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Abstract: Foundation models play an increasingly pivotal role in the field of deep neural networks.
Given that deep neural networks are widely used in real-world systems and are generally susceptible
to adversarial attacks, securing foundation models becomes a key research issue. However, research
on adversarial attacks against the Segment Anything Model (SAM), a visual foundation model, is
still in its infancy. In this paper, we propose the prompt batch attack (PBA), which can effectively
attack SAM, making it unable to capture valid objects or even generate fake shards. Extensive
experiments were conducted to compare the adversarial attack performance among optimizing
without prompts, optimizing all prompts, and optimizing batches of prompts as in PBA. Numerical
results on multiple datasets show that the cross-prompt attack success rate (ASR*) of the PBA method
is 17.83% higher on average, and the attack success rate (ASR) is 20.84% higher. It is proven that PBA
possesses the best attack capability as well as the highest cross-prompt transferability. Additionally,
we introduce a metric to evaluate the cross-prompt transferability of adversarial attacks, effectively
fostering research on cross-prompt attacks. Our work unveils the pivotal role of the batched prompts
technique in cross-prompt adversarial attacks, marking an early and intriguing exploration into this
area against SAM.

Keywords: adversarial attack; deep learning; foundation model

1. Introduction

In recent years, many researchers have suggested that using “foundation models” [1]
as support for various downstream tasks is a promising trend in the development of
AI. Well-known foundation models, such as BERT [2], GPT-3 [3], CLIP [4], and ViT [5],
demonstrate remarkable feature learning and expression capabilities in crucial tasks within
the domains of natural language processing (NLP), cross-modality matching (CMM),
and computer vision (CV). Recently, the segment anything model (SAM) [6], proposed by
Meta, demonstrated remarkable and versatile capabilities in visual segmentation tasks,
similar to the aforementioned foundation models. SAM is expected to become a crucial
foundation model for basic image segmentation tasks and has the potential to serve as a
supporting module for numerous downstream tasks.

However, the robustness and security of these foundation models have become crucial
research topics that cannot be overlooked, as foundation models are widely used in down-
stream tasks. Many studies [7–11] have indicated that almost all DNNs are vulnerable to
attacks from adversarial examples. Recently, researchers have also started to pay attention
to the robustness of foundation models. Paul and Chen [12] conducted a study on the
robustness of the ViT model and found that it has superior robustness compared to other
models, as it is better able to defend against adversarial attacks. The researchers believe
that the main reasons include the following: (1) the attention mechanism of ViT is capable
of extracting rich global contextual information from images, which enhances the model’s
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robustness; (2) training the model on large-scale datasets increases its robustness. Similarly,
SAM uses ViT as the backbone of its image encoder, and it is trained on an extremely
large-scale dataset. Therefore, the robustness of SAM is likely to be higher than other
DNNs. Huang et al. [13] conducted adversarial attacks against SAM with single-point
prompts using FGSM [14], PGD [15], BIM [16], and SegPGD [17] methods, and as a result,
the background area is little affected.

What is particularly noteworthy is that SAM introduced a prompt mechanism, which
requires adversarial examples to have some degree of transferability across different
prompts to successfully perform the attack task. Unlike [13], Zhang et al. [18] explored
the transferability of the cross-prompts of adversarial attacks against SAM by gradually
increasing the number of point prompts. The examination of cross-prompt transferability
in attacks, exploring variations in the number of point prompts, was conducted in [19].
Based on the outcomes, the authors infer that it is challenging to enhance the cross-prompt
transferability of attacks by simply further increasing the number of point prompts.

Similar to recent scholarly discussions [18,19], this paper focuses on the following question:
How can one generate adversarial examples that possess higher cross-prompt transferability?

However, current methods [18,19] insufficiently delve into leveraging prompt in-
formation techniques. They primarily focus on attacking prominent foreground objects,
neglecting attacks on the entirety of image scenes. Based on this understanding, our mo-
tivation comes from the need to make more use of prompt information to generate more
cross-prompt transferable adversarial examples in the generation stage of an adversarial
attack. Therefore, we propose a new adversarial attack method called PBA (prompt batch
attack) to further improve the cross-prompt transferability of adversarial attacks against
SAM. In this method, we leverage prompt information in a good way instead of attacking
without prompts or with all prompts, which improves the attack success rate as well as the
cross-prompt transferability of adversarial examples. Furthermore, our PBA method can
cause the SAM segmentation results to fail across the entire image, shifting from ‘segment
anything’ to ‘segment shards’.

