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Abstract: A convolutional neural network (CNN) transducer decoder was proposed to reduce the
decoding time of an end-to-end automatic speech recognition (ASR) system while maintaining
accuracy. The CNN of 177 k parameters and a kernel size of 6 generates the probabilities of the
current token at the token level, at the token transition of the output token sequence. Two probabilities
of the current token, one from the encoder and the other from the CNN are added to the frame level
to reduce the decoding step to the number of input frames. An encoder composed of an 18-layer
conformer was combined with the proposed decoder for training with the Librispeech data set.
The forward-backward algorithm was used for training. The space and re-appearance tokens are
added to the 300-word piece tokens to represent the token string. A space token appears at a frame
between two words. A comparison with the autoregressive decoders such as transformer and RNN-T
decoders demonstrates that this work provides comparable WERs with much less decoding time. A
comparison with non-autoregressive decoders such as CTC indicates that this work enhanced WERs.

Keywords: speech recognition; autoregressive speech recognition; end-to-end; CNN; transducer
decoder

1. Introduction

Currently, end-to-end automatic speech recognition(ASR) methods are widely used to
extract text from the time-domain speech input [1–3], because the entire end-to-end ASR
block can be trained by using a deep learning network. The end-to-end ASR block consists
of an encoder and a decoder. For example, the encoder converts the mel-frequency spectrum
coefficient (MFSC) speech input ([4 ∗ Tenc, 83]) to an intermediate output ([Tenc, 302]); 4 ∗ Tenc
is the number of frames of the input speech sentence. Each frame has an overlapped
window of 25 ms long and proceeds in 10 ms steps. The encoder output ([Tenc, 302])
represents the probabilities of 302 tokens in 40 ms steps; the 302 token includes 300 word
pieces and two special tokens. The decoder converts the encoder output to a text ([U]) at
the token level; U is the number of word pieces corresponding to the encoder input.

The encoder block of the end-to-end ASR can be implemented with various deep
learning networks, such as convolutional neural network (CNN) [4–6], long short term
memory (LSTM) [7,8] or transformer [9–11].

The decoder block can be implemented either in autoregressive or non-autoregressive
methods. The autoregressive decoder accepts the previous tokens along with the encoder
output as the decoder input. The non-autoregressive decoder accepts only the encoder
output as the decoder input.

The connectionist temporal classification(CTC) [12] is one of the representative non-
autoregressive decoders; it generates a loss function to train the end-to-end ASR which
generates a text at the token level from the speech input in the frame level. The frame level
refers to the time domain, that is, variables in the frame level can change values in unit
time intervals, in this work, in 40 ms intervals. The token level refers to the text domain,
that is, variables in the token level can change values at the token transition. The CTC
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decoder does not include any trainable neural network blocks. The CTC performs two
functions. One is the conversion of the encoder output ([Tenc, 301]) to the text ([U]). The
CTC selects a max-valued index out of 301 tokens per frame to generate an intermediate
token sequence ([Tenc]) and eliminates the blank tokens and the consecutively duplicate
tokens from the intermediate token sequence to generate the [U] text. The blank token
represents a ‘non-token’ frame or a ‘token transition’ frame. The other is to generate a loss
function to train the encoder block by accumulating all the matching probabilities between
the intermediate token sequence ([Tenc]) and the ground truth text ([U]) along both the
forward(previous) and the backward(future) directions. Compared to the autoregressive
decoders, the CTC-based decoders [13–17] have merits of much less computation time with
less accuracy, because there are no trainable parameters and the parallel computation is
enabled by no feedback operation.

The representative autoregressive decoders for end-to-end ASR are the transformer
decoder [9] and the RNN transducer(RNN-T) decoder [18]. The RNN-T decoder is similar
to the CTC decoder except that it adds the processed previous token sequence ([U, 300])
and the encoder output ([Tenc, 300]) to generate the decoder input ([U + Tenc, 300]). An
LSTM block is included in the RNN-T decoder to generate the processed token sequence
from the previous token sequence ([U]).

