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Abstract: Cuffless blood pressure (BP) monitoring is crucial for patients with cardiovascular disease
and hypertension. However, conventional BP monitors provide only single-point estimates without
confidence intervals. Therefore, the statistical variability in the estimates is indistinguishable from
the intrinsic variability caused by physiological processes. This study introduced a novel method
for improving the reliability of BP and confidence intervals (CIs) estimations using a hybrid feature
selection and decision method based on a Gaussian process. F-test and robust neighbor component
analysis were applied as feature selection methods for obtaining a set of highly weighted features to
estimate accurate BP and CIs. Akaike’s information criterion algorithm was used to select the best
feature subset. The performance of the proposed algorithm was confirmed through experiments.
Comparisons with conventional algorithms indicated that the proposed algorithm provided the
most accurate BP and CIs estimates. To the best of the authors’ knowledge, the proposed method is
currently the only one that provides highly reliable BP and CIs estimates. Therefore, the proposed
algorithm may be robust for concurrently estimating BP and CIs.

Keywords: cuffless blood pressure estimation; confidence interval; Gaussian processing; hybrid
feature selection and decision; F-test; Akaike’s information criterion; robust neighbor component
analysis; photoplethysmography

1. Introduction

By 2019, 523 million people have had a cardiovascular disease, and 18.6 million
related deaths have been reported [1]. High blood pressure is a direct cause of death from
cardiovascular disease (CVD) [2,3]. Therefore, accurate blood pressure (BP) measurements
are necessary for diagnosing hypertension. BP monitoring has become vital for people
with CVD, particularly elderly people who are living alone. Rapid changes in BP in these
patients can indicate an underlying severe illness. Furthermore, BP varies owing to intrinsic
physiological changes for various reasons, such as food intake, environmental temperature,
exercise, disease, and stress. Thus, the precision and uncertainty of BP measurements
induced by physiological parameters [4] have been a constant concern for clinicians and
practitioners [5–7]. However, using BP monitoring devices for estimating BP uncertainty
is currently impossible. This necessitates a standard protocol for confidence intervals
(CIs), representing the uncertainty of BP monitors [5,8,9]. Most BP monitors offer only
single-point estimates without CIs [5,8,9]. Therefore, patients, nurses, and physicians may
be unable to differentiate intrinsic variations owing to the estimate’s statistical variation
and physiological processes [7–9].
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Machine learning (ML) algorithms are commonly used for BP estimation [5,9–12].
ML algorithms, including multiple linear regression (MLR) [13,14], artificial neural net-
works (ANNs) [14–16], and support vector machine (SVM) [17–19] have been utilized for
estimating BP [14,20–22]. Wang et al. [15] introduced a BP estimation method using photo-
plethysmography (PPG) signals using novel ANNs. Nandi et al. [23] proposed a new long
short-term memory (LSTM) and convolutional neural network using cuffless BP estimation
based on PPG and electrocardiogram (ECG) signals. Multichannel PPG was introduced
using an SVM-ensemble-based continuous BP estimation in [19]. Qiu et al. [14] proposed a
new method for estimating BP using a window-function-based piecewise neural network.
This study evaluated a random-forest-based regression network, three-layer ANN-based
regression network, and SVM model using PPG signals. Many studies on PPG-signal-based
cuffless BP estimation have been conducted [13,15,21–23]. By contrast, studies on CIs
estimation are limited. However, there have been studies on the uncertainty of estimating a
few BP data based on conventional oscilloscope BP measurements [5–9]. The two most used
methods for cuffless BP estimation were obtained using the extracted features and pulse
transit time (PTT) from PPG signal pulses [14,24–26]. The feature extraction method using
PTT effectively estimates BP because PTT is closely correlated with BP [27]. According
to this principle, arterial pressure can be determined by measuring pulse wave velocity
(PWV) at pulse wave speed. This is because changes in PTT correspond to changes in PWV
at a fixed distance and indicates a change in BP [26,28–30].

Accordingly, this study proposed a new methodology for simultaneously estimating
BP and CIs using cuffless BP measurement through a hybrid feature selection and decision
based on the Gaussian process (GP). This study aimed to estimate BP and CIs, representing
the uncertainty of cuffless BP estimation. Moreover, the GP can directly generate uncertainty
estimates [31–33], such as providing a distribution of estimates rather than a single value.
Another advantage of GP algorithms is that, similar to other kernel methods, they can
be optimized precisely for given hyperparameter values [34]. Therefore, they perform
well owing to the well-optimized parameter values, particularly with limited datasets [34].
However, the CIs automatically calculated by the GP algorithm are too wide to effectively
represent the uncertainty. Therefore, CIs are estimated by applying the bootstrap method [8]
using the results of the GP algorithm [31] to represent the uncertainty in the cuffless
BP estimation.

