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Abstract: Organic leafy vegetables face challenges related to potential substitution with non-organic
products and vulnerability to dehydration and deterioration. To address these concerns, visible and
near-infrared spectroscopy (VIS-NIR) combined with linear discriminant analysis (LDA) was employed
in this study to rapidly distinguish between organic and non-organic leafy vegetables. The organic
category includes organic water spinach (Ipomoea aquatica Forsskal), amaranth (Amaranthus tricolor L.),
lettuce (Lactuca sativa var. ramosa Hort.), and pakchoi (Brassica rapa var. chinensis (Linnaeus) Kitamura),
while the non-organic category consists of their four non-organic counterparts. Binary classification was
performed on the reflectance spectra of these vegetables’ leaves and stems, respectively. Given the broad
range of the VIS-NIR spectrum, stability selection (SS), random forest (RF), and analysis of variance
(ANOVA) were used to evaluate the importance of the wavelengths selected by genetic algorithm (GA).
According to the GA-selected wavelengths and their SS-evaluated values and locations, the significant
bands for leaf spectra classification were identified as 550–910 nm and 1380–1500 nm, while 750–900 nm
and 1700–1820 nm were important for stem spectra classification. Using these selected bands in the
LDA classification, classification accuracies of over 95% were achieved, showcasing the effectiveness
of utilizing the proposed method to rapidly identify organic leafy vegetables and the feasibility and
potential of using a cost-effective spectrometer that only contains necessary bands for authenticating.

Keywords: rapid authentication; organic leafy vegetables; visible and near-infrared spectroscopy;
wavelength selection; linear discriminant analysis

1. Introduction

Leafy vegetables are a part of everyday diets as they offer a wide variety of vitamins,
minerals, and elements necessary for preserving excellent health [1]. Pakchoi, cabbage,
lettuce, leek, water spinach, and amaranth are a few examples of leafy vegetables, and most
of them contain edible leaves and stems. The cultivation of organic vegetables requires
adherence to rigorous farming procedures that preclude the use of chemically synthesized
pesticides, genetically engineered organisms and their derivatives, and inorganic fertilizers.
Instead, organic fertilizers sourced from plants and animals are utilized, and the crops are
safeguarded from pests and diseases using naturally occurring substances [2]. Numer-
ous studies have found that organic leafy vegetables frequently have higher nutritional
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content while having lower yields than conventional agricultural techniques [3]. Due to
its advantages for consumers’ health, environmental safety, lack of toxic pesticides, high
nutrient content, and bioactive components, organic vegetables are becoming more and
more popular [4,5].

The need for a rapid, reliable, and non-destructive identification technology for or-
ganic vegetables is becoming increasingly urgent. This is because the price of organic
leafy vegetables is higher compared to leafy vegetables due to the low yields of organic
vegetables [6]. Moreover, fraudsters are enthusiastic about making huge profits by selling
non-organic vegetables as organic ones through the use of fake labels or producing high-
yield vegetables that do not meet the organic identification standards [7]. Unfortunately,
these fake organic vegetables are difficult to identify for ordinary consumers, resulting in
wrong spending and a reduction in the market for real organic vegetables. Therefore, the
organic vegetable industry requires technology that can quickly, accurately, and reliably
identify organic vegetables while minimizing damage to the produce.

A multitude of authentication methods exist, utilizing diverse techniques. These
encompass molecular methodologies, chromatographic techniques, isotopic analyses, vi-
brational and fluorescence spectroscopy, mass spectrometry, elemental assays, nuclear
magnetic resonance spectroscopy, and the discerning art of sensory analysis [8–10]. Birse
and colleagues adeptly discriminated between organic and conventional leeks through the
adept employment of ambient mass spectrometry and inductively coupled plasma mass
spectrometry for leafy vegetable authentication [11]. The distinction of organic lettuces has
been accomplished by harnessing the power of spectroscopy synergized with advanced
machine learning algorithms [12]. Notably, contemporary techniques, exemplified by mass
spectrometry and high-performance liquid chromatography, have demonstrated height-
ened sensitivity and precision. Alas, their application is often impeded by the impractical
attributes of complexity, exorbitant costs, and protracted procedural durations, rendering
them ill-suited for the exigencies of rapid, non-destructive authentication [13,14]. Further-
more, these methodologies may necessitate the inclusion of an assortment of chemical
reagents, thereby adding an additional stratum of intricacy to the already intricate process
of vegetable authentication.

