
Citation: Yang, R.; Zhao, Y.; Shi, Y.

RPREC: A Radar Plot Recognition

Algorithm Based on Adaptive

Evidence Classification. Appl. Sci.

2023, 13, 12511. https://doi.org/

10.3390/app132212511

Academic Editors: Deqing Mao,

Yin Zhang, Yulin Huang

and Yachao Li

Received: 19 September 2023

Revised: 14 November 2023

Accepted: 17 November 2023

Published: 20 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

RPREC: A Radar Plot Recognition Algorithm Based on
Adaptive Evidence Classification
Rui Yang 1,*, Yingbo Zhao 2 and Yuan Shi 2

1 Engineering Comprehensive Training Center, Xi’an University of Architecture and Technology,
Xi’an 710055, China

2 School of Mechanical and Electrical Engineering, Xi’an University of Architecture and Technology,
Xi’an 710055, China; yingbozhao@xauat.edu.cn (Y.Z.); shiyuan@xauat.edu.cn (Y.S.)

* Correspondence: yrui@xauat.edu.cn

Abstract: When radar receives target echoes to form plots, it is inevitably affected by clutter, which
brings a lot of imprecise and uncertain information to target recognition. Traditional radar plot recog-
nition algorithms often have poor performance in dealing with imprecise and uncertain information.
To solve this problem, a radar plot recognition algorithm based on adaptive evidence classification
(RPREC) is proposed in this paper. The RPREC can be considered as the evidence classification
version under the belief functions. First, the recognition framework based on the belief functions for
target, clutter, and uncertainty is created, and a deep neural network model classifier that can give the
class of radar plots is also designed. Secondly, according to the classification results of each iteration
round, the decision pieces of evidence are constructed and fused. Before being fused, evidence will be
corrected based on the distribution of radar plots. Finally, based on the global fusion results, the class
labels of all radar plots are updated, and the classifier is retrained and updated so as to iterate until
all the class labels of radar plots are no longer changed. The performance of the RPREC is verified
and analyzed based on the real radar plot datasets by comparison with other related methods.

Keywords: radar plots; belief functions; neural network classifier; evidence classification; target recognition

1. Introduction

Due to the influence of detection accuracy and clutter, radars will form a large number
of clutter plots when receiving target echoes for processing, which is not conducive to target
recognition. Especially in areas with high-clutter density, the target plots can hardly be seen [1,2].
In order to eliminate radar detection errors, multiple radars will work together. But at this
point, they can also cause clutter plots to overlap with each other, forming a dense clutter
area with irregular spatial distribution, seriously affecting the recognition accuracy and real-
time performance of radar data processing. It can be seen that in radar plot processing, how to
effectively detect targets from a large amount of clutter and uncertain plots is the key to achieving
precise target tracking by radar [3–5]. In order to ensure efficient and fast data processing
for radar plots, traditional radar plot recognition algorithms usually use binary classification
recognition rules to determine whether they are a target or clutter [6–9]. However, it is well-
known that targets cannot be accurately classified in some cases. Therefore, due to the inability to
effectively represent the uncertain measurements, this yes or no decision judgment can increase
the error rate. This is not conducive to correct decision analysis in these traditional methods.
There are two main ways to solve this problem: one is to use belief functions to accurately
represent uncertain information, and the other is to use deep neural networks with stronger
sample learning ability for classification. The belief functions have significant advantages in
dealing with uncertain and imprecise information [10–14]. So, they have been applied in some
fields such as pattern recognition [15,16], data clustering [17–23], data classification [16,24–27],
security assessment [28,29], sensor information fusion [30], abnormal detection [31], tumor
segmentation [32,33], decision-making [34–36], community detection [37,38], and items of
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interest recommendation [39,40]. Considering the good performance of belief functions in
application, evidence classification algorithms have been studied to improve the accuracy of
target recognition. Among these methods, the evidence K-nearest neighbor (EK-NN) is the most
representative [25,41]. Subsequently, in order to adapt to different application scenarios, some
modifications of the EK-NN have been studied. For instance, many optimization methods based
on the EK-NN were proposed in [42–45]. Generally, these improved algorithms can have good
performances in some domains, such as machine diagnosis [46], process control [47], remote
sensing [48], medical image processing [49], and bioinformatics [50,51], among others.

Compared with traditional classification methods, the deep neural network model has
strong learning ability and also the advantage of constantly updating with an increase in
samples [52–56]. Therefore, radar plot recognition algorithms based on neural networks
have been studied. In reference [53], the full connected neural network (FNN) is used to
study the classification of radar clutter and real targets. The authors designed a network
with five layers, with nodes in each layer being 8, 64, 128, 32, and 2. When the number of
training and testing samples is 6276 and 2000, respectively, the classification accuracy of
the FNN can reach approximately 0.83 to 0.88. In reference [54], a multi-layer perceptron
algorithm optimized by particle swam optimization was used for radar plot recognition
(PSO-MLP), which achieved a good recognition accuracy of 0.857. In reference [55], the
convolutional neural network (CNN) was compared with the fully connected neural
network (FNN) and support vector machine (SVM). The experimental results show that
when the training and testing samples are sufficient, the recognition accuracy of the CNN
can reach 0.943. In reference [56], the same authors used the recurrent neural network
(RNN) instead of the CNN to further improve classification accuracy. When the training
samples of radar plots exceed 10000, the recognition accuracy can reach 0.991, which
is impressive.