The proposed hybrid feature selection and decision based on the GP algorithm can pro-
vide a means for distinguishing between estimation errors (statistical variance of estimates)
and changes in estimates owing to physiological variability [5,7]. This study obtained CIs
using a bootstrap algorithm [10,35] to determine the uncertainty (physiological variability)
in cuffless BP estimation. Specifying CIs for cuffless measurements is beneficial because CIs
measurement are necessary for estimating BP. If the BP measurement’s CIs are too broad,
healthcare workers may misjudge a patient’s health status. Therefore, establishing CIs
based on accurate BP estimates allows for more accurate and faster meaningful determi-
nations of BP measurement CIs [9]. However, studies on determining the uncertainty of
physiological measurements [4] using oscillometric BP signals [5–8] are limited. Therefore,
a new method for evaluating and representing the uncertainty in BP measurement should
be developed by providing an estimated range for cuffless BP measurements. Consequently,
repeatable, irregular, and broad CIs based on aggregated statistical data can provide pa-
tients, clinicians, and families a warning system for BPs outside the normal range [5,9,10].
Another problem in improving the performance of ML algorithms is the choice of features
to replace the original ones and using them as input data. Feature selection is an essential
part of the learning algorithm’s performance; it selects a subset of features with higher
weights for the response variable and eliminates duplicate features [36,37]. Thus, the
proposed methodology uses a hybrid F-test [38] and robust neighbor component analysis
(RNCA) [39] to select weighted features from the original features. The best feature set is
selected using Akaike’s information criterion (AIC) [40] based on the maximum likelihood
from the GP algorithm [31]. First, the F-test is used to acquire weighted features to compute
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a feature’s within- and between-group variance ratios [38]. Second, the weighted features
are obtained using RNCA [39], which selects the high-weighted features from the original
features. The importance of the BP estimation performance can be corrected by repeating
the estimation experiment several times. Therefore, this study proposes an adaptive AIC of
automatically calibrated likelihoods based on the GP algorithm to determine the best fea-
ture subset as a model selection problem, yielding an excellent performance with negligible
computational overhead after calibration.

This study provides uncertainty for cuffless BP measurements and introduces a
method for reducing the error of BP estimates based on PPG and ECG signals. As previously
mentioned, the proposed study estimates the exact BPs and CIs concurrently, representing
the uncertainty of cuffless BP estimation. To the best of the authors’ knowledge, this study
is the first to propose a GP-based feature selection and decision process (GFSDP) algorithm
to simultaneously estimate cuffless BPs and CIs. Although some CI studies on conventional
oscillometric BP estimation methods have been performed [5–8], studies on CI estimation
in cuffless BP measurements are limited, as summarized in Table 1. The contributions of
the study to BP and CI estimations are as follows:

• CIs are estimated using a bootstrap based on the GP algorithm to express uncertainty
in cuffless BP estimation.

• The proposed methodology uses a hybrid F-test and RNCA to select the weighted
features among the original features.

• An adaptive AIC of automatically calibrated likelihoods is proposed based on the GP
algorithm to determine the best feature subset as a model selection problem.

Table 1. Summary of the BP estimation literature where BPs denote systolic and diastolic blood
pressures, CIs are confidence intervals to represent an uncertainty [4].

