or nutrient supply significantly influence N%.
The day and season when measurements are taken also play essential roles, while attributes
like calcium (Ca), Plot, SubPlot, and phosphorus (P) have varying degrees of influence, with
P showing the lowest impact. Therefore, this visualization can be valuable for optimizing
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agricultural and environmental practices to manage nutrient levels effectively, considering
specific local conditions and domain knowledge.
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5. Conclusions and Future Work

The crop digital twin offers a revolution to monitor and intervene in crop health
management. The physical twin surveils the condition of the crop, and this information
can be analyzed by the digital twin to provide suggestions for countermeasures, such as
nutrient enrichment to increase concentration levels.

Predicting nutrient levels is crucial for optimizing fertilizer usage and ensuring a
balanced nutrient supply, leading to higher-quality and increased yields, and reduced
environmental impact. The importance of accurately anticipating essential nutrients, such
as nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg), in
rice cannot be overstated, as it directly impacts crop yield, quality, and environmental
sustainability. The challenges in this field stem from the complexities introduced by the
variability in nutrient content, the diversity of analytical approaches, data availability
constraints, genetic diversity, and the associated costs and time investments.

To address these challenges, this research has presented two approaches, namely,
(i) single-nutrient concentration prediction and (ii) nutrient composition concentration
prediction, to explore a range of regression algorithms, including Elastic Net Regression,
Polynomial Regression, Stepwise Regression, Ridge Regression, Lasso Regression, and
Linear Regression, to predict rice nutrient content. These algorithms have proven to
be invaluable tools for capturing both linear and nonlinear correlations among various
nutrients, offering a structured, data-driven approach to understanding and managing the
complexities of rice nutrition.

The findings reveal that the Polynomial Regression algorithm consistently outperforms
the other models for predicting several nutrients, particularly calcium (Ca%), potassium
(K%), phosphorus (P%), and nitrogen (N%). This algorithm’s ability to handle both small
and large datasets, along with its proficiency in capturing nonlinear relationships, makes it
a favorable choice for optimizing nutrient management practices. It is important to note,
however, that Model 2, focused on predicting magnesium (Mg%), demonstrated a unique
characteristic, as Linear Regression outperformed Polynomial Regression.

The dashboard in the digital twin visualizes the current nutrient content of the crop as
a surveillance mechanism, while the predicted nutrient concentration is a valuable insight
for precise fertilization to be added for nutrient recovery. This may mitigate fertilization
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overload and waste pollution. Although, this research currently addresses manual in-
tervention, the implementation of the regression method supports the development of a
low-resourced crop digital twin, enabling fast computations.

In summary, these regression models provide essential insights into rice nutrient
prediction, offering a pathway to optimize fertilizer use, ensure balanced nutrient supply,
enhance rice quality, and reduce environmental impact. They contribute to the development
of standardized methodologies for nutrient prediction and promote more sustainable
and environmentally friendly rice cultivation practices. The choice of the most suitable
regression model depends on the specific characteristics of the dataset and the nature of
the nutrient interactions. Therefore, the selection of the appropriate algorithm is pivotal to
achieving the highest predictive accuracy for rice nutrient content.
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