Therefore, in order to effectively characterize the uncertain data and also improve
the recognition accuracy, a radar plot recognition algorithm based on adaptive evidence
classification (RPREC) is proposed in this paper. In the RPREC, a confidence recognition
framework is first created that includes target, clutter, and uncertainty, and an updatable
classifier based on deep neural networks is also designed. Then, based on the network
classification model obtained in each round, the category of all radar plots can be confirmed.
If the network classification model does not have samples for training, the class of each
radar plot will be randomly initially given. Finally, the class of each radar plot is updated
through the fusion of belief functions, and the plots after updating the category label can
be used for classifier training and parameter optimization. The optimized classifier can
also be reused to obtain the class of each plot. This cycle continues until the category labels
of each plot are no longer updated or iterated to a certain number. The performance of
the RPREC is verified through some experiments based on the real radar plot dataset. The
results show that the RPREC can effectively handle clutter and uncertain data compared
to other typical algorithms. So, it can improve the recognition accuracy of radar plots. In
addition, the RPREC has less dependence on training samples, making it easy to apply to
other scenarios.

The rest of this paper is organized as follows. In Section 2, we will recall the belief
functions and the evidence K-nearest neighbor classification, respectively. In Section 3, we
will introduce the proposed radar plot recognition algorithm based on adaptive evidence
classification. Finally, experiments will be presented in Section 4, and the paper will be
concluded in Section 5.

2. Related Work

Firstly, the belief function theory is introduced in Section 2.1. Then, the K-nearest
neighbor classification of evidence was reviewed in Section 2.2.
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2.1. Belief Functions

The belief functions can be seen as a generalization of probability theory. They have
been proven to be an effective theoretical framework, especially in the processing of
uncertain and imprecise information.

In belief functions, the set Ω = {ω1, · · · , ωc} is called discernment, which can be extended
to the powerset 2Ω. For example, if Ω = {ω1, ω2, ω3}, then 2Ω = {∅,{ω1},{ω2},{ω3},
{ω1, ω2},{ω1, ω3},{ω2, ω3}, Ω}. The mass function m is used to express the belief of the
different elements in 2Ω, which is a mapping function from 2Ω to the interval [0, 1] that is
defined by:

m(∅) = 0, ∑
A⊆2Ω ,A 6=∅

m(A) = 1 (1)

Subsets A ∈ 2Ω are called the focal sets that satisfy m(A) > 0. Each number m (A)
is interpreted as the probability that the evidence supports exactly the assertion A. In
particular, m (Ω) is the probability that the evidence tells us nothing about ω, i.e., it is the
probability of knowing nothing. For any subset A ∈ 2Ω, the probability that the evidence
supports A and the probability that the evidence does not contradict A can be defined as:

Bel(A) = ∑
B⊆A

m(B) (2)

Pl(A) = ∑
B∩A 6=∅

m(B). (3)

Functions Bel and Pl are called, respectively, the belief function and the plausibility
function associated with m. They can be regarded as providing lower and upper bounds
for the degree of belief that can be attached to each subset of Ω.

In the Dempster–Shafer (D-S) theory, independent evidence can be combined with
each other to ultimately form the belief that supports decision-making. Assume that on the
same frame of discernment, there are two pieces of evidence represented by m1 and m2,
respectively. Then, the evidence combination based on the D-S rule is defined as:

(m1 ⊕m2)(A) =

∑
B∩C=A

m1(B)m2(C)

1− k
(4)

And:
k = ∑

B∩C=∅
m1(B)m2(C) (5)

k is used to represent the degree of conflict between evidence, where the evidence
refers to m1 and m2. If k = 0, these two pieces of evidence are completely consistent and
there is no conflict between them. If k = 1, these two pieces of evidence are completely
contradictory and cannot be combined.

For example, let us consider Ω = {ω1, ω2} and the two pieces of evidence providing
the following mass function:

m1(ω1) = 0.8, m1(ω2) = 0.2
m2(ω1) = 0.7, m2(ω2) = 0.3

Using the D-S rule to combine these two pieces of evidence, one obtains:

mDS(ω1) = m1(ω1)m2(ω1) = 0.56
mDS(ω2) = m1(ω2)m2(ω2) = 0.06

mDS(ω1 ∩ω2) = m1(ω1)m2(ω2) + m1(ω2)m2(ω1) = 0.38

Here, K = mDS(ω1 ∩ω2) = 0.38 is the degree of conflict between m1 and m2.
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The two pieces of evidence provide the following mass function:

m1(ω1) = 1, m1(ω2) = 0
m2(ω1) = 0, m2(ω2) = 1

Combining these two pieces of evidence with the D-S rule, one obtains:

mDS(ω1) = 0, mDS(ω2) = 0, mDS(ω1 ∩ω2) = 1

Then, K = mDS(ω1 ∩ ω2) = 1. The fusion result is meaningless because of the full
contradiction of the two sources of information. Therefore, when the degree of conflict is
very high, the two pieces of evidence cannot be combined.

2.2. Evidence Classification

In the design of evidence classification algorithms based on belief function frameworks,
the evidential K-nearest neighbor classification (EK-NN) plays a significant role. In the
EK-NN, each neighbor of the sample is considered as evidence, which is used to provide
decision support for the class label of the sample. The final decision is presented by
combining these K-nearest neighbor pieces of evidence.