Explanation Measurement Goal

Combining bootstrap with Gaussian mixture Oscillometric BPs, CIs [5]
Accuracy and “range of uncertainty” of oscillometric blood pressure monitors Oscillometric BPs, CIs [6]
BP measurement based on physiological arterial pressure variability Oscillometric BPs, CIs [7]
Estimated confidence interval from single pressure measurement Oscillometric BPs, CIs [9]
Uncertainty in blood pressure measurement Oscillometric BPs, CIs [10]
Ensemble methodology for confidence interval in oscillometric BP measurements Oscillometric BPs, CIs [11]
Confidence interval estimation for oscillometric BP measurements using bootstrap approaches Oscillometric BPs, CIs [8]
Uncertainty using the auscultatory method Auscultatory BPs, CIs [41]
Improving cuffless continuous BP Estimation with linear regression analysis PPG, ECG BPs [13]
Long short-term memory networks with transfer learning approach PPG BPs [12]
A novel neural network model for BP estimation using photoplethysmography PPG BPs [15]
A neural-network-based method for continuous BP estimation from a PPG Signal PPG BPs [16]
Joint regression network for cuffless BP estimation PPG BPs [14]
BP estimation from ECG using machine learning ECG BPs [20]
Machine learning with feature extraction for BP estimation using PPG PPG BPs [21]
A transfer learning for personalized BP estimation using PPG PPG BPs [22]
A long short-term memory and convolutional neural network using cuffless BP estimation PPG, ECG BPs [23]
Multichannel-PPG-based SVM for continuous BP estimation PPG BPs [19]
Cuffless BP monitoring system based on pulse arrival time PPG, ECG BPs [24]
Real-time cuffless continuous BP estimation using deep learning PPG, ECG BPs [25]
ECG and PPG features for cuffless blood pressure estimation using machine learning, PPG, ECG BPs [30]
Cuffless high-accuracy calibration-free BP estimation using pulse transit time PPG, ECG BPs [28]
Cuffless continuous BP estimation from pulse morphology of photoplethysmograms PPG, ECG BPs [27]

2. Methods

Figure 1 shows the block diagram of the GFSDP algorithm. The first stage was
obtained using PPG and ECG signals, as shown in Figure 1a. At this stage, a public dataset
was acquired from the University of California Irvine (UCI) ML repository center [28].
Outliers were removed in the preprocessing stage. Valuable features were extracted after
preprocessing as they are essential for accurate BP and CI estimations from ECG and
PPG signals, as shown in Figure 1c. Subsequently, the hybrid F-test [38] and RNCA [39]
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algorithms were used to select weighted features from the original features, as shown in
Figure 1d. Thereafter, the adaptive AIC determined the best feature subset as a model
selection problem using likelihoods based on the GP algorithm, as shown in Figure 1e.
Finally, the best feature subset was used as the input feature for the GP algorithm.

Gaussian process 

(GP) model

(a)

PPG and ECG 

Signals
Preprocessing

Feature Extraction

Feature Normalization

Features Separation to 

train
F1 F2 … F25

Features Selection 
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using F-test 

W1 W2 … W13

Maximum 

Likelihood

Features Separation to 
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Hybrid Features 

Decision using AIC
W1 W2 … W16

BPs and CIs 

Estimations
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(b)
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(f) (g)

(h)

(i)

(j)

Figure 1. Block diagram of the proposed method using a GP-based feature selection and decision
process (GFSDP) algorithm. (a–j) stand for process steps.

2.1. Data Set

The public dataset was collected from the UCI ML repository center [28], extracted
from multiple-parameter intelligent monitoring in intensive care (MIMIC)-II data [28,42].
The database comprised ECG, finger PPG, and arterial blood pressure (ABP) signals from
3000 records at 125 Hz. The reference systolic blood pressure (SBP) and diastolic blood
pressure (DBP) were calculated from the ABP signals. The feature set was obtained by
combining PPG with ECG signal waveforms. Data from specific subjects with very high
and very low BPs were removed according to the following conditions: (SBP ≥ 180, SBP
≤ 80, DBP ≥ 130, and DBP ≤ 50). Only the first 20 s of the record were used because each
record in the database ranged from 2 to 530 s.

2.2. Preprocessing

Outliers were eliminated using signal processing to extract useful features from the
PPG and ECG signals. First, NaNs were eliminated across all signals to preserve the
alignment for each subject. PPG signals were normalized to different values for each subject
using the min-max method [43]. The ECG and ABP signals were not normalized to extract
only time-domain features, and the preservation of the original ABP units (mmHg) was
required for estimating the SBP and DBP. The effective features were extracted from the
PPG and ECG wave signals. A Kaiser window with a 35 Hz cutoff frequency and 3 dB
signal bandwidth was used to eliminate high-frequency noise. Subsequently, low-frequency
noise was eliminated using a Kaiser window with a 0.0665 Hz cutoff frequency and 3 dB
bandwidth. Thereafter, ECG, PPG, and ABP signals were prepared into 20 s segments.
The segmented signals with minimum and maximum values above or below a specific
threshold were discarded. Finally, each set of 20 s window of denoised ECG, PPG, and ABP
signals was segmented into smaller segments containing fewer cardiac cycles, providing
an input for the feature extraction. After preprocessing, 1725 records were obtained.
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3. Feature Selection and Decision
3.1. Review of Feature Extraction