In summary, our work makes the following contributions:

1. We design three adversarial attack methods with different ways of utilizing prompt
information to perform adversarial attacks on SAM. The most effective method (PBA)
exhibits both a high attack success rate and excellent cross-prompt transferability.

2. We propose an effective and clear metric (cross-prompt attack success rate, ASR*) to
evaluate the cross-prompt transferability of adversarial attacks. This metric takes into
account both the degree of prompt variance and the attack success rate.

The rest of this paper is organized as follows. Section 2 describes some background
information about adversarial attacks, visual foundation models, and the adversarial ro-
bustness of the foundation model. Section 3 deals with the definitions of adversarial attack,
cross-prompt adversarial attack, and cross-prompt attack success rate. Section 4 proposes
the prompt batch attack (PBA) method along with two basic comparison algorithms: The
no prompt attack (NPA) method and the prompt attack (PA) method. Section 5 presents
the experimental and numerical results, and some discussions of the experimental results
are presented in Section 6. Finally, Section 7 presents the summary and future prospects for
the entire paper.

2. Related Work

In this section, we first provide a concise overview of the pertinent background of this
paper. Then, we dive into the details from three perspectives: adversarial attacks, visual
foundation models, and adversarial attacks against foundation models.

2.1. Background

Adversarial attacks and foundation models constitute the two main background themes
of this paper. An adversarial attack involves adding a small perturbation to the model’s
input, causing a severe degradation in the neural network model’s performance. Inputs
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with this small perturbation are referred to as adversarial examples. On the other hand,
the foundation model represents a recent paradigm of deep neural networks with strong
generalization capabilities. In this paper, a novel adversarial attack method against a typical
visual foundation model with cross-prompt transferability is proposed and investigated.

2.2. Adversarial Attack

In 2014, Szegedy et al. [20] found the existence of adversarial examples and proposed
the L-BFGS attack method. FGSM [14], proposed by Goodfellow, is an adversarial perturba-
tion generation method based on gradient backpropagation computation. In order to solve
the problem of the FGSM attack’s instability and the obviousness of the perturbation, Deep-
Fool [21] and C&W [22] methods were proposed, which are dedicated to finding a minimal
adversarial perturbation. Furthermore, JSMA [23] performed the adversarial attack by
only changing the values of a few pixels. However, these methods [14,20–23] focused on
classifiers and lacked exploration in the more complex and practical deep neural network
models. After that, DAG [24] completed the adversarial attack on the object detection and
instance segmentation model by the dense attack method. Then, many studies extended
adversarial attacks to models in different domains, including object detection [25], instance
segmentation [26,27], human pose estimation [28], person re-identification [29], person
detector [30], visual language model [31,32], remote sensing [33], and 3D point cloud
processing [34,35]. These works show that adversarial attacks can threaten the security of
various neural network-based application models.

Many research works show that adversarial examples have cross-model transfer-
ability. Zhou et al. [36] proposed two methods to improve cross-model transferability:
filtering high-frequency perturbations and maximizing the distance between the clean
image and the adversarial example. References [37,38] generated more transferable ad-
versarial examples by adding a variance-adjusted regularization module. In addition,
some studies [39–42] have suggested that the transferability of adversarial examples can be
improved by increasing the diversity of inputs.

With the emergence of SAM featuring prompt-guided inputs, few recent studies [18,19]
have started to focus on the cross-prompt transferability of adversarial attack methods. (We
compare these attack methods against SAM in detail in Section 2.4). However, these research
studies are confined to attacking only the image encoder or enhancing cross-prompt
transferability by increasing the number of point prompts. Consequently, there is a lack of
research on ways to leverage prompt information to improve cross-prompt transferability.

2.3. Visual Foundation Models

Foundation models, which are considered the next wave in AI, can be used for nu-
merous downstream tasks with minimal fine-tuning. In the field of computer vision,
foundation models are still in an early stage [1]. However, quite a few studies [4,43–46]
have effectively contributed to the development process of Visual foundation models.
Compared to traditional supervised models, foundation models can directly use super
large-scale unlabeled raw data. The development of unsupervised learning in computer
vision efficiently reduced the dependence on manually labeled datasets, which facilitated
the development of visual foundation models; Chen et al. [43] proposed an unsupervised
learning technique using a contrast learning framework to train models. He et al. [44]
introduced self-supervised techniques in vision tasks and achieved results equivalent to
the supervised model. Then, He et al. [45] introduced Transformer to vision tasks and
accomplished training on massive data with exciting effects. The pre-trained model (ViT) is
widely reused in vision downstream tasks to extract the features of images. In addition,
foundation models have contributed to the development of foundation models in visual
generation. For example, the CLIP [4] foundation model has inspired a range of CLIP-based
visual generation studies. The DALL·E 2 model [46], among them, shows an impressive
ability to create images.
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Recently, the segment anything model (SAM) [6], a foundation model proposed by
Meta for the visual segmentation task, has received a lot of attention from researchers.
By building a special data engine with semi-supervised training, SAM has accomplished
training on extremely large-scale data and has demonstrated extraordinary ability in the
zero-shot segmentation task.