Consider a data classification problem where the object o will be classified into a
certain class that belongs to the class set Ω = {ω1, · · · , ωc}. If the nearest neighbor oj with
a feature distance of dj from the target o belongs to the group ωk(j), then the evidence of
each neighbor can be represented by the following formula.{

mj(
{

ωk(j)

}
) = ϕ(dj)

mj(Ω) = 1− ϕ(dj)
(6)

where ϕ is a non-increasing mapping from [0, +∞) to [0, 1], and it was proposed to choose
ϕ as:

ϕ(dj) = α0 exp(−γqdj) (7)

The set of these nearest neighbors is represented by NK; therefore, the combination of
the mass function of the nearest neighbors becomes:

m = ⊕
j∈Nk

mj. (8)

At this point, the final decision can be made that object is assigned to the class ωq with
the highest confidence level. The EK-NN provides a good idea for data classification with
uncertain information.

In order to present the characteristics of evidence classification more intuitively and
clearly, the flowchart of evidence classification is shown below in Figure 1:
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3. Proposed Method

In this section, the radar plot recognition algorithm based on adaptive evidence
classification (RPREC) is presented in detail. The RPREC mainly includes three parts. In
Section 3.1, the confidence recognition framework for target, clutter, and uncertainty has
been constructed, and a deep neural network classification model has also been designed.
In Section 3.2, the mass function of each radar plot was constructed, and the evidence was
corrected and fused. In Section 3.3, iterative updating of category labels for target data was
carried out based on the real-time optimization of classifiers.

3.1. Design of a Neural Network Classifier

In the RPREC, the recognition framework Ω = {Co, Cn, Θ} for target, clutter, and
uncertainty plots is first constructed, which is different from the binary recognition rule
of either target or clutter in traditional methods. Here, Co represents the category of the
real target plots, Cn represents the category of clutter, and Θ represents the category of
uncertainty. The mathematical relationship between them is: Co ∩ Cn = ∅, Co ∩Θ = Co,
and Cn ∩Θ = Cn.

As shown in Figure 2, a fully connected neural network has been designed, which
can continuously optimize as the confidence function of the plots’ category is iteratively
updated. The specific network parameters are set as follows:
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Input layer: The network input is the collected radar plot data, including target, clutter,
and uncertainty. Before being input into the network classifier for category recognition,
all plots are modeled using feature vectors recommended in [53]. The mathematical
representation is F = [R, E, Rw, Aw, Ma, Aa]. Here, R represents the distance from the
target to the radar, E represents the altitude information, Rw represents the size of the
target in the distance, Aw represents the size of the target in the azimuth, Ma represents
the maximum amplitude of all participating condensation echoes, and Ma represents the
average amplitude of all participating condensation echoes.

Therefore, the number of nodes in this network input layer is set to 6, which is
consistent with the input feature dimension.

Output layer: The network output represents the category membership of plots
belonging to Co, Cn, and Θ under the confidence recognition framework Ω. It represents
the confidence level of radar plots belonging to target, clutter, and uncertainty, respectively.
Its mathematical representation is µ = [µCo , µCn , µΘ]; therefore, the number of output nodes
is set to 3.

Hidden layer: The design of network hidden layers is usually related to the size and
distribution characteristics of the dataset. After some preliminary experiments, setting
the hidden layer to 30 layers with 50 nodes per layer and using the sigmoid function for
nonlinear processing has the best effect.

3.2. Construction and Correction Fusion of Belief Functions

The belief function is often referred to as the mass function. The construction and
fusion of the mass function for the target plot mainly include three parts: initial classification
of target data, construction of mass function, and correction and combination of evidence.

3.2.1. Initial Classification of Radar Plots

For the radar plots dataset O = {o1, · · · , on}, based on the constructed deep network
model classifier under the confidence recognition framework Ω = {Co, Cn, Θ}, the category
membership of target Oi (i = 1, · · · , n) can be obtained as µi = (µi1, · · · , µic), which
satisfies the following equations:

µij ∈ [0, 1],
c

∑
j=1

µij = 1 (9)

Due to the limitations of the framework Ω, the value of category C is taken as 3,
representing the target, clutter, and uncertainty, respectively. The number of radar plots
belonging to classes Co, Cn, and Θ is separately counted as N1, N2, and N3. The total belief
of each category is defined as: 

Bel(Co) =
N1
∑

i=1
µi(Co)

Bel(Cn) =
N2
∑

i=1
µi(Cn)

Bel(Θ) =
N3
∑

i=1
µi(Θ)

(10)

Here, the total belief can be seen as a description of the confidence density of radar
plots in various categories. The sample data around the target can be used as auxiliary
evidence for category decision-making, among which samples belonging to the same
category can be used for confidence enhancement, while heterogeneous samples can be
used for confidence correction. Therefore, a certain number of nearest neighbor samples
can be selected from the three types of target plots formed by the above initial classification
to construct decision evidence.
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3.2.2. Construction of Mass Function

The samples were selected separately from the sample sets of categories Co, Cn, and Θ,
with specific numerical settings proportional to the total belief, as shown in the following
formula:

Ki =
Bel(i)× K
∑

i∈{Co ,Cn ,Θ}
Bel(i)

(11)

where the value of K is related to the size and distribution of radar plots and needs to be
obtained through specific experiments based on different application backgrounds. After
obtaining the nearest neighbor samples of the target point, the decision evidence set ΦK(i)
of target oi can be constructed. The basic confidence assignment function for each sample
in this set is defined as: {

mi(Cj) = αij
mi(Θ) = 1− αij

, j = 1, · · · , K (12)

With:

αij =

{
λe−Mij , Cj ∈ {Co, Cn}
0 , Cj = Θ

(13)

where Mij is the confidence similarity between the target data and the decision sample,
defined as:

Mij =
√

∑
ci ,cj∈{c0,cn ,Θ}

(Beli(Ci)− Belj(Cj))2 (14)

3.2.3. Correction and Combination of Evidence

This section mainly focuses on revising and combining decision evidence. Firstly, the
evidence belonging to the same category is combined, and then the combination results
belonging to different categories are fused.