The transformer decoder includes a transformer block to convert the encoder output
([Tenc, 256]) to the probabilities of the output token sequence ([U, 302]); this enables the use
of a simpler loss function of cross entropy. However, the transformer decoder suffers from
long computation time because it cannot employ parallel computation due to the feedback
operation and the relatively large number of trainable parameters. Besides, the accuracy is
degraded in the transformer decoder without using the additional beam search. (Table 1)
compares the characteristics of the above-mentioned decoders used for end-to-end ASR.

Table 1. Comparison of decoders for end-to-end ASR.

Autoregressive Decoding Level [Length] Special Tokens Training Algorithm

Transformer [9] O token level [U] <sos>, <eos> Cross-Entropy

CTC [12] X frame level [Tenc] blank Forward/backward

RNN-T [18] O Token + Frame [U + Tenc] blank Forward/backward

This work O frame level [Tenc] space, re-appearance Forward/backward

The transformer decoder generates the token probabilities at the token level from the
encoder output and the previous token sequence by using the transformer blocks. Since
the number ([U]) of these token probabilities is the same as the number ([U]) of the ground
truth tokens, the transformer decoder can calculate the loss by using the cross entropy
without any special tokens such as blank tokens. Only two special tokens(<sos>, <eos>)
are employed in the transformer decoder to align the attention blocks at the start and end
points of an input utterance.

The CTC decoder generates the token probabilities at the frame level which are the
encoder output. Since the number ([Tenc]) of these token probabilities is not the same as
the number ([U]) of the ground truth token probabilities, the CTC decoder cannot use the
cross entropy but uses the forward/backward algorithm for the loss computation. The
forward/backward algorithm adds “blank” tokens as token separators and at non-token
frames for training with the mismatch between Tenc and U.

The RNN-T decoder works similarly to the CTC-decoder except that it generates the
token probabilities at the frame + token level from the encoder output and the previous
token sequence. Thus, the number of these token probabilities is Tenc + U.

This work generates the token probabilities at the frame level to reduce the decoding
time. Since the number ([Tenc]) of these token probabilities is not the same as the number
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([U]) of the ground truth token probabilities, the forward/backward algorithm is used in
this work, as in the CTC and RNN-T decoders. The word separator token (“space token”)
is used in this work instead of the blank token to avoid the deletion of short-duration
tokens in the CTC decoders. Since the blank token is inserted at every token boundary and
occupies a frame time in the CTC decoder, a short-duration token that lasts only one or
two frames is deleted at the CTC decoder output. Because the space token of this work
occurs less frequently than the blank token, the short-duration token is less probable to
be deleted in this work. The blank token occupies around 70 percent of frames in the
trained frame level token sequence of the CTC decoder while the space token occupies
around 50 percent of frames in the trained frame level token sequence of this work. The
re-appearance token is introduced in this work to replace the role of the blank token which
keeps the consecutive-same token sequence.

In this work, an autoregressive decoder without using the beam search is proposed
for end-to-end ASR; the autoregressive architecture enhances accuracy and the non-use of
the beam search reduces the computation time. To further reduce the computation time,
two schemes are proposed in this work. One is to add the token probabilities at the frame
level ([Tenc]) as mentioned before. The other is the use of a small-size CNN in the decoder
feedback loop. Compared to the RNN-T and the transformer decoders, this work achieved
comparable accuracy with half and 1/30 decoding times, respectively.

Section 2 explains the proposed CNN-based frame level autoregressive decoder for
end-to-end ASR. Section 3 presents the experimental results. Section 4 discusses this work.

2. Models

The end-to-end ASR of this work consists of an encoder and the proposed decoder.
The encoder accepts the MFSC input of an utterance ([4 ∗ Tenc, 83]) in 10 ms steps and
generates the token probabilities of the utterance ([Tenc, 302]) at each frame. Each frame
proceeds in 40 ms steps. The encoder input includes 80 MFSC and 3 pitch information [19]
(pitch frequency and its first and second time derivatives). The 302 tokens of the encoder
output include 300 word pieces [20,21] and two special tokens (space token, re-appearance
token); the space token (“/”) separates words and the re-appearance token (“∼”) represents
the same token is repeated at the token level [22]. For example, “/ f f eeee ∼∼∼ bblelele/”
at the frame level is translated into “feeble” at the token level.: “le” is a word piece in
this example.