A number of potential elemental and Isotopic indicators, in concert with the nu-
anced application of machine learning paradigms, have undergone meticulous scrutiny in
the pursuit of delineating the demarcation between organic and non-organic leafy vegeta-
bles [15–17]. Regrettably, the resultant findings have not invariably furnished unambiguous
determinations, thereby presenting a formidable challenge in the endeavor to establish
overarching threshold values for categorical differentiation.

As a non-destructive, swift, and efficient technique, spectroscopy has been successfully
applied in plant qualitative and quantitative analysis, suggesting that this technique is a
viable option for authenticating organic leafy vegetables [12,18,19]. It is worth noting that
machine learning has been increasingly utilized across various disciplines for its ability to
enhance predictive performance [20]. Spectroscopy combined with linear discriminant anal-
ysis is applied in the authentication of leafy greens, as LDA has demonstrated satisfactory
classification outcomes [12,16].

Given the extensive range of the VIS-NIR spectrum, it potentially elevates computa-
tional complexity and may influence the outcomes of LDA classification. To tackle this
concern, genetic algorithms are utilized to meticulously select the most informative wave-
lengths from the vast pool of 2101 available wavelengths of the VIS-NIR spectrum [21].
Nonetheless, when the number of selected wavelengths is set limited, GA is easily in-
fluenced by individual wavelengths and may obtain a local solution, and the selected
wavelengths are redundant when the number is set excessively large, which is not what
we wanted [22]. Considering these issues, the number is set to 30 in this study, and then
stability selection, random forest algorithm, and analysis of variance methods are used to
evaluate the importance of each wavelength selected by GA [23,24]. By analyzing the GA-
selected wavelengths, their corresponding importance values, and their specific locations,
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we can identify a subset of suitable bands for classification purposes, thus obviating the
need for utilizing the entire VIS-NIR spectrum. In this study, we present a viable solution
to the issue of cost associated with VIS-NIR spectrometry in leafy vegetables authentication
and achieve rapid, non-destructive, and precise discrimination between various types of
organic and non-organic leafy vegetables. The selected 550–910 nm and 1380–1500 nm
wavelengths used in the classification of the leaf spectra and the selected 750–900 nm and
1700–1820 nm wavelengths used in the classification of the stem spectra achieved accuracies
and f1 scores of over 98%.

2. Materials and Methods
2.1. Samples

Four types of leafy vegetables, water spinach, green amaranth, lettuce, and pakchoi,
were selected for this study. The organic vegetables were purchased from the same vendor,
Nanjing Planck Technology and Trade Company (Nanjing, China), where discarded vegeta-
bles were processed and fermented to be used as fertilizer in the cultivation process of the
organic vegetables. The non-organic vegetables were obtained from different supermarkets
in Nanjing. A sample size of 20 individual vegetables was meticulously chosen for each
specimen to obviate any undue reliance on a singular plant’s experimental reflectance
spectra. The leafy vegetables underwent a rigorous cleansing process with distilled water
to effectually eradicate any surface impurities and were meticulously dried prior to the
commencement of spectral measurements. To forestall the deterioration of the vegetables,
they were judiciously stored in a refrigeration unit at a temperature of 4 ◦C when not
actively involved in the experiment, and the experimental procedures were expeditiously
initiated to mitigate any potential temporal effects.

2.2. Visible and Near-Infrared Reflectance Spectra Measurements

The leaves and stems of leafy vegetables were separated. The reflectance spectra of
these leaves and stems were directly measured by the ASD system (Figure 1) in the lab
without using chemical reagents and other physical pretreatments.
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Figure 1. Experiment platform of the ASD system.

The ASD system mainly includes the ASD FieldSpec-4 Hi-Res NG spectroradiometer
(Analytical Spectral Devices, Longmont, Colorado), the illuminator (Analytical Spectral
Devices), a laptop computer with RS3TM inbuilt software (version 6.3, Analytical Spectral
Devices), a whiteboard, and the fiber optic cable receiver (Analytical Spectral Devices).
The illuminator was positioned at an inclination of 45 degrees from the zenith angle,
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maintaining a distance of 40 cm above the vegetable specimen. The 8◦ field-of-view fiber
optic cable receiver was kept at a distance of 3 cm above the vegetable specimen. The ASD
spectroradiometer was designed to operate under varying temperatures between 0 and
40 ◦C. In order to collect spectral data, the ASD spectroradiometer should be coupled with
light sources and the RS3TM software on a computer.