2.4. Adversarial Attack against the Foundation Model

The ability of a deep neural network model to resist attacks from adversarial examples
is referred to as the model’s adversarial robustness. Given the extensive reuse of foundation
models, their adversarial robustness is a significant and crucial topic. Bommasani et al. [1]
points out that improving the adversarial robustness of foundation models presents an
important opportunity. Shafahi et al. [47] suggested that robust feature extractors can be
useful for transferring robustness to other domains.

Existing studies [12,15,48,49] have shown that large datasets and large model capac-
ities are beneficial for improving adversarial robustness. Schmidt et al. [48] suggested
that training an adversarial robust model requires more data. References [15,49] found
that improving adversarial robustness requires larger model parameters and capacity.
Paul and Chen [12] showed that Visual Transformers have higher adversarial robustness
than other models. Unfortunately, it has been demonstrated that the CLIP foundation
model does not exhibit sufficient robustness against adversarial attacks [50].

Researchers still need to study more about the adversarial robustness of foundation
models in different domains [1]. The SAM, meanwhile, has not been sufficiently studied
for its adversarial robustness as an important foundation model in the field of computer
vision. As shown in Table 1, we collected the latest adversarial attack methods against
SAM and focused on their comparison regarding the topic of cross-prompt transferability.
Huang et al. [13] did not consider the influence of prompt changes on their attack suc-
cess rate, and the attack results have limited effect in the background part of the image.
Zhang et al. [18] conducted targeted attacks against SAM, including mask removal, mask
enlargement, and mask manipulation. Additionally, initial observations revealed an in-
crease in the cross-prompt transferability of adversarial attacks against SAM, as the number
of point prompts increased. Zheng and Zhang [19] contend that an increase in the number
of point prompts has a limited effect on the improvement of cross-prompt transferability.
Therefore, they propose a prompt-agnostic attack method, which only attacks the image
encoder of SAM. In this paper, we introduce a technique termed PBA (prompt batch attack)
against SAM. The PBA method enhances the cross-prompt transferability of adversarial
examples by attacking SAM with dense point prompts in batches. Furthermore, the attack
effect generated by PBA, resembling fragmented glass, impacts the entire image.

Table 1. Comparison of adversarial attack methods against SAM.

Study Year Cross-Prompt Transferability

Huang et al. [13] 2023 No discussion.

Zhang et al. [18] 2023
The increase in the number of point prompts can
improve the cross-prompt transferability.

Zheng and
Zhang [19] 2023

An increase in the number of point prompts has a limited effect on
the improvement of cross-prompt transferability.

3. Problem Definition
3.1. Adversarial Attack Problem Definition

Let X denote the input image, which follows a large-scale image data distribution,
Gdata, i.e., X∼Gdata. For an input image sample, x, where x ∈ X, its ground truth for the seg-
mentation task is a set of pixel coordinate sets, denoted as y∼Y, where
y = {M1, M2, ..., MN} and Mi share the same shape with X. The learning system for image
segmentation tasks, such as SAM, can be represented as an abstract function f : X, P→ Y,
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where P denotes the distribution of prompt. The task of segmenting anything can be
described as follows:

Y = f (X, P; θ) (1)

The SAM conceptualizes the abstract function, f , into three components: the image
encoding system, gim : X → E, where E signifies the distribution of image embedding;
the prompt encoding system, gpt : P → F, where F signifies the distribution of prompt
embedding; and the decoding system, hdec : E, F → Y. The task of segmenting anything
using SAM can be mathematically described by the following equation:

Y = hdec(gim(X), gpt(P)) (2)

The problem of generating adversarial examples to attack SAM can be described by
the following:

xadv = arg min
xadv
L(hdec(gim(xadv), gpt(P)), y′) (3)

where xadv denotes the image with adversarial perturbation, P denotes any possible input prompt,
y′ denotes the error output of hdec, and L denotes the loss function of the adversarial attack.

3.2. Cross-Prompt Attack Problem Definition

For consistent understanding, in this section, we provide an intuitive description
and formal definition of the cross-prompt adversarial attack (CAA) and the cross-prompt
adversarial success rate (ASR∗).