Table 2 tabulates the number of frames where the blank and the space token occur
at the token probabilities of the trained CTC decoder, and this works for the Librispeech
dataset, including the train-clean-100 and dev-clean. The blank token dominates the frame
space by occupying around 70% of the trained CTC decoder, while the space token occupies
less frame space (about 50%) in the trained model of this work.

Table 2. The number of blank tokens in CTC and space token in this work at the frame level for
LibriSpeech dataset.

Train-Clean-100 (%) Test (%)

CTC (blank) 5,986,615 (66.7) 1,283,175 (68.1)

This work (space) 4,119,724 (45.9) 888,293 (47.1)

While the blank token supports as many consecutively same tokens as possible in
the CTC decoder, the re-appearance token of this work works correctly for only up to
two consecutively same tokens and misses the third consecutively same tokens. In the
ground-truth token level LibriSpeech dataset used in this work, only 18 utterances have
three consecutive same tokens out of the total 7,117,087 tokens (Table 3), and no utterances
have four consecutively same tokens.
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Table 3. The number of consecutive same token sequences at the token level of the LibriSpeech
dataset (the total number of tokens = 7,117,087).

Train-Clean-100 dev-Clean dev-Other Test-Clean Test-Other Sum (%)

2 consecutive same tokens 72,555 1410 1219 1311 1104 77,599 (1.1%)

3 consecutive same tokens 16 0 0 1 1 18 (0.0003%)

The encoder shown in Figure 1, is made up of a sub-sampling CNN, an 18-layer
conformer [23], and a linear layer. This encoder is used with the RNN-T decoder, the
transformer decoder and the CTC decoder as well as this work, for comparison.

The decoder shown in Figure 2 accepts the token probabilities at the frame level
(encoder output) ([Tenc, 302]) as input and generates the token sequence ([U]) as output
during the inference operation. Because the autoregressive models are more accurate than
the non-autoregressive models such as CTC, the autoregressive model is adopted in this
work. The autoregressive decoder of this work adds two token probabilities to generate the
302 added probabilities at each frame. One of the two token probabilities is the frame-level
token probability generated from the MFSC speech input by the encoder, and the other is
the token-level token probability generated from the previous token sequence. Then, the
decoder selects the token with the largest added probability as the current frame at each
frame and appends the current token to the output token sequence at the token transition,
that is, when the current token is different from the token at the preceding frame. The
decoder repeats the above operations sequentially in frame units and hence the output
token sequence ([u]) grows as the frame proceeds.

CNN subsampling 18-layer
Conformer

MFSC

[4*Tenc,83] [Tenc,256]
Linear

 RNN-T : [Tenc,300]   
This work  : [Tenc,302]   

Encoder output

Figure 1. Encoder used in this work.

Encoder output Output Sequence

[Tenc, 302] [u]

CNN Block

CNN output
[u+1, 302]

Pick t-th element

Pick latest element

MaxArg Append

Token
transition?

[302] Current token

True

Frame-level Token-level

Figure 2. Proposed frame level autoregressive decoder (inference).

2.1. Inference

The CNN block shown in Figure 3 accepts the previous output token sequence as input
and generates the token probabilities as output at the token level. Since the CNN block
observes only the previous output token sequence, it works as a causal system. Because
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the CNN block has a 1D CNN layer with a kernel size of 6, it generates the current token
probabilities based on the six previous output tokens. Since the average number of word
pieces of a word is 2.2 (Librispeech [24] test other, 300 word pieces), six tokens correspond
to 2.73 words. This is equivalent to a 3.73 g language model, which is close to the 4-gram
language model that has been reported to optimal size [25].