Before collecting spectra, it was necessary to allow the spectroradiometer to warm
up for a period of time to minimize the impact of the instrument on the measurements.
Furthermore, the reflectance spectrum of the initial background was calibrated using the
whiteboard to ensure that the reflectance was near unity. Only the illuminator provided
illumination during the experiment, and no other light sources were present. The leaf
or stem sample was then placed on the experimental platform, and the reflected light
was captured by the light receiver. The resulting reflectance values for each wavelength
were obtained through processing with the spectroradiometer and the RS3TM software.
For this study, only the reflectance values between 400 nm and 2500 nm were used. A
total of 100 reflectance spectra were acquired for each of the four distinct categories of
leafy vegetables, encompassing both organic and non-organic varieties. These reflectance
spectra were meticulously procured from varying positions within different samples. In
Figure 2, each individual spectrum was obtained by averaging data from five scans of the
respective sample.
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2.3. Spectral Preprocessing

The integrity of our classification models relies significantly on the quality of the data.
To establish robust classification models, rigorous data preprocessing procedures were
executed. The obtained spectra, being susceptible to potential disturbances from scattering
effects, required special attention [25]. To enhance the resilience of our discriminant model,
we employed three critical techniques: multiplicative scattering correction (MSC), standard
normal variate (SNV), and Savitzky–Golay (SG) algorithm. MSC was applied to ameliorate
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scattering artifacts, SNV to mitigate the effects of optical path deviations, and SG to suppress
scattering artifacts, enhance spectral coherence, and reduce diffuse reflection and noise [14].

2.4. Wavelength Selection and Importance Assessment

The VIS-NIR spectrum encompasses a vast range of 2101 wavelengths; however, not
all of them hold significance in the classification process. To enhance the quality of the data,
reduce complexity, and enhance interpretability, a meticulous selection of wavelengths was
conducted. In this study, a genetic algorithm was used to select wavelengths. Stability
selection, random forest, and analysis of variance methods were employed to assess the
importance of the selected wavelengths. These methods were implemented using Python
3.8.13 in the PyCharm software (2021.3.2 community version, JetBrains).

GA is a type of stochastic search algorithm that is based on the principles of genetics
and natural selection [22]. GA has been proven to be effective in producing high-quality
solutions for the wavelength selection problem [12]. This approach was effective in opti-
mizing large state spaces, reducing the initial 2101 variables to a more manageable number
under the maximum number of variables that were deemed to be the most influential and
significant variables in the experiment.

SS is a variable selection method based on subsampling in combination with selection
algorithms [23]. In this experiment, we used the randomized lasso method to subsample the
training data. Then, the coefficients of these unimportant wavelengths were compressed to
zero with the lasso, achieving both accurate parameter estimation and wavelength selection.
We calculated the frequency of each wavelength that was considered significant in the
selections. Then, the importance of each wavelength could be evaluated with its frequency
in the selections.

RF is a robust and adaptable supervised machine learning algorithm that generates
and merges various decision trees to form a decision forest and can be used for classification
and regression tasks [26]. Here, RF is used as a classifier and finally returns measures of
wavelength importance. RF was used to rank the importance of wavelengths in this study.

ANOVA is a statistical technique used to compare the means of two or more groups to
determine if there are significant differences among them [24]. The technique calculates
an F-statistic, which represents the ratio of the variance between groups to the variance
within groups. If the calculated F-value is larger than the critical value, it suggests that
there is a significant difference among the group means. We calculated the F-value of each
wavelength within the organic and non-organic groups; then, it was used to gauge the
importance of each wavelength in the experiment.

2.5. Classifier and Evaluation Indicators

LDA is one of the most popular supervised classification techniques and also a di-
mensionality reduction technique, which is used to find a linear transformation that will
decrease the distance inside the data classes while maximizing the distance between
classes [27]. It can be described by Equation (1), where Sb is the between-class scatter
matrix, Sw is the within-class scatter matrix, w is the projection vector when there are only
two classes, and T means the transpose of the matrix. The value of w is calculated by means
of the generalized Rayleigh quotient xHAx/xHBx, where matrices A and B are Hermitian
matrices, B is a positive-definite matrix, H is the conjugate transpose, and x is a nonzero
vector. We assumed that the spectra data of each class conform to Gaussian distribution.
In this way, after the LDA was used for projection, the maximum likelihood estimation
could be used to calculate the mean and variance of the projection data of each class, and
then the probability density function of the Gaussian distribution of that class could be
obtained. When a new spectrum arrived, we could project it and then bring the projected
spectrum wavelengths into the Gaussian distribution probability density function of each
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class to calculate the probability that belongs to this class. The class corresponding to the
maximum probability is the prediction class.