3.2.1. Cross-Prompt Adversarial Attack

As shown in Figure 1, the cross-prompt adversarial attack (CAA) refers to the scenario
in which adversarial examples generated using certain prompt information are required
to attack the model under various prompts. The process of CAA can be divided into two
steps: adversarial example generation and adversarial attack implementation. In the first
step, attackers typically utilize specific and limited prompts. However, in the second step,
attackers aim for the generated adversarial examples to succeed across diverse prompts,
rather than being effective only under specific prompts.

Figure 1. Cross-prompt adversarial attack. The ASR denotes the attack success rate and the ASR*
denotes the cross-prompt attack success rate.

3.2.2. Cross-Prompt Attack Success Rate

In this section, we introduce a metric, ASR*, for evaluating the cross-prompt transfer-
ability of adversarial examples. For the sake of discussion, we assume that all prompts take
the form of point coordinates.
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Before entering the discussion of the definition of the cross-prompt attack success rate
(ASR*), we first provide a complete definition of the attack success rate (ASR). Following
some previous work [20,21,24], ASR is defined by the drop in mIoU as Equation (4).

ASR =
mIoUnos −mIoUatk

mIoUnos
(4)

where mIoUnos denotes the mIoU value of the segmentation results on the image with
randomly added noise, and mIoUatk denotes the mIoU value of the segmentation results
on adversarial examples.

mIoU =
1
n

n

∑
i=0

m
max
j=0

Mi ∩Mj

Mi ∪Mj
(5)

where Mi denotes the i-th object mask of the segmentation results of SAM in the adversarial
image or noise image, and Mj denotes the j-th object mask of the segmentation results of
SAM in the clean image.

Next, we start with the illustration of the definition of ASR*, where all ASRi without
the * sign are defined by Equation (4) above.

First, we use dab to measure the degree of difference between prompt a and prompt b.
This dab can be calculated as Equation (6). Here, Jδ denotes the Jaccard Distance, pa denotes
the set of coordinates of all points in prompt a, and pb denotes the set of coordinates of all
points in prompt b. Finally, n denotes the number of points in prompt a and m denotes the
number of points in prompt b.

dab = Jδ(pa, pb) +
n

∑
i=0

m
min
j=0

√
(pix

a − pjx
b )2 + (piy

a − pjy
b )2

√
H2 + W2

(6)

Then, suppose that the prompt t, is the prompt used in generating the adversarial
example, and a total of k types of prompts are used to produce adversarial attacks. The
cross-prompt transferability of the adversarial example across k different types of prompts
can be calculated using Equations (7) and (8), as follows:

ASR∗t =
k

∑
i=0

(
dit
Dt
× ASRi) (7)

Dt =
k

∑
i=0

dit (8)

Here, dit denotes the degree of difference between prompt i and prompt t, ASRi
denotes the attack success rate of the adversarial example under prompt i, and ASR∗t
denotes the cross-prompt attack success rate of the adversarial example.

4. Method

In this section, we introduce three different algorithms, namely NPA, PA, and PBA, to
attack SAM in a white box setting. The different degrees of utilization of SAM’s prompt
information are the main differences between these three algorithms.

As shown in Figure 2, in the no prompt attack (NPA) method, gradient-based adver-
sarial perturbation optimization only involves the image encoder structure of SAM. In the
prompt attack (PA) method, gradient-based adversarial perturbation optimization involves
all structures of SAM with prompt input as a whole. In the prompt batch attack (PBA)
method, each optimization iteration uses only one of the prompt batches as input and
keeps using different prompt batches during optimization iterations. Additionally, the PBA
adds momentum information between different prompt batch iterations to stabilize the
update direction. It is worth noting that momentum information between iterations is also
used in the PA method but this momentum information is not obtained under the influence
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of different prompt batches. We will elaborate on these three attack algorithms (NPA, PA,
and PBA) in Sections 4.1–4.3. When reading these sections, one may refer to the symbol
table (Table 2) to help with comprehension.

Figure 2. The three different algorithms (NPA, PA, PBA) aim to generate adversarial examples for
attacking the SAM in a white-box setting.

Table 2. Algorithmic symbols table.

Signal Explanation Used by

X input image NPA, PA, PBA
X′ arbitrary real image NPA, PA, PBA
K maximum iterations NPA, PA, PBA
gim the image encoder of SAM NPA, PA, PBA
gpt the prompt encoder of SAM PA, PBA
hdec the mask decoder of SAM PA, PBA
N the number of prompt batch PBA
p prompt PA
P = {p∗1 , p∗2 , ..., p∗N} batches of prompt PBA
α attack rate NPA, PA, PBA
β momentum decay factor NPA, PA, PBA
µ maximum perturbation value NPA, PA, PBA
Xadv the adversarial example NPA, PA, PBA

4.1. NPA: Attack without Prompts

In the no prompt attack (NPA) method, we only use the output of gim to calculate L as
in Equation (9), without considering gpt, hdec and the prompt input, p. The overall pipeline
of the NPA algorithm is illustrated in Algorithm 1.