LinearReLUConv (k=6, c=128)

EmbeddingPrevious
tokens

[u]

Output
[u+1, 302]LayernormConcat

StartEmbedding
[1, 128]

[u, 128]

[u+1, 128]

Figure 3. The CNN block of the proposed decoder.

The RNN-T decoder yields the best accuracy among the decoders without using the
beam search. The RNN-T decoder is different from this work in two aspects. One is that the
RNN-T decoder adds the token probabilities in the frame + token level ([Tenc + L]) while
this work adds in the frame level ([Tenc]) (Figure 4) This increases the decoding steps from
Tenc to Tenc + L in the RNN-T decoder and hence increases the decoding time. While this
work accepts the added token probabilities once at each frame ([Tenc]), to select the current
token with the largest added probability, the RNN-T decoder accepts the added token
probabilities whenever either the frame-level token probability([Tenc], encoder output) or
the token-level token probability ([U]) changes.

The other is that the RNN-T decoder uses an LSTM layer while a CNN layer is used
in this work. Because the number of trainable parameters is around 1M in the RNN-T
decoder and 177 k in this work and the decoding steps are larger in the RNN-T decoder,
the decoding time of the RNN-T decoder is around 1.7 times of the RNN-T decoder.

Encoder output Output Sequence

[Tenc , 300] [u]

LSTM Block

LSTM output
[u+1, 300]

Pick t-th element

Pick latest element

MaxArg Append

Blank
token?

[300]

Current token
Linear

Update t

[301]

True

False

Frame-level Frame+Token level Token level

Figure 4. Proposed frame-level autoregressive decoder (inference).

2.2. Training

The encoder and the CNN block of the proposed decoder are trained using the model
shown in Figure 5, which is similar to the training model of the RNN-T decoder [18]. The
loss function is minimized to match the input sequence in MFSC to the ground truth token
sequence y [U]:

Loss = log
U

∑
u=1

α(t, u)β(t, u) (1)



Appl. Sci. 2024, 14, 1300 6 of 12

The loss function is determined by the sum of the products of α(t, u) and β(t, u) for
all u from 1 to U, where the product of α(t, u) and β(t, u) represents the probability that
the token at the frame t is y(u). y is the ground truth token sequence and U is the number
of tokens in y. α(t, u) is called the forward variable and β(t, u) is called the backward
variable [12]:

α(t, u) = ∑
π∈B−1(y),πt=yu

t′=t

∏
t′=1

pt′ ,u′(πt′) (2)

β(t, u) = ∑
π∈B−1(y),πt=yu

t′=Tenc

∏
t′=t+1

pt′ ,u′(πt′) (3)

B−1(y) is the set of frame-level token sequences that generate the token-level ground
truth y by deleting repeating tokens. pt,u(k) in (2) and (3) is determined by the sum of the
frame level probability xt(k) from the encoder output and the token level probability zu(k)
from the CNN output, for a token k :

pt,u(k) = so f tmax(xt(k) + yu(k)) (4)

The forward variable α(t, u) can be calculated recursively from the start (t = 1, u = 1):

α(t, u) = α(t − 1, u − 1)pt,u−1(yu) + α(t − 1, u)pt,u(yu) (5)

Similarly, the backward variable β(t, u) can be calculated recursively from the end
(t = Tenc, u = U):

β(t, u) = β(t + 1, u + 1)pt+1,u(yu+1) + β(t + 1, u)pt+1,u(yu) (6)

Encoder Output (x)
Softmax

[Tenc, 302]

Ground truth (y, [U])

Indexing
Forward

Tile [Tenc, U+1, 302]

CNN
Block

Tile Tenc

U+1

CNN output(z) [U+1, 302]

Prob
Encoder

Deep learning
ASR Engine 

Backward

α

β

[Tenc, U]

[Tenc, U]

MFSC
[4*Tenc, 83] [Tenc, U]

Pt,u(yu)

Pt,u-1(yu)
[Tenc, U]

Figure 5. The proposed frame level autoregressive decoder (training).