argmax J(w) =
wTSbw
wTSww

(1)

The dataset was randomly shuffled and divided into a training set and a testing set
in a 7:3 ratio in this study. The classification results of the testing set were evaluated with
sensitivity, specificity, accuracy, and f 1 scores depicted by Equations (2)–(5), respectively.

sensitivity =
TP

TP + FN
(2)

speci f icity =
TN

FP + TN
(3)

accuracy =
TP + TN

TP + FP + FN + TN
(4)

f 1 =
2 × TP

2 × TP + FP + FN
(5)

As Table 1 shows, a true positive (TP) occurs when a positive sample is correctly
classified, while a true negative (TN) occurs when a negative sample is correctly classified.
On the other hand, a false positive (FP) is when a negative sample is incorrectly classified,
and a false negative (FN) is when a positive sample is incorrectly classified.

Table 1. Confusion matrix of binary classification.

Predicted Label

True Label Positive Negative

Positive True Positive
(TP)

False Negative
(FN)

Negative False Positive
(FP)

True Negative
(TN)

2.6. Reference Methods

To evaluate the efficacy of wavelength selection techniques in the classification of the
spectra of the leafy vegetables, several approaches utilizing the entire VIS-NIR spectrum
were employed as points of reference. It is important to note that the methods employing the
entire spectral range did not directly use the raw, unprocessed data for classification. Rather,
it involved dimensionality reduction techniques, which effectively mitigate the effects
stemming from the high dimensionality, spectral overlap, and nonlinearity of the spectral
data. Dimensionality reduction techniques, such as principal component analysis (PCA)
and partial least squares–discriminant analysis (PLS-DA), are commonly employed [28].
Unlike PCA, PLS-DA is a supervised method that effectively reduces the dimensionality of
the data while considering class labels, rendering it suitable for classification tasks. During
the experiment, we employed PCA-LDA, PCA-SVM (support vector machine), and PLS-DA
methods, all of which utilized the complete VIS-NIR spectrum [29,30].

3. Results
3.1. Spectrum of the Leafy Vegetables

Figure 3 illustrates the average spectral profiles of these four varieties of vegetables.
Organic leafy vegetables, it appears, exhibit spectral distinctions that are not markedly
dissimilar from their non-organic counterparts. However, upon closer scrutiny, we discern
that the reflectance of organic vegetables is inferior to that of their non-organic counterparts.
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In Figure 2, the organic and non-organic spectral characteristics of the various vegetables
also manifest congruent outcomes.
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As depicted in Figure 4, the spectral profiles of the leaf and stem exhibit a similar
shape owing to the fact that the samples all belong to the vegetative category and share
the same absorption peaks. In the visible range (400–780 nm), light absorption is primarily
determined by the presence of leaf pigments; chlorophyll pigments a and b selectively ab-
sorb wavelengths of blue (400–500 nm) and red (600–700 nm) for photosynthesis, resulting
in a reduced absorption of green wavelengths (500–600 nm), thereby imparting green col-
oration to the vegetables [31]. In the NIR range (780–2500 nm), light absorption is primarily
affected by the structural characteristics and contents of the leafy vegetables. The bulk of
the light energy is transmitted and reflected in the wavelength range of 780–1400 nm, and
it is mainly governed by the absorption of vegetables’ water content in the wavelength
range of 1400–2500 nm. Absorption bands near 960 nm, 1100 nm, 1400 nm, and 1900 nm
are influenced by the molecular structure in the vegetables’ contents [32]. These are over-
tone or combination bands of the fundamental absorption bands due to the vibrational
and rotational transitions, and they encompass the “bond vibration” and combinations of
overtones of the fundamental C–H, O–H, and N–H bonds [33].
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It is evident that the shape of the reflection spectrum of leafy vegetables is inherently
linked to two pivotal elements: water content and pigmentation. Moreover, an array
of secondary metabolites, encompassing polyphenols, alkaloids, glucosinolates, volatile
constituents, and vitamin C, may also exert influence on shaping the reflection spectrum of
leafy vegetables [2].