LNPA(xadv, e′) = ∥gim(xadv)− e′∥2
2 (9)

where xadv denotes the image with adversarial perturbation, and e′ denotes a constant in
the image embedding space, which can be generated from an arbitrary real image.
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Algorithm 1: NPA
Data: input image X, arbitrary real image X′, maximum iterations K, the image

encoder of SAM gim, the attack rate α, the momentum decay factor β, the
maximum perturbation value µ

Result: the adversarial example Xadv

X0 ← X;
l ← 0;
m0 ← 0;
e′ ← gim(X′);
for i = 0 to K do

g← ∇XlLNPA(Xl , e′);
ml+1 ← β ·ml +

g
∥g∥ ;

Xl+1 ← Xl + α · sgn(ml+1);
Xl+1 ← max(min(Xl+1, X + µ), X− µ);
l ← l + 1;

end
Xadv ← Xl ;
return Xadv

4.2. PA: Attack with Prompts

As a further step, the PA method not only considers adversarial attacks against the
image encoder but also takes into account the influence of the mask decoder on the final
results. Therefore, the PA method defines L using the output of hdec as Equation (10). The
overall pipeline is illustrated in Algorithm 2.

LPA(xadv, P, y′) = ∥hdec(gim(xadv), gpt(p))− y′∥2
2 (10)

where xadv denotes the image with adversarial perturbation, p denotes a special prompt
with dense point coordinates of the input image, and y′ denotes a constant in the space of
output of hdec, which can be generated from an arbitrary real image.

Algorithm 2: PA
Data: input image X, arbitrary real image X′, prompt p, maximum iteration K,

the image encoder of SAM gim, the prompt encoder of SAM gpt, the mask
decoder of SAM hdec, attack rate α, momentum decay factor β, maximum
perturbation value µ

Result: the adversarial example Xadv

X0 ← X;
l ← 0;
m0 ← 0;
e′ ← gim(X′);
y′ ← hdec(e′, p);
for i = 0 to K do

g← ∇XlLPA(Xl , p, y′);
ml+1 ← β ·ml +

g
∥g∥ ;

Xl+1 ← Xl + α · sgn(ml+1);
Xl+1 ← max(min(Xl+1, X + µ), X− µ);
l ← l + 1;

end
Xadv ← Xl ;
return Xadv
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4.3. PBA: Attack with Prompt Batch

In order to improve the transferability of adversarial examples across different prompts,
we promote the PA method by (1) dividing the special input prompts with dense point coor-
dinates into small batches during the iterations of the attack, (2) using only one batch of the
prompt to calculate L as Equation (11). The overall pipeline is illustrated in Algorithm 3.

LPBA(xadv, p∗, y′) = ∥hdec(gim(xadv), gpt(p∗))− y′∥2
2 (11)

where xadv denotes the image with adversarial perturbation, p∗ denotes one batch of p,
and y′ denotes a constant in the space of output of hdec, which can be generated from an
arbitrary real image.

Algorithm 3: PBA
Data: input image X, arbitrary real image X′, batches of prompt

P = {p∗1 , p∗2 , ..., p∗N}, maximum iteration K, the image encoder of SAM gim,
the prompt encoder of SAM gpt, the mask decoder of SAM hdec, attack rate
α, momentum decay factor β, maximum perturbation value µ

Result: the adversarial example Xadv

X0 ← X;
l ← 0;
m0 ← 0;
e′ ← gim(X′);
y′1, y′2, ..., y′N ← hdec(e′, gpt(p∗1)), hdec(e′, gpt(p∗2)), ..., hdec(e′, gpt(p∗N));
for i = 0 to K do

for j = 1 to N do
g← ∇XlLBPAM(Xl , p∗j , y′j);
ml+1 ← β ·ml +

g
∥g∥ ;

Xl+1 ← Xl + α · sgn(ml+1);
Xl+1 ← max(min(Xl+1, X + µ), X− µ);
l ← l + 1;

end
end
Xadv ← Xl ;
return Xadv

4.4. Algorithms Analysis

In this section, we present a comparative analysis of NPA, PA, SPA, and PBA algo-
rithms, and, we attempt to explain the superiority of the PBA algorithm.