The recursive equations of this work (5), (6) are similar to those of CTC [12] because
both decoders work at the frame level, except that the CTC decoder includes a “Blank”
token while this work does not. The forward path computation of α(t, u) was presented
graphically in Figure 6 for this work, CTC and RNN-T decoders. Both forward and
backward path computation equations of α(t, u) and β(t, u) are compared in Table 4 for the
preceding three decoders.
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α(t-1, u) α(t, u)

α(t-1,u-1)

pt,u(yu)

pt,u-1(yu)

(a) This work (b) CTC (c) RNN-T

α(t-1, u) α(t, u)

pt,u(blank)

pt,u-1(yu)

α(t, u)

α(t-1,u-2)

P = pt(yu)

P

P

α(t, u-1)

α(t-1, u)

α(t-1,u-1)

tt-1t-2

u

u-1

tt-1t-2

u

u-1

tt-1t-2

u

u-2

u-1

Figure 6. Forward path computation of α(t, u) of decoders for end-to-end ASR.

Table 4. Forward/Backward algorithm of decoders for end-to-end ASRs.

Decoder Type Forward Variable α(t, u) Backward Variable α(t, u)

CTC
wordpiece (even u) (α(t − 1, u − 2) + α(t − 1, u − 1)

+ α(t − 1, u)) ∗ pt(yu)
(β(t − 1, u − 2) + β(t − 1, u − 1)
+ β(t − 1, u)) ∗ pt(yu)

blank (odd u) (α(t − 1, u − 1) + α(t − 1, u)) ∗ pt(yu) (β(t − 1, u + 1) + β(t − 1, u)) ∗ pt(yu)

RNN-T α(t − 1, u) ∗ pt−1,u(blank)
+ α(t, u − 1) ∗ pt−1,u(yu)

β(t + 1, u) ∗ pt,u(blank)
+ β(t, u + 1) ∗ pt,u(yu)

This work α(t − 1, u − 1) ∗ pt+1,u−1(yu)
+ α(t − 1, u) ∗ pt,u(yu)

β(t + 1, u + 1) ∗ pt+1,u(yu+1)
+ β(t + 1, u) ∗ pt,u(yu)

The partial derivatives of Loss w.r.t. xt (encoder output) and zu (CNN output) are
used to compute the gradients for backpropagation:

∂Loss
∂xt

= − 1
exp (−Loss)

{∑
u

∂α(t, u)β(t, u)
∂pt,u(yu)

∂pt,u(yu)

∂xt
} (7)

∂Loss
∂zu

= − 1
exp (−Loss)

{∑
t

∂α(t, u)β(t, u)
∂pt,u(yu)

∂pt,u(yu)

∂zu
+ ∑

t

∂α(t, u + 1)β(t, u + 1)
∂pt,u(yu+1)

∂pt,u(yu+1)

∂zu
} (8)

3. Experiments and Results

The CNN block of the proposed decoder was trained along with the encoder by
using the 100 h Librispeech [24] clean dataset (train-clean-100). To avoid overfitting, data
augmentation techniques such as speed perturbation [26] and SpecAugment [27] were used
for the training. For the speed perturbation, training was performed three times for each
dataset, one at 0.9× , another at 1.0× and the other at 1.1× speed. For the SpecAugment,
two frequency masks and two time masks were applied to every input utterance along with
the time warping. Each frequency mask ranges a consecutive range of up to 30 frequency
bins. Each time mask ranges from consecutive time frames up to 40 frames. The time
warping shifts the time frame up to five frames toward left and right. The 300 word
pieces generated from SentencePiece [20] and two special tokens were used in this work
to represent the token sequence. The special tokens include the space token and the re-
appearance token. The space tokens are used for no-token frames or to separate words in
this work, while the blank tokens of the CTC decoder are used to separate tokens or for
no-token periods. The re-appearance token is used for the frames where the same token
is repeated in the token sequence. The Adam optimizer [23] was used for the training
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with the hyperparameters of β1 = 0.9, β2 = 0.98, ϵ = 10−9. Also, the Noam learning rate
scheduling [9] was used with the 25k warmup steps and the learning rate factor of 5.0. The
model was trained up to 120 epochs, and the trainable parameters of the last 10 epochs
were averaged to obtain the inference model. The kernel size is 15 for the CNN blocks of
the 18-layer conformer comprising the encoder block shown in Figure 1.