3.2. Spectral Pretreatment

In this study, the spectral preprocessing methods SG, SNV, and MSC were applied to
the spectra. The SG preprocessing employed a window size of 21 and a polynomial order
of 3. The resultant preprocessed spectra served as inputs to construct the LDA classification
model. The preprocessing method that yielded the highest classification accuracy was
selected for this experiment.

Table 2 showcases the LDA classification accuracies of the spectral data for both the
leaf and stem of the leafy vegetables after undergoing various preprocessing methods.
It is evident that the classification accuracy improved significantly following spectral
preprocessing, surpassing the performance of the unprocessed spectra. Notably, the SG
preprocessing exhibited superior results, achieving higher accuracy levels. These outcomes
underscore the efficacy of the SG method, thus justifying its application in this research
endeavor.

Table 2. Classification accuracy of the LDA model in the test set using different spectral pretreatment
methods (%).

Spectra Raw SG SNV MSC SG + SNV SG + MSC

Leaf 87.7 96.4 93.1 92.5 92.8 94.5
Stem 88.1 96.9 94.8 94.6 90.1 91.1

Abbreviations: LDA, linear discriminant analysis; SG, Savitzky–Golay; SNV, standard normal variation; MSC,
multiple scattering correction.

3.3. Selected Wavelengths and Classification Results
3.3.1. Wavelengths Selection

Through the implementation of the GA, the excessive number of wavelengths, orig-
inally comprising 2101, was effectively diminished to a more manageable and pertinent
subset. The maximum number of GA-selected wavelengths was set to 30 in this study.
Subsequently, SS, RF, and ANOVA were employed to assess the significance of each wave-
length selected by the GA. This evaluation identified the wavelengths exhibiting elevated
importance values, signifying their prominence in the classification task. These wave-
lengths, distinguished by their high importance, emerged as the optimal candidates for
further analysis and utilization.

Table 3 presents the wavelengths selected by the GA in the leaf spectra and stem spectra.
There were 28 and 25 selected wavelengths in the leaf spectra and stem spectra, respectively.

Table 3. Wavelengths selected by using genetic algorithm.

Spectra Selected Wavelengths (nm)

Leaf
500, 577, 642, 655, 662, 687, 689, 691, 692, 741, 813, 815,

817, 821, 825, 832, 845, 1400, 1406, 1416, 1434, 1728, 2016,
2041, 2262, 2266, 2277, 2479

Stem
723, 794, 810, 811, 813, 824, 827, 834, 842, 1687, 1716, 1717,
1726, 1750, 1756, 1757, 1776, 1807, 1812, 1819, 1904, 1969,

1990, 2390, 2423

Figure 5 shows the important values of the GA-selected wavelengths, evaluated by
using SS, RF, and ANOVA, respectively. The GA-selected wavelengths are displayed in
descending order of importance, and the important values are scaled between 0 and 1.
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In Figure 5a, we used the randomized lasso method to subsample the training data
with a 0.75 ratio 200 times. Then, the coefficients of these unimportant wavelengths
were compressed to zero by the lasso, achieving both accurate parameter estimation and
wavelength selection. Finally, we calculated the frequency of each wavelength that was
considered significant in the 200 selections. As a result, the importance of each GA-selected
wavelength could be evaluated with its frequency.

For Figure 5b, the order of the wavelengths selected by the GA was randomly shuffled
and sent to the RF classifier to evaluate their importance, which was repeated 20 times. In
the end, the importance of each wavelength was calculated as the mean of the 20 values.

For Figure 5c, we calculated the F-value of each wavelength within the organic and non-
organic groups; then, it was used to gauge the importance of each GA-selected wavelength
in the experiment.

3.3.2. Classification Results

In order to assess the reliability of the SS, RF, and ANOVA methodologies, wavelengths
were ranked in descending order of importance. The foremost 10 pivotal wavelengths and
the trailing 10 of significance were meticulously selected as inputs for the LDA classifier,
respectively. Subsequently, a comparative analysis of their classification performance
was conducted.

Tables 4 and 5, respectively, present the classification outcomes of the testing set of the
leaf spectra and stem spectra. The training set was composed of 70% of the spectra, while
the remaining 30% constituted the test set. To ensure robustness, the classification process
was repeated 20 times, with the dataset shuffled prior to each iteration. The reported results
represent the average performance across these 20 iterations.

Table 4. Classification results of the testing set of the leaf spectra by using selected wavelengths.