As shown in Table 3, the differences between the algorithms are mainly reflected in
five aspects, which are the use of the SAM structure, the use of prompt information, the loss
function, the number of iterations, and the process affecting the momentum.

Table 3. Key differences between the algorithms.

Algorithm Used SAM Structure Used Prompt Loss Function 2 Number of Iteration 3 Momentum Affected by

NPA gim No LNPA K No prompt
PA gim, gpt, hdec p LPA K p, p, p, ..., p, p, p
SPA 1 gim, gpt, hdec p∗1 , p∗2 , p∗3 LPA 3*K p∗1 , p∗1 , p∗1 , p∗2 , p∗2 , p∗2 , p∗3 , p∗3 , p∗3
PBA gim, gpt, hdec P = {p∗1 , p∗2 , p∗3} LPBA K*3 p∗1 , p∗2 , p∗3 , p∗1 , p∗2 , p∗3 , p∗1 , p∗2 , p∗3

1 In order to exclude the effect of the number of iterations and prompt selection on the results, SPA sequentially
completes the attack using different prompt batches, which is equivalent to multiple PA attacks on the same
image. 2 The definitions of loss functions can be found in Equations (9)–(11). 3 In this table, the number of prompt
batches, N, is 3.
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Among these aspects, the most essential is that different algorithms affect the mo-
mentum in different processes. In Figure 3, we show the intuitive impact of the different
processes affecting the momentum. In gradient-based adversarial perturbation generation
processes, momentum serves as a critical factor influencing the direction of perturbation
generation. It can be succinctly understood that the introduction of varying information
during the iterative process affects the direction of momentum.

Figure 3. Illustration of the comparison of the algorithms.

In the NPA algorithm, the direction of momentum is not influenced by any prompt
information, thereby making it difficult for the generated adversarial examples to reach
more universal prompt-dense regions (adversarial examples capable of successful attacks
under a wider range of prompt conditions). In the PA algorithm, the direction of momentum
is solely influenced by a single prompt, thereby significantly impacting the universality of
the adversarial examples due to potential bias inherent in the specific prompt itself. In the
PBA algorithm, the direction of momentum is continuously influenced by the combined effects
of different prompt batch information, allowing the synthesis of multiple prompt information
to correct the direction of momentum in a shorter period. Therefore, the momentum direction
of PBA consistently approaches the correct direction. Conversely, in the SPA algorithm, despite
having the same number of iterations and identical prompt information as PBA, it fails to
promptly synthesize multiple prompt batch information to adjust the momentum direction.
Consequently, the momentum direction of SPA remains unstable.

In conclusion, adversarial examples generated by the PBA method consistently con-
verge toward the correct direction, demonstrating superior generalization across different
prompt conditions. This highlights PBA cross-prompt transferability.

5. Experiments

In this section, we conduct a quantitative evaluation of the proposed PBA adversarial
example generation algorithm and compare its attack capability and cross-prompt transfer-
ability with those of the NPA and PA algorithms. Furthermore, in order to demonstrate
the image quality of the adversarial examples, we conduct a quantitative evaluation of
the quality of the generated adversarial examples by comparing their image similarities
with a clean image. Additionally, we used two NVIDIA V100 PCle GPUs to complete
all experiments.

5.1. Experimental Settings
5.1.1. Task

We use points as prompts to drive SAM for the segmentation task on the entire im-
age. Specifically, we set different numbers of points as prompts, including 8× 8, 16× 16,
and 20× 20, which are, respectively, named Pts8, Pts16, and Pts20. By selecting different
prompt inputs and attack methods, we conduct three sets of experiments, namely PBA
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(Pts8, prompt batch size 16), PA (Pts8, with only one batch of prompt), and NPA (Pts8,
without prompt). Additionally, to demonstrate the effectiveness of the PBA method more
clearly, we add an experimental group called SPA(sequential prompt attack). SPA sequen-
tially completes the attack using different prompt batches, which is equivalent to multiple
PA attacks on the same image. In the evaluation phase, we attack the SAM under different
prompt settings (Pts8, Pts16, and Pts20) by adversarial examples generated from the four
methods (PBA, PA, NPA, and SPA).

5.1.2. Hyperparameters

The hyperparameters used in SAM are listed in Table 4. These settings follow the
default settings of SAM. For the adversarial example generation task, otherwise specified,
we set the hyperparameters to 10 attack iterations, a 0.01 attack rate, a 0.2 maximum
perturbation amplitude, and 0.9 momentum decay factor.