To assess the performance of this work, the WERs and the numbers of trainable pa-
rameters of this work were compared in Table 5 with the non-autoregressive decoders
(CTC [12], self-conditioned CTC [17], intermediate CTC [16]) and the autoregressive de-
coders (transformer [9], RNN-T [18]); the same encoder with 30M trainable parameters was
used in this comparison. This work gives better WERs compared to the non-autoregressive
decoders and comparable WERs to the autoregressive decoders while the number of train-
able parameters is much smaller than those of the autoregressive decoders (177 k in this
work versus 10 M in the transformer and 1 M in RNN-T). To train the RNN-T decoder,
the dropout rate was 0.3 for the encoder and 0.2 for the decoder. To train the 6-layer
transformer decoder, the dropout rate was reduced to 0.1 to alleviate the influence of the
dropout on the attention operation, and the CTC was included in the loss function to
enhance accuracy [28,29]. In this work, the dropout rate was 0.1 for the encoder and 0.3 for
the decoder. The training codes were based on the ESPNet [30].

Table 5. Comparison of WER (%) and number of trainable parameters.

Model Params (M)
Word Error Rate (%)

Test-Clean Test-Other

Auto-regressive
This work 0.18 6.8 18.4

Transformer [9] 9.6 7.2 18.0
RNN-T [18] 1.0 6.6 18.3

Non-Autoregressive
CTC [12] 0 7.7 20.7

Self-conditioned CTC [17,21] 0 6.9 19.7
Intermediate CTC [16,21] 0 7.1 20.2

Also, In Table 6 the decoding times are compared along with the encoding times during
the inference operation for the Librispeech test-other dataset (2939 sentences, around 5.1 h
long); the AMD EPYC 7402P 24-Core Processor CPU was used for this inference operation.
The proposed decoder works 30.9 and 1.65 times faster than the transformer and the RNN-T
decoders, respectively, while the CTC decoder is 13.5 times faster than this work. In this
work, the encoder spends 7.6 times longer time than the decoder.

However, this work takes longer training time than other decoders due to the less opti-
mized gradient computation step. The gradient computation equations (Equations (7) and (8))
of this work have the computational complexity of O(Tenc ∗ U) while those of CTC, RNN-T
and transformer decoders have O(Tenc), O(Tenc + U) and O(U), respectively. It is expected
that this long training time may be reduced by sharing intermediate computation results in
future works.

Table 6. Comparison of decoding times in seconds during inference using LibriSpeech test other data
set and training times in hours using Librispeech train-clean-100.

Model
Inference Time (s)

Training Time
(h)

Encoding
Time

Decoding
Time

Relative Decoding
Time

This work 368 48.6 1.0 75.9
Transformer [9] 350 1500 30.9 41.7

RNN-T [18] 365 80.1 1.65 38.1
CTC [12] 371 3.63 0.074 24.6
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The kernel size of the CNN block of the decoder was set to 6 in this work because the
best WER was observed empirically at the kernel size 6 in the range from 4 to 24 for four
datasets (Librispeech dev-clean, dev-other, test-clean, test-other) as shown in Figure 7; the
number of the layers and the channels of the CNN block was set to 1 and 128, respectively.
The kernel size 6 corresponds to 2.73 words on average; this corresponds to the 3.73-gram
language model, which is close to the known-to-be-optimum 4-gram language model [25].

The optimum number of the layers and the channels of the CNN block was found
empirically to be 1 and 128, respectively, with the kernel size set to 6 (Table 7). With the
increase in the number of trainable parameters of the CNN block, the WER degrades due
to the overfitting of the potentially wrong previous token sequence with the beam search
not used in this work.

Table 7. Comparison of WER with different layers and channels of CNN in this work.