1. Combining evidence with the same category

Firstly, combine the evidence with the same category assignment in decision evidence
set ΦK(i); that is, combine the evidence in the decision evidence subset Tq of each category.

m
Tq
t (Cq) = 1− ∏

j∈Tq

mi,j(Θ)

m
Tq
t (Θ) = ∏

j∈Tq

mi,j(Θ)
(15)

Assuming that Er is the error rate of the radar plot, the setting of the evidence discount
factor is defined as:

WCq =
(1− Er)× Bel(Cq)

∑
Cq∈{Co ,Cn ,Θ}

Bel(Cq)
(16)

Based on the correction factor, the update of evidence can be achieved as follows:
dm

Tq
t (Cq) = WCq(1− ∏

j∈Tq

mt,j(Θ))

dm
Tq
t (Θ) = 1−WCq(1− ∏

j∈Tq

mt,j(Θ))
(17)

2. Combining the results under different categories

There may be certain confidence conflicts between different categories of decision
evidence. The definition of evidence conflict between different categories is as follows:

Tc =
c

∑
q=1

dm
Tq
t (ωq) (18)
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Therefore, for the initial fusion evidence dm
Tq
t of different categories Tq, a combination

based on conflict resolution rules can be obtained as follows:
mt(Cq) = (dm

Tq
t (Cq) ∏

h∈{1,··· ,c},h 6=q
dmTh

t (Θ))/(1− Tc)

mt(Θ) = 1−
c
∑

q=1
(dm

Tq
t (ωq) ∏

h∈{1,··· ,c},h 6=q
dmTh

t (Θ))/(1− Tc)
(19)

Here, mt is the global mass function obtained from the fusion of decision evidence set
ΦK(i). Then, the confidence level Bel and the probability level Pl of target oi belonging to
each pattern category Ci can be calculated.

Beli(Ci) = ∑
Ci∈{Co ,Cn ,Θ},Cq⊆Ci

mt(Cq) (20)

Pli(Ci) = ∑
Ci∈{Co ,Cn ,Θ},Cq∩Co 6=∅

mt(Cq) (21)

The criteria for updating the category labels of radar plots are:
Criterion 1: Update categories with maximum confidence;
Criterion 2: The minimum confidence difference between the new category and other

categories must be greater than the threshold T1, which means that there must be sufficient
confidence differences between different categories;

Criterion 3: The difference between the probability and confidence of the updated
category must be less than the threshold T2, which means that the uncertainty of the
category cannot be too high.

For example, let us assume that there are four pieces of evidence in the decision
evidence set ΦK(i):

m1(Co) = 0.8, m1(Θ) = 0.2
m2(Co) = 0.7, m2(Θ) = 0.3
m3(Cn) = 0.8, m3(Θ) = 0.2
m4(Cn) = 0.6, m3(Θ) = 0.4

Firstly, combine the evidence with the same category. That is, evidence 1 and 2 need
to be combined, and evidence 3 and 4 need to be combined. One obtains:

m1,2(Co) = 0.94, m1,2(Θ) = 0.06
m3,4(Cn) = 0.92, m3,4(Θ) = 0.08

Assuming that the error rate of the radar plot is 0.1, the setting of the evidence discount
factor is:

WCo =
(1−0.1)×0.94

0.94+0.92 = 0.455
WCn = (1−0.1)×0.92

0.94+0.92 = 0.445

Based on the correction factor, the update of evidence can be achieved as follows:

dm1,2(Co) = 0.428, dm1,2(Θ) = 0.572
dm3,4(Cn) = 0.409, dm3,4(Θ) = 0.591

Then, we combine the results under different categories, and obtain:

Tc = 0.428× 0.409 = 0.175
mt(Cn) = 0.308, mt(Cn) = 0.284, mt(Θ) = 0.408

Here mt is the global mass function obtained from the fusion of decision evidence. In
this example, uncertainty has the highest confidence because there is some conflict between
the pieces of evidence, such as evidence 1 and 2, believing that the plot is the target, and
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evidence 3 and 4, believing that the plot is cluttered. But do not worry, as the number of
decision pieces of evidence increases, this problem can be effectively solved.

The implementation process of constructing a confidence function is shown in Figure 3.
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3.3. Iterative Update of Target Category Confidence

Based on the network classification model of each round, the category membership of
the target can be obtained. If the network classification model is not trained, the category
membership of the target will be randomly initially given. Then, the target category is
updated through the correction fusion of the belief function, and the sample data after
updating the category label can be used for classifier training and parameter optimization.
The optimized classifier can also be reused to obtain the category membership of the target.
This cycle continues until the category labels of each point in the target dataset are no longer
updated or iterated a certain number of times. The value of iteration times is usually related
to the timeliness of engineering applications and can be reasonably configured according
to specific scenarios. The specific implementation of the update strategy is as follows:

Step 1: The global mass function mt of each test sample Oi can be obtained through
confidence evidence fusion based on the current deep network model classifier. The target
dataset can be divided into two subsets, Φ1 and Φ2, based on mt, where the subsets are
defined as follows:

Φ1 = {Oi : maxmt(Cq)
Cq∈{Co ,Cn ,Θ}

6= mt(Θ)} (22)

Φ2 = {Oj : maxmt(Cq)
Cq∈{Co ,Cn ,Θ}

= mt(Θ)} (23)

Here, the category of the sample is target or noise in subset Φ1, while the category of
the sample is uncertain in subset Φ2.