Method Wavelengths Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

F1
(%)

SS First 10 90.5 93.8 92.1 92.1
Last 10 82.0 86.9 84.3 84.2

RF First 10 84.2 85.7 84.9 84.8
Last 10 81.4 86.5 84.0 83.6

ANOVA First 10 83.5 77.6 80.5 81.0
Last 10 80.1 82.5 81.1 81.1

The wavelengths were sorted in descending order of importance. Abbreviations: SS, stability selection; RF,
random forest; ANOVA, analysis of variance.
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Table 5. Classification results of the testing set of the stem spectra by using selected wavelengths.

Method Wavelengths Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

F1
(%)

SS First 10 87.6 94.6 91.1 90.6
Last 10 77.9 91.3 84.7 83.3

RF First 10 84.7 91.6 88.0 87.7
Last 10 77.0 87.1 82.2 80.8

ANOVA First 10 84.6 90.9 87.7 87.3
Last 10 76.0 85.4 80.4 79.8

The wavelengths were sorted in descending order of importance. Abbreviations: SS, stability selection; RF,
random forest; ANOVA, analysis of variance.

The effectiveness of the SS, RF, and ANOVA methods in wavelength evaluation was
evident. It was observed that utilizing the first 10 important wavelengths for classification
yielded superior outcomes compared to employing the last 10 important wavelengths.
Nevertheless, this does not imply that the latter wavelengths were devoid of utility; rather,
they carried a relatively lower degree of discerning information for classification purposes.
Furthermore, the classification results were subject to the interplay of various factors, in-
cluding the number of wavelengths and their specific combinations. Notably, alternative
combinations of wavelengths, encompassing both the initial and final important wave-
lengths, and an ample inclusion of the latter important wavelengths in the classification
process had the potential to yield improved results.

The SS method emerged as the more reliable approach for evaluating the importance of
wavelengths. Firstly, when utilizing the first 10 important wavelengths identified through
SS, the classification accuracy and f1 score exceeded 90%, surpassing the performance
achieved using RF and ANOVA. Secondly, a notable discrepancy in classification accu-
racy and f1 score was observed between the first 10 important wavelengths and the last
10 important wavelengths in SS, amounting to a 7% difference. Consequently, GA com-
bined with SS emerged as a trustworthy and optimal method for wavelength selection.
By leveraging this method, the classification process was optimized through the selec-
tion of the most pertinent and crucial variables, leading to a significant reduction in the
number of variables and a subsequent decrease in computational complexity. Moreover, it
allowed for the flexibility of choosing an appropriate number of variables based on specific
requirements and practical considerations.

No discernible differentiation was observed between the utilization of vegetable
leaves and stems for the purpose of identifying the four organic leafy vegetables. Both
approaches proved effective in distinguishing the four types of organic vegetables from
their non-organic counterparts. Remarkably, employing a mere 10 wavelengths achieved a
classification accuracy of 92.1% in the leaf spectra and 91.1% in the stem spectra. Further-
more, it is worth noting that the classification accuracy can possibly be further enhanced by
increasing the number of important wavelengths.

3.4. Application Based on the Selected Wavelengths

The VIS-NIR spectrum encompasses a vast range of 2101 wavelengths, rendering the
equipment required to capture the entire spectrum prohibitively expensive for widespread
utilization in authenticating organic leafy vegetables within the market. While employ-
ing the most pivotal wavelengths in LDA classification yields remarkable results, it is
imperative to recognize that the adjacent wavelengths should not be disregarded as incon-
sequential. Consequently, by meticulously considering the selected wavelengths and their
associated importance values and locations, as Figure 6 shows, we can strategically curtail
the cost of the spectrometer by discerningly identifying and selecting a judicious subset of
bands from the full VIS-NIR spectrum. In doing so, we strike an optimal balance between
cost-effectiveness and the retention of essential spectral information necessary for accurate
authentication and classification.
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Table 6 and Figure 7 present the LDA classification outcomes of the testing set obtained
using these selected bands in the leaf spectra and stem spectra. Notably, their classifica-
tion accuracies and f1 scores surpass those achieved by employing a number of selected
wavelengths as described in Section 3.3.2.

Table 6. Classification results of the testing set by using selected bands in visible and near-infrared
spectrum (550–910 nm and 1380–1500 nm for the leaf spectra, 750–900 nm and 1700–1820 nm for the
stem spectra).