Table 4. Hyperparameters in SAM

Hyperparameter Name Pred_Iou_Thresh Stability_Score_Thresh Stability_Score_Offset Box_Nms_Thresh Crop_N_Layers

Hyperparameter value 0.88 0.85 1.0 0.7 0

5.1.3. Datasets

We conducted experiments on a diverse set of datasets, including the CBCL Street
Scenes Dataset [51], CrowdHuman Dataset [52], and the UNIMIB2016 Food Dataset [53].
To facilitate the experiments without sacrificing accuracy, we selected the first 300, 200, and
200 images from the validation sets of the three datasets, respectively, as our experimental
data. We conducted experiments on these data, including attack capability, cross-prompt
transferability, and an evaluation of the image quality of adversarial examples. For ease of
reference, we will refer to these three datasets as CBCL300, CH200, and UNIMIB200.

5.1.4. Metrics

The quantitative metrics used in the experiments include the mean intersection-over-
union (mIoU), attack success rate (ASR), cross-prompt attack success rate (ASR*), and
structural similarity index measure (SSIM). As SAM performs well in the segmentation
task, we use the SAM segmentation results as the ground truth and calculate the mIoU value
of the segmentation results of adversarial examples, defined by Equation (5). Following
previous work [20,21,24], the ASR metric is defined by the drop in mIoU as Equation (4).
According to Section 3.2, the ASR* metric is defined as Equation (7). The SSIM [54] is a
similarity metric that measures the quality of an image based on the similarity to a reference
image and is in line with human perception. In these experiments, we use SSIM to measure
the degree of distortion in the adversarial examples generated by different algorithms.

5.2. Attack Results

We conducted experiments on three datasets, as mentioned earlier. For the four
experimental groups under the same model hyperparameters settings, the mIoU and ASR
results in different prompt settings can be observed in Table 5. Additionally, we randomly
added noise to images of the three datasets and calculated their mIoU by SAM under
the Pts8 setting. Table 5 indicates that the PBA method exhibits the lowest mIoU, the
highest ASR value, and the highest ASR* value across the three prompt settings on the three
datasets. These results suggest that the PBA method demonstrates the best adversarial
attack ability and cross-prompt transferability compared to the other three methods.

In Figure 4, we present several instances of adversarial examples along with their
SAM segmentation mask outputs, as well as the original images with their SAM mask
outputs. Figure 4 shows that the mask outputs of adversarial examples are fragmented
into shards. Furthermore, it indicates that the adversarial examples generated by the
PBA method exhibit better cross-prompt transferability performance, suggesting that
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their attack capability remains stable under different prompt settings. Specifically, the
differences in the attack results in columns 2 to 4 are relatively small, all displaying high
cross-prompt transferability. However, the effectiveness of attacks in columns 5 to 7
gradually deteriorates, indicating lower cross-prompt transferability.

Table 5. The mIoU and ASR results of different adversarial attack methods on different datasets.

Metrics
CBCL300 CH200 UNIMIB200
PBA SPA PA NPA PBA SPA PA NPA PBA SPA PA NPA

mIoU Pts8 0.3419 0.5774 0.5145 0.6935 0.4768 0.6438 0.5988 0.7359 0.3153 0.5218 0.4645 0.6721
mIoU Pts16 0.4739 0.6029 0.6122 0.6881 0.5761 0.6573 0.6718 0.7193 0.4197 0.5486 0.5358 0.6500
mIoU Pts20 0.4636 0.5999 0.6101 0.6860 0.5630 0.6526 0.6624 0.7216 0.4007 0.5408 0.5231 0.6460

mIoU Noisy 0.8226 0.8263 0.8347

ASR Pts8 0.5844 0.2981 0.3745 0.1569 0.4230 0.2209 0.2753 0.1094 0.6223 0.3749 0.4435 0.1948
ASR Pts16 0.4239 0.2671 0.2558 0.1635 0.3028 0.2045 0.1870 0.1295 0.4972 0.3428 0.3581 0.2213
ASR Pts20 0.4364 0.2707 0.2583 0.1661 0.3186 0.2102 0.1984 0.1267 0.5199 0.3521 0.3733 0.2261

ASR* 0.4317 0.2693 0.2574 0.1651 0.3126 0.2081 0.1940 0.1278 0.5113 0.3486 0.3675 0.2243

PBA PA

Pts8 Pts16 Pts20Pts16 Pts8 Pts16 Pts20

Source Image

Figure 4. Adversarial examples with segmentation mask results of SAM. The text above illustrates
the source of the images below it. The text below the images indicates the prompt setting (either Pts8,
Pts16, or Pts20) used to generate the segmentation results on those images.
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6. Discussion
6.1. Attack Iteration

In this section, we conducted experiments to demonstrate the impact of different
attack iterations on the mean intersection-over-union (mIoU), attack success rate (ASR),
and structural similarity index measure (SSIM). Specifically, to ensure consistency in the
frequency of adding the perturbation by different methods, the number of attack iterations
for all methods, except PBA, is set to four times the corresponding number shown in
Figure 5.