CNN Spec # Trainable
Params

WER (%)

Kernel Layers Channels Dev-Clean Dev-Other Test-Clean Test-Other

6 1 96 115 k 6.6 18.4 7.0 18.7
6 1 128 177 k 6.4 18.3 6.8 18.4
6 1 192 340 k 6.4 18.3 6.9 18.8
6 2 128 276 k 6.5 18.6 6.9 18.8

Figure 7. WERs of this work versus the kernel size of CNN ( red +: dev clean, blue O: test clean,
purple ♢: dev other, black *: test other).

The RNN-T decoder provides the best WER among the decoders for the end-to-end
ASRs without using the beam search. There are two differences between this work and
the RNN-T decoder. One is the decoding step is [Tenc] in this work and [Tenc + U] in the
RNN-T decoder. The other is that a CNN block with 177 k trainable parameters is used
in this work, while an LSTM block with 910 k parameters and a linear block with 90 k
parameters is used in the RNN-T decoder. To assess the contribution of the two differences
to the decoding time, the number of trainable parameters, and WER, the LSTM block of the
RNN-T decoder was replaced by the CNN block of this work. Table 8 shows the comparison
of the three models and presents that the change from the LSTM to CNN (“RNN-T(LSTM
→ CNN)” in Table 8) significantly reduces the number of trainable parameters, from 1 M
to 270 k with the comparable WERs and the decoding time. The additional change of the
decoding steps from [Tenc + U] to [Tenc] reduces the decoding time by 1.65 times with the
comparable WERs.
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Table 8. Comparison of this work with RNN-T decoder.

Model Relative Decoding Time Params (M)
Word Error Rate (%)
Test-Clean Test-Other

Original RNN-T (LSTM) 1.65 1.0 6.6 18.3
RNN-T (LSTM → CNN) 1.83 0.27 6.8 18.3

This work (CNN) 1.0 0.18 6.8 18.4

Table 9 shows that applying the beam search to the decoder output usually enhances
WER with a large increase in the decoding time. However, the beam search could not
enhance WERs significantly in this work; it is conjectured that this may be due to the
small-size CNN of the decoder in this work, while large-size decoders could help improve
WERs in other decoders(transformer, RNN-T).

Table 9. WERs and decoding times with and without beam search, beam size = 10.

Word Error Rate (%)
Beam Size = 1 Beam Size = 10

Relative Time Test-Clean Test-Other Relative Time Test-Clean Test-Other
This work 1.0 6.8 18.4 24.14 6.8 18.3

RNN-T 1.65 6.6 18.3 30.36 6.3 17.9
Transformer 30.9 7.2 18.0 347.77 6.7 17.8

4. Discussion

A frame-level autoregressive decoder is proposed to reduce the decoding time for
the inference operation of end-to-end ASRs while maintaining good WERs. This was
achieved by adopting the autoregressive architecture and reducing the decoding steps
and the number of trainable parameters of the decoder. To reduce the decoding steps, the
decoder is operated at the frame level, that is, the decoder generates the probabilities of the
token set once in each frame, at every 40 ms in this work. To reduce the number of trainable
parameters, only a CNN block of 177 k parameters was employed in the proposed decoder
of this work, while the transformer decoder has a 6-layer transformer with 9.6 M trainable
parameters and the RNN-T decoder has an LSTM block (910 k parameters) and a linear
block (90 k parameters). Two special tokens (space, re-appearance) are used along with 300-
word piece tokens to represent the token string. The proposed frame-level autoregressive
decoder was trained along with an encoder with 18 conformers (30 M parameters), by using
the 100 h Librispeech dataset (train-clean). A comparison of the proposed decoder with the
state-of-the-art autoregressive decoders combined with the same encoder used in this work
demonstrates that the proposed decoder provides comparable WERs to other decoders
with much less decoding time (1.7 and 30.9 times less than the RNN-T and the transformer
decoders, respectively). A comparison with non-autoregressive decoders presents that the
proposed decoder gives better WERs than other decoders with a longer decoding time.
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