Spectra Sensitivity (%) Specificity (%) Accuracy (%) F1 (%)

Leaf 98.3 98.4 98.3 98.3
Stem 97.1 100 98.3 98.5
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The excellent classification results unequivocally validate the practicality and depend-
ability of employing the number, significance, and placement of the chosen wavelengths
to ascertain the suitable VIS-NIR bands. It also substantiates the viability and efficacy of
utilizing a discerning selection of suitable VIS-NIR bands in combination with LDA for
accurate classification of organic and non-organic leafy vegetable spectra.

4. Discussion

In this endeavor, we enhance the discernment of organic from non-organic leafy veg-
etables by judiciously selecting wavelengths within the visible and near-infrared spectrum.
This judicious wavelength selection augments the classification model’s accuracy, reduces
computational intricacies, and imbues the resultant classifications with heightened inter-
pretability to a considerable degree. As delineated in Table 7, it becomes evident that
the performance of the GA-LDA approach surpasses that of other methods reliant upon
the entire VIS-NIR spectrum when it comes to classifying the leaf and stem spectra of
these leafy vegetables. For the GA-LDA approach, when employing the first 10 important
wavelengths evaluated by SS, it achieves classification accuracies of 92.1% and 91.1% for
the leaf and stem spectra of the vegetables, respectively; when utilizing the selected spectral
bands for classification (550–910 nm and 1380–1500 nm for the leaf spectra, 750–900 nm
and 1700–1820 nm for the stem spectra), the accuracies for the leaf and stem spectra of the
vegetables notably rise to 98.3% each. There are few studies on the identification of organic
leafy vegetables. NIR combined with LDA was used to classify organic and traditional
cultivation as well as hydroponic lettuce, which obtained classification accuracies of 77.3%
and 68.2% when using a successive projections algorithm (SPA)-LDA and stepwise formu-
lation (SW)-LDA methods, respectively [12]. Birse et al. used ambient mass spectrometry
and inductively coupled plasma mass spectrometry technology to distinguish between
organic and non-organic leeks, achieving an accuracy ranging from 92.5% to 98.1% [11].
Araújo et al. used a combination of multiple elements and machine learning methods to
distinguish between organic and non-organic lettuce, achieving a classification accuracy
of 92% [15]. Compared to the aforementioned studies, this research has also achieved
excellent classification results. When using selected spectral bands for classification, it can
achieve an accuracy of 98%. Furthermore, this study encompasses four different categories
of leafy vegetables, not just one.

Analyzing the wavelength distribution selected by the GA in Figure 6, it becomes
evident that the classification outcomes in the leaf spectra primarily relied upon wave-
lengths proximate to 700 nm, 820 nm, and 1400 nm due to their abundance. Furthermore,
the 10 most influential wavelengths assessed with SS were predominantly situated around
700 nm, 820 nm, 1400 nm, 2000 nm, and 2500 nm. The classification results in the stem
spectra were predominantly affected by wavelengths in the vicinity of 800 nm, 1780 nm,
and 2400 nm. By combining these findings with Figure 4, we can infer that the authen-
tication of the four organic leafy vegetables, based on their leaves, may be significantly
influenced by factors such as chlorophyll a, b (around 700 nm), water molecules, ROH,
ArOH, and substances containing CONH2, CONHR, CH3, CH2, or CH groups (around
1400 nm). However, to the best of our knowledge, the selected wavelengths in the stem
spectra do not provide conclusive insights into the substances influencing the classification
results for the stems of the four leafy vegetables. Notably, the wavelength near 800 nm
exhibits significance not only in the identification of the leaves but also in the stems of these
organic leafy vegetables.

Leafy vegetables contain varying levels of different phytochemicals and compounds,
such as glucosinolates, vitamin C, polyphenols, and carotenoids [1,2]. The content of these
substances affects the VIS-NIR spectral reflectance of the leafy vegetables. Additionally, the
physical properties of the vegetables, such as texture, color, and size, also influence their
spectral reflectance. All of these factors pose challenges for the spectral classification of
organic and non-organic leafy vegetables. In Figure 3, the VIS-NIR spectral reflectances
of the organic leafy vegetables are lower than those of the non-organic leafy vegetables,
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which may be attributed to their different cultivation practices. In organic cultivation,
organic fertilizers are used, potentially leading to increased levels of phytochemicals
and compounds within the vegetables; another possible reason could be that vegetables
exposed to stress-inducing environments caused by pests may enhance the production
of natural defense compounds from secondary metabolism, thus increasing the levels
of phytochemicals and compounds within the vegetables. Therefore, the increase in the
content of phytochemicals and compounds within organic leafy vegetables results in lower
VIS-NIR spectral reflectance compared to non-organic leafy vegetables.