Appl. Sci. 2023, 13, 12511 10 of 20

Step 2: In each round of iterative updates, the samples in subset Φ1 can be temporarily
used as training sample data

{
(Oi, Yi), i = 1, · · · , NΦ1

}
after being classified by the deep

learning network model. NΦ1 is the total number of samples in dataset Φ1, and Yi is the
category label of target Oi. Then, by combining the mass function of each sample, the center
of this pattern category can be obtained as follows.

mCq = ∑
Cq⊆{Co ,Cn},Oi∈Φ1

mt(Oi)/NΦ1 (24)

Step 3: For the sample Oj in subset Φ2, the confidence similarity d between it and the
center of categories Co and Cn is calculated separately.

d(Oj, Cq) =
∥∥∥mt(Oj)−mCq

∥∥∥, Cq ∈ {Co, Cn} (25)

According to the value of confidence similarity, the sample data are sequentially
assigned to the pattern categories with the closest confidence.

In RPREC, the iterative update process of target category confidence is shown in
Figure 4.
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Based on the above implementation process, it can be seen that easily classified
plots can provide additional evidence to help classify uncertain plots, especially in cases
where clutter and target plots have high similarity in the feature space. This is also the
advantage of the iterative optimization classification strategy.We summarize the RPREC in
Algorithm 1.
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Algorithm 1. RPREC Algorithm.

Require: Radar data set O = {o1, · · · , on}; Classification threshold T1 and T2; Deep learning
classifier; Number of Decision Evidence K; Maximum number of iteration updates Th;
Initialization: Set the number of network layers and nodes in each layer. If there are samples with
class labels, the classifier is initially trained based on recognition framework Ω = {Co, Cn, Θ}.
1: s← 0;
2: repeat
3: Calculate the category membership µi = (µi1, · · · , µic) of each target Oi;
4: Calculate the total belief of each category: Bel(Co), Bel(Cn), Bel(Θ).
5: Calculate the number Ki of samples that should be selected in each pattern category based on
Equation (11), and build the decision evidence set ΦK(i) of each target Oi;
6: Calculate the confidence similarity Mij between the target data and the decision sample;
7: Build the basic confidence assignment function mi for each sample;
8: Combine the evidence in the decision evidence subset Tq with the same category, and obtain

fusion confidence assignment function mTq
t ;

9: Calculate the evidence discount factor WCq , and Obtain correction evidence dmTq
t (Cq);

10: Combine the correction evidence and obtain the global mass function mt;
11: Calculate the confidence level Bel of target Oi belonging to each pattern category;
12: Update category labels for each target data based on classification rules;
13: s← s + 1;
14: until s = Th or the category labels of each target is no longer updated;
15: return the category assignment relationship of each target

{
m(Oi, Cq)

}N
i=1

4. Experiments

In this section, some experimental results using real radar plots are presented, showing
the effectiveness of the RPREC. All algorithms were tested on the MATLAB platform. The
software used in these experiments is MATLAB R2023a under a Windows 11 system. We
give an evaluation of the recognition accuracy and the run time of the considered radar
plot recognition algorithms. The computations were executed on a Microsoft Surface Book
with an Intel (R) Core (TM) i9-12900HX CPU @2.5 GHz and 16 GB MEMORY. There are
mainly two types of scenarios: one is high-density clutter, and the other is low-density
clutter. The datasets used are all collected from the X-type ATC radar. Each group of plot
data is processed by a track processing program. According to the test environment and
plots, the possible false track and the real track are both retained. Firstly, mark the plot data
corresponding to the real track as the target. Then, mark the plot data corresponding to the
false track as uncertain. Finally, mark the rest of the plots as clutter.

1. The dataset with high clutter density

As shown in Table 1, the dataset with high-clutter density includes 1150 targets,
2350 clutters, and 325 uncertainties, and their specific distribution is shown in Figure 5.
The distribution of data containing only targets and clutter is shown in Figure 6.

Table 1. The sample dataset with high-clutter density.

Dataset 1 Target Clutter Uncertain

Number 1150 2350 325

In Figure 6, it can be seen that the target plots are very clear and easy to identify when
not affected by clutter. In Figure 5, some target plots are almost completely submerged by
clutter, which poses a certain challenge to the performance of recognition algorithms.
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2. The dataset with low-clutter density

As shown in Table 2, the dataset with high-clutter density includes 171 targets,
213 clutters, and 19 uncertainties, with a specific distribution as shown in Figure 7.

Table 2. The sample dataset with low-clutter density.

Dataset 2 Target Clutter Uncertain

Number 171 213 19

As shown in Figure 7, under low-clutter density, the target plot is clearly visible, while
uncertain data are mainly distributed near the intersection of different target plots. This
dataset is mainly used to verify the performance of each algorithm when the sample size
is small.