Through Figure 5, we can observe the following: (1) The advantage of PBA over other
attack methods becomes more pronounced as the number of attack iterations increases.
(2) The PA method outperforms the PBA method when the number of attack iterations is
small, which may be due to the fact that the PBA method utilizes only partial information
from the prompt at the initial stage. (3) The perturbation sizes of the adversarial examples
generated by the three methods are essentially the same, as evidenced by the consistency
of SSIM values.

Figure 5. Comparative analysis of mIoU, ASR, and SSIM across attack iterations and methods. To
ensure consistency in the actual number of image updates, for both PA and NPA methods, the number
of attack iterations is four times the number shown in the horizontal coordinate in this figure.

6.2. Image Quality

In this section, we will discuss the relationship between image quality and the attack
success rate of adversarial examples generated by the PBA method and PA method.

We varied the hyperparameter (the maximum perturbation value µ) during the gener-
ation of adversarial examples to obtain adversarial examples with different image qualities
and attack effectiveness. We evaluated the image quality by calculating their similarity to
the original images. In these experiments, we used the structural similarity index measure
(SSIM) metric to quantify the image quality of adversarial examples while assessing their
attack effectiveness through the attack success rate (ASR) metric. This experiment was
conducted on a dataset of 300 images, sourced from the validation set of the CBCL Street
Scenes Dataset [51].

The experimental results are presented in Table 6 and Figure 6. From Table 6, it can
be observed that in most cases, the PBA method exhibits higher SSIM values and lower
mIoU values compared to the PA method, especially when the perturbation is smaller
(µ < 0.2). In a more intuitive manner, from the relationship graph depicted in Figure 6, it
can be observed that under similar image quality conditions (equal SSIM), the PBA method
demonstrates higher attack effectiveness (lower mIoU). Conversely, under incomparable
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attack effectiveness conditions (equal mIoU), the PBA method exhibits superior image
quality (higher SSIM).

To summarize, the experimental results from this section demonstrate that the PBA
method achieves both effective adversarial attacks and high-quality image generation
simultaneously.

Table 6. Comparison results on SSIM and mIoU metrics between the adversarial examples generated
by the PBA and PA methods. The µ hyperparameter represents the maximum perturbation value
that can be added during the adversarial example generation process.

µ µ0.05 µ0.1 µ0.15 µ0.2 µ0.25 µ0.3 µ0.35

PBA
SSIM 0.8606 0.8265 0.7818 0.7358 0.6981 0.6723 0.6583

mIoU 0.5854 0.3119 0.2098 0.1761 0.155 0.1503 0.1444

PA
SSIM 0.8604 0.8258 0.7804 0.7351 0.6990 0.6746 0.6614

mIoU 0.6143 0.3936 0.2917 0.2405 0.2187 0.2022 0.1972

Figure 6. Illustration of the relationship between mIoU and SSIM under the PBA and PA methods.
The dataset utilized in this experiment is CBCL300, with the range of variation for the maximum
perturbation value, µ, ranging from 0.05 to 0.35.

7. Conclusions

In this paper, we propose a method (the PBA method) to attack the significant visual
foundation model (SAM), indicating that SAM has room for improvement in adversarial
robustness. The experimental results demonstrate that the PBA method can successfully
generate adversarial examples that perform well in both cross-prompt transferability and at-
tack success rates. Numerical results on multiple datasets show that the cross-prompt attack
success rate (ASR*) of the PBA method is 17.83% higher on average, and the attack success
rate (ASR) is 20.84% higher. Generating adversarial examples with prompt batching can
effectively promote the cross-prompt transferability of adversarial examples. Additionally,
we find that enhancing the cross-prompt transferability of adversarial examples is crucial
for attacking visual foundation models equipped with the prompt mechanism.

Additionally, we believe that using adversarial examples generated by the PBA method
could be risky for real-world systems based on SAM. On the one hand, the PBA method
exhibits strong cross-prompt transferability. On the other hand, SAM is a widely used
visual foundation model. Therefore, we recommend adopting adversarial training when
using SAM. This involves incorporating adversarial examples into SAM’s training dataset
to enhance its security.

In future research, we will extensively focus on adversarial attacks and defenses target-
ing various types of foundation models, and explore defense methods against adversarial
attacks in different application scenarios.
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