Table 7. Classification results of the testing set of the leaf and stem spectra by using different methods.

Spectra Method Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

F1
(%)

Leaf PCA-LDA
with 10 principal variables 81.4 77.1 79.2 79.8

PCA-SVM
with 10 principal variables 86.9 77.7 82.3 83.1

PLS-DA
with 10 principal variables 92.1 91.1 91.6 91.7

GA-LDA
with first 10 important wavelengths 90.5 93.8 92.1 92.1

GA-LDA
with selected bands 98.3 98.4 98.3 98.3

Stem PCA-LDA
with 10 principal variables 85.3 86.9 86.1 85.8

PCA-SVM
with 10 principal variables 87.9 86.9 87.4 87.4

PLS-DA
with 10 principal variables 87.6 92.8 90.3 89.9

GA-LDA
with first 10 important wavelengths 87.6 94.6 91.1 90.6

GA-LDA
with selected bands 97.1 100 98.3 98.5

Abbreviations: PCA, principal component analysis; LDA, linear discriminant analysis; SVM, support vector
machine; PLS-DA, partial least squares–discriminant analysis; GA, genetic algorithm. For the GA-LDA method,
the important value of the GA-selected wavelengths was evaluated with SS (stability selection).

The classification of organic and non-organic leafy vegetables is influenced by nu-
merous factors. Variations in organic vegetable certification standards and differences in
growing conditions across different locations and time periods can also pose challenges to
the identification of organic leafy vegetables. Subsequent research will be conducted on the
spectral classification of organic and non-organic leafy vegetables by incorporating spectral
data from a wider range of vegetables sourced from different locations and time periods.

5. Conclusions

The obtained results clearly demonstrate the effectiveness of using VIS-NIR spec-
troscopy in conjunction with wavelength selection methods and linear discriminant analy-
sis to distinguish between the four types of organic leafy vegetables and their non-organic
counterparts. Utilizing either the leaves or stems of these leafy vegetables can achieve
excellent results, providing a comprehensive approach for authentication. The principal
research conclusions are as follows:

(1) The primary accomplishment lies in the identification of key spectral bands for the
classification of organic leafy vegetables. We analyzed the distribution of wavelengths
selected by a genetic algorithm, combined with the distribution of the ten most
important wavelengths, as well as the number of the selected wavelengths distributed
in a certain location. Spectral classification bands for the leaves and stems were defined
in the ranges of 550–910 nm and 1380–1500 nm and 750–900 nm and 1700–1820 nm,
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respectively. Utilizing these selected bands for classification, we achieved an accuracy
of 98.3% for both leaf and stem spectral classifications. This analysis also revealed that
specific wavelengths, such as those around 700 nm, 820 nm, and 1400 nm, significantly
impact leaf spectral classification, while wavelengths near 800 nm, 1780 nm, and
2400 nm play a substantial role in stem spectral classification. The identification of
key spectral bands is of utmost significance as it allows for the effective identification
of organic leafy vegetables instead of using the full spectral bands, thereby reducing
the costs associated with visible and near-infrared spectrometers.

(2) Our approach not only achieved high classification accuracy but also proved to be as
efficient as the methods utilizing the entire visible and near-infrared spectrum, such
as principal component analysis–linear discriminant analysis, principal component
analysis–support vector machine, and partial least squares–discriminant analysis.
Furthermore, it provides interpretability by revealing the wavelengths significantly
influencing vegetable spectral classification.

(3) Additionally, we found that using spectroscopic pre-processing methods, such as the
Savitzky–Golay method, enhances the accuracy of the linear discriminant analysis
model for classification. When evaluating the importance of wavelengths selected by
the genetic algorithm using stability selection, random forest, and analysis of variance
methods, we observed that the use of the first ten important wavelengths yielded
superior classification results compared to the latter ten, showing the effectiveness
of the evaluating methods. Notably, the stability selection method outperformed the
other methods in terms of classification results.

This work provides an economical, rapid, and non-destructive method for identifying
organic leafy vegetables. However, factors such as the origin of vegetables, harvest time,
and differences between organic and traditional cultivation conditions can impact the
identification of organic leafy vegetables. Subsequent research should take these factors
into account, collect samples from as many different locations and harvest periods as
possible to enhance the robustness of classification models, and optimize wavelength
selection algorithms. This technology can also be applied to the identification of other
organic leafy vegetables.
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