Specific experimental verification is carried out from four aspects. First, the perfor-
mance of the RPREC is evaluated with respect to some classical radar plot recognition
algorithms in Section 4.1. In Section 4.2, the correlation between recognition accuracy and
iteration number is provided. In Sections 4.3 and 4.4, the impact of algorithm parameters,
such as classifier iteration updates and confidence threshold on algorithm performance,
is analyzed.



Appl. Sci. 2023, 13, 12511 13 of 20

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 21 
 

 
Figure 6. The distribution of target and uncertain data. 

In Figure 6, it can be seen that the target plots are very clear and easy to identify when 
not affected by clutter. In Figure 5, some target plots are almost completely submerged by 
clutter, which poses a certain challenge to the performance of recognition algorithms. 
2. The dataset with low-clutter density 

As shown in Table 2, the dataset with high-clutter density includes 171 targets, 213 
clutters, and 19 uncertainties, with a specific distribution as shown in Figure 7. 

Table 2. The sample dataset with low-clutter density. 

Dataset 2 Target  Clutter Uncertain 
Number 171 213 19 

 
Figure 7. The distribution of the dataset with low-clutter density. 

As shown in Figure 7, under low-clutter density, the target plot is clearly visible, 
while uncertain data are mainly distributed near the intersection of different target plots. 
This dataset is mainly used to verify the performance of each algorithm when the sample 
size is small. 

Specific experimental verification is carried out from four aspects. First, the perfor-
mance of the RPREC is evaluated with respect to some classical radar plot recognition 
algorithms in Section 4.1. In Section 4.2, the correlation between recognition accuracy and 
iteration number is provided. In Sections 4.3 and 4.4, the impact of algorithm parameters, 

0 1 2 3 4 5 6

20

40

60

80

100

120

140

160

180

200

Azimuth(rad)

D
is

ta
nc

e(
km

)

 

 
Target
Uncertain

0 1 2 3 4 5 6

20

40

60

80

100

120

140

160

180

200

220

Azimuth(rad)

D
is

ta
nc

e(
km

)

 

 Target
Clutter
Uncertain

Figure 7. The distribution of the dataset with low-clutter density.

4.1. Radar Plot Recognition

This experiment is based on two types of radar-measured datasets, high-density clutter,
and low-density clutter, which have been introduced at the beginning of Section 4. In each
scenario, half of the radar plot data were randomly selected as training samples, and the
remaining were used as testing samples. In order to effectively verify the performance of
the RPREC, we compared it with some classic radar dot recognition algorithms, including
PSO-SVM [3], PSO-MLP [54], FNN [53], CNN [55], and RNN [56]. Here, the percentage
of recognition accuracy and CPU time are used as important indicators to measure the
performance of these algorithms.

The experimental results based on the high-density clutter dataset are shown in Table 3,
and the experimental results based on the low-density clutter dataset are shown in Table 4.
In these tables, ω1, ω2, and ω3 represent, respectively, target, clutter, and uncertainty.

Table 3. The recognition accuracy and CPU time of six different algorithms on the high-density
clutter dataset.

The Radar
Plots

Recognition Accuracy/CPU Time (s)

PSO-SVM PSO-MLP FNN CNN RNN RPREC

ω1 0.821/0.52 0.853/0.73 0.861/1.21 0.911/2.71 0.923/3.55 0.921/9.55

ω2 0.837/1.12 0.847/1.71 0.832/3.26 0.913/5.13 0.927/6.32 0.932/18.35

ω3 / / / / / 0.945/3.37

All 0.829/1.64 0.850/2.44 0.847/4.47 0.902/7.84 0.925/9.87 0.932/31.27

Table 4. The recognition accuracy and CPU time of six different algorithms on the low-density clutter
dataset.

The Radar
Plots

Recognition Accuracy/CPU Time (s)

PSO-SVM PSO-MLP FNN CNN RNN RPREC

ω1 0.852/0.12 0.833/0.43 0.821/0.89 0.851/1.08 0.873/1.32 0.923/12.55

ω2 0.856/0.31 0.842/0.98 0.812/1.09 0.863/1.53 0.857/2.21 0.936/15.39

ω3 / / / / / 0.925/11.37

All 0.854/0.43 0.836/1.41 0.817/1.98 0.857/2.61 0.865/3.53 0.928/39.31

The experimental results shown in Table 3 indicate that PSO-SVM, PSO-MLP, FNN,
CNN, and RNN have some shortcomings in the representation of uncertain data. Therefore,
these algorithms focus on the binary classification of targets and clutter, so the uncertain
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data represented by ω3 will be hard to classify into targets or clutter. This will affect their
recognition accuracy. The recognition accuracy of PSO-SVM is about 0.83, and the CPU
time is 1.64. The recognition accuracy of PSO-MLP and the FNN is similar, but the FNN
takes more time. Compared to the FNN, the RNN and CNN have advantages in deep
feature extraction of radar plots, resulting in a higher recognition accuracy of over 0.91.
Of course, the CPU time has also doubled accordingly. The most significant feature of
the RPREC proposed in this article is its ability to characterize and measure uncertain
data. Therefore, it can be seen from the fifth row in Table 3 that uncertain plots have been
effectively identified with a recognition accuracy of 0.945. In addition, the RPREC also
maintains good performance in target and clutter recognition, with recognition accuracy
rates of 0.921 and 0.932, respectively. However, the RPREC also has a significant limitation
in that it has a large CPU time, which is 3 to 15 times that of other algorithms.

The experimental results shown in Table 4 indicate that in low-clutter datasets with
fewer radar plots, the recognition accuracy of all algorithms decreases, except for PSO-SVM
and the RPREC. The reason is that PSO-SVM is an optimization algorithm of SVM, which
is very suitable for small samples and can achieve a recognition accuracy of 0.854. In
this case, its recognition performance is similar to the RNN. Comparing Tables 3 and 4,
it can be found that the recognition accuracy of PSO-MLP, FNN, CNN, and RNN has
decreased by approximately 2 to 6 percentage points. The reason why the RPREC is not
also significantly affected is that its classifier can iteratively learn the inherent characteristics
of radar plots and maintain optimization, but the cost is that the CPU time is several times
that of other algorithms.

Overall, PSO-MLP, FNN, CNN, and RNN perform well in high-clutter density radar
point datasets, while PSO-SVM can demonstrate its advantages in low-clutter density
radar point datasets. The RPREC maintains good performance in both datasets but has the
highest CPU time. Therefore, in terms of being able to adapt to various different scenarios,
the RPREC is the best. But if we pursue computational timeliness, the RPREC is not the
best choice.

4.2. The Impact of Training Sample Sets

As is well-known, the performance of recognition algorithms is usually closely related
to the training samples. Therefore, the impact of the training samples on each algorithm is
mainly analyzed in this section. The dataset used here is a mixture of high-clutter density
and low-clutter density samples. It has a total of 4228 radar plots, including 1321 target
plots, 2653 clutter plots, and 344 uncertainty plots. Four different scenarios are set here,
represented by S1, S2, S3, and S4. In each scenario, a certain number of samples are selected
for classifier model training, and the remaining samples are used to test the performance of
each algorithm. The specific number of training and testing samples for S1 to S4 is set in
Table 5. Here, the recognition accuracy and CPU time are also used as evaluation indicators.
The test results of each algorithm are summarized in Table 6.

Table 5. The training and sample testing settings in different experimental scenarios.

Experimental
Scenario

Training Samples/Testing Samples

Target Clutter Uncertain

S1 200/1121 500/2036 100/244
S2 300/1021 1000/1563 150/194
S3 500/821 1500/1063 200/144
S4 900/421 2000/563 250/94
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Table 6. The recognition accuracy and CPU time of different algorithms.

Scenario
Recognition Accuracy/CPU Time (s)

PSO-SVM PSO-MLP FNN CNN RNN RPREC

S1 0.852/2.12 0.833/3.43 0.821/4.89 0.841/7.08 0.843/8.32 0.923/52.55
S2 0.856/1.31 0.852/2.98 0.842/4.09 0.863/5.53 0.894/6.21 0.936/35.39
S3 0.873/1.24 0.881/2.44 0.877/3.47 0.903/4.03 0.925/5.92 0.931/29.27
S4 0.871/1.03 0.906/1.41 0.895/1.98 0.927/2.61 0.931/4.53 0.929/18.31

Table 6 shows that PSO-MLP, FNN, CNN, and RNN are significantly affected by the
number of samples. For example, in the S4 scenario with sufficient samples, the recognition
rate of each algorithm can be about 6 to 9 percent higher than S1 with insufficient samples.
At the same time, the CPU time of these algorithms is also reduced, as the number of test
samples is also decreasing. The recognition accuracy of PSO-SVM does not significantly
improve with an increase in the number of training samples from S1 to S4, which are
generally only around 0.1 to 0.2. It can be seen that PSO-SVM is a good choice in small
sample datasets. The recognition accuracy of the RPREC is also not significantly affected by
the number of samples but at the cost of sacrificing a significant amount of time to optimize
the classifier. So, it can be seen that the time for S4 is 19.31, but S1 requires 42.55, which is
almost three times higher.

In addition, compared to other algorithms, the proposed algorithm can basically main-
tain the best recognition accuracy. Of course, it inevitably has the most CPU time in each
scenario. This is because the classifier in other algorithms only needs to be trained offline
and can be directly applied during testing. However, the RPREC needs to continuously
analyze radar plots during the testing process to optimize the classifier. Specifically, the net-
work model classifier of the proposed algorithm needs to be trained by certain samples in
advance. Then, the self-learning of the classifier can be achieved through iterative updates
of the class confidence of the target data, ultimately gradually improving the classification
accuracy. This is why the fewer training samples, the longer it takes for the classifier to
optimize to good performance. Therefore, how to maintain good timeliness like other
algorithms is also the focus of future research.

4.3. The Impact of Iteration Times

In this section, the relationship between the recognition accuracy, CPU time, and
classifier iteration times of the RPREC is mainly analyzed. The specific relationship curve
between the recognition accuracy and the number of iterations of the classifier in the
RPREC is depicted in Figure 8. We conducted three repetitive experiments based on the
same dataset described in Section 4.2. Then, the classifier was updated with 200, 500, 1000,
and 1500 iterations in each experiment. Finally, the statistical results of each experiment,
including recognition accuracy and CPU time, are recorded in Table 7.

It can be seen that once the recognition accuracy of the RPREC reaches a certain level,
it will not significantly improve with an increase in iteration times. As shown in Figure 8,
the recognition accuracy of targets, clutter, and uncertainty is always difficult to reach 0.98.
When the number of iterations exceeds 1000, it will approach its upper limit of 0.976.

Table 7 shows that the CPU time is basically proportional to the number of iterations
in each experiment. When the number of iterations reaches 500 from 200, the recognition
accuracy can be quickly improved, from around 0.35 to over 0.93. When the number of
iterations increased from 500 to 1000, the improvement in recognition accuracy slowed
down by about 10 percentage points. When the number of iterations exceeds 1000, there
is no significant change in recognition accuracy as the number of iterations increases.
For example, in these three experiments, they remained around 0.951, 0.935, and 0.961,
respectively. This indicates that the classifier initially improves its ability with the learning
of radar plots and then reaches a certain level of performance that cannot be further
improved with iterative learning, which can only increase CPU time. Therefore, the
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reasonable setting of parameters requires a comprehensive requirement for recognition
accuracy and timeliness based on specific scenarios. Of course, it is necessary for us to
further carry out research on adaptive parameter configurations that can adapt to different
radar plots in the future.
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Figure 8. The specific relationship curve between recognition accuracy and iteration number. The red
line represents the upper limit of recognition accuracy that the algorithm can approach.

Table 7. The statistical results under different iterations for each experiment.

Experiment Number Iterations CPU Time (s) Recognition
Accuracy

Exp. 1

200 4.35 0.339
500 10.39 0.857

1000 25.83 0.951
1500 35.21 0.952

Exp. 2

200 3.13 0.323
500 12.27 0.876

1000 23.69 0.935
1500 35.78 0.934

Exp. 3

200 3.31 0.359
500 9.36 0.867

1000 22.57 0.961
1500 37.31 0.962

4.4. Confidence Threshold Parameter

In this section, the impact of thresholds T1 and T2 on the recognition performance
of the proposed algorithm is analyzed. Here, three performance evaluation indicators,
including recognition accuracy, CPU time, and number of loop iterations, were selected
in this experiment. For simplicity, the Ra, Ct, and Li in the table are, respectively, used to
represent recognition accuracy, convergence time, and iteration number. The statistical
values of these three indicators are based on the average results obtained from 1000 Monte
Carlo simulations. The experimental results are shown in Tables 8 and 9 and Figure 9.
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Table 8. The recognition results under different values of T1.

T1 Ra Ct (s) Li

0.1 0.942 8.73 1297
0.2 0.947 8.91 1284
0.3 0.959 9.15 1389
0.4 0.962 9.36 1458
0.5 0.938 8.62 1245
0.6 0.941 9.02 1231
0.7 0.931 9.51 1321
0.8 0.921 9.32 1297
0.9 0.913 8.79 1193

Table 9. The recognition results under different values of T2.

T2 Ra Ct (s) Li

0.1 0.959 16.92 2831
0.2 0.956 15.30 2627
0.3 0.935 14.97 2398
0.4 0.941 14.92 2291
0.5 0.937 9.36 1530
0.6 0.919 9.16 1439
0.7 0.922 9.28 1481
0.8 0.918 8.75 1321
0.9 0.912 8.12 1021
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Figure 9. The relationship curve between recognition accuracy and threshold parameters.

As shown in Table 8, when the value of T1 is changed, both Ct and Li do not show
significant changes. As shown in Figure 9 the recognition accuracy of the algorithm
increases first and then decreases as the T1 value increases. When the value of T1 is 0.4,
the algorithm’s recognition accuracy can reach the maximum value of 0.962 calculated
in this experiment. The reason is that when the T1 value is small, the algorithm’s ability
to eliminate clutter will decrease, leading to an increase in the number of false targets.
The high value of T1 can improve the suppression of clutter plots, but it also reduces
the algorithm’s ability to recognize real targets, which are similar to clutter. Therefore,
according to experimental statistical analysis, a T1 value of 0.4 is the best in this scenario.

The experimental results in Figure 9 show that as the value of T2 increases, the
recognition accuracy of the proposed algorithm gradually decreases. This indicates that
minimizing the uncertainty interval of the target’s category is more helpful in accurately
distinguishing true from false, but it will inevitably affect the convergence speed of the pro-
posed algorithm. Therefore, the experimental results in Table 9 show that as T2 decreases,
the values of Ct and Li both increase. So, if there is enough time, a value of 0.1 for T2 is the
best choice for this scenario.
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Therefore, the reasonable setting of thresholds T1 and T2 parameters is a challenge
in the RPREC. What we need to pay special attention to is the effective adjustment of
parameters, which will depend on the specific situation in the future.

5. Conclusions

In this paper, the RPREC was proposed to improve the recognition performance of
radar plots with the help of a deep neural network classifier where the basic confidence
assignment of an object can iterate loop optimization. The RPREC first constructs a con-
fidence framework for targets, clutter, and uncertainty categories to effectively represent
radar plots. Then, a deep network model classifier is used to obtain the class confidence of
each object online, and decision evidence is used to correct and update class labels. Finally,
the updated data drive the classifier to complete iterative optimization, thus achieving
accurate recognition of radar plots. The effectiveness of the proposed algorithm based
on the real radar plot dataset has been verified. The experimental results show that the
recognition accuracy of the RPREC can reach almost 93%, which is superior to traditional
recognition algorithms. In addition, the RPREC can also gradually improve recognition
ability by iteratively learning the inherent distribution characteristics of sample data when
the number of samples is small.

In the future, this research topic can be further explored by integrating the RPREC
with adaptive parameter configuration. This enables the recognition algorithm to be better
applied to various types of radar plot scenarios.
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