Extracting valuable features after preprocessing is necessary for accurate BP and CI
estimations using PPG with ECG signals [13,23,24,28]. Therefore, the time and frequency
domains of the ECG and PPG signals were analyzed. However, this study considered that
the frequency information was concentrated in the low-frequency band below 1.5 Hz; thus,
valuable features could not be extracted in the frequency domain. Therefore, the features
were extracted using the pulse morphology of the PPG signal and time between the ECG and
PPG signals on the time axis, as shown in Figure 2. First, the PTT was obtained, which is
the time interval between the arrival of blood flowing distally and the opening of the aortic
valve [14,28,30].
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Figure 2. Feature extraction from the PPG with ECG signal, where (a) is an ECG signal example,
(b) denotes a PPG signal example, and (c) is a target signal (ABP) example.

The pulse arrival time (PAT) denotes the time interval between the R peak of the ECG
signal and PPG rise points, and both PAT and PTT are essential features for estimating BP
values [14,24,25]. Another essential feature is the PPG’s pulse intensity ratio, represented
to be inversely proportional to the diastolic trough [14]. The waveform associated with
the heart rate cycle can be observed through the PPG signal. Thus, the PPG signal waves
were defined as pulses, each corresponding to a cardiac cycle, with the rising edge as the
systolic time (ST) and falling edge as the diastolic time (DT) [14]. In addition, the area in the
pulse corresponding to the ST was used as the systolic area (Sa), and the area in the pulse
corresponding to the DT was used as the diastolic area (Da) [24]. As shown in Figure 2,
each pulse waveform was divided into these two areas. Therefore, the features of each pulse
were extracted, including Sa, Da, ST, DT, and cycle duration, to extract features that effectively
estimate BPs and CIs. Figure 3 shows the 1st and 2nd derivatives of the PPGs. These results
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are summarized in Tables 2 and 3. The effectiveness of the final feature set was validated and
evaluated using the ANN, MLR, SVM, LSTM, GP, and proposed GFSDP algorithms.
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Figure 3. Feature extraction from the 1st and 2nd derivative of PPG waveforms, where (a) is a
PPG signal example, (b) denotes the 1st derivative of the PPG wave signal, and (c) denotes the 2nd
derivative of the PPG wave signal.

Table 2. Summary of the features, part I.

Features Explanation Ref.

1: Systolic time (ST) Ascending time from the trough of PPG to the systolic peak [14,26]
2: Diastolic time (DT) Descending time from the PPG’s systolic peak to the next PPG

morphology diastolic trough [14,26]
3: Pulse intensity ratio (PIR) Ratio of the intensity of the PPG’s systolic peak

and diastolic trough [14,26]
4: Heart rate (HR) The inverse value of the duration between consecutive ECG’s R peaks [14,26,28]
5: Pulse arrival time (PAT1) The time between the R peak of ECG and the systolic peak of PPG [26,28]
6: PAT(3) The time between R peak of ECG and diastolic trough [26,28]
7: PAT(2) The time between the R peak of ECG and

maximum slope point (1st derivative peak value) [26,28]
8: Large artery stiffness index (LASI) The inverse of the period from the PPG’s systolic peak to

the inflection point closest to the diastolic peak [26,28]
9: Augmentation index (AI) Measure of the pressure waves reflection on arteries and

it is computed through the ratio of the PPG pulse peak intensity and
the intensity of the inflection point closer to the diastolic peak [26,28]
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Table 3. Summary of the features, part II, where pm denotes the area under the pulse divided by
the pulse duration, pd is the minimum intensity of the PPG signal, and ps denotes the maximum
intensity of the PPG signal.

Features Explanation Ref.

10: S1 Area under the PPG pulse curve from the diastolic trough to
the point of max slope [26,28]

11: S2 From the point of max slope to the systolic peak [26,28]
12: S3 From the systolic peak to the inflection point closest to the diastolic peak
13: S4 From the inflection point to next pulse’s diastolic trough [28]
14: Inflection point area ratio (IPAR) Ratio of S4/(S1+S2+S3) [26,28]
15: PPGk (pm − pd)/(ps − pd) [26]
16: dPPG height (H) PPG’s 1st derivative characteristics [14,28]
17: dPPG width (W) PPG’s 1st derivative characteristics [14,26]
18: ddPPG peak height (PH) PPG’s 2nd derivative characteristics [14,26]
19: ddPPG trough height (TH) PPG’s 2nd derivative characteristics [14,26]
20: ddPPG width (W) PPG’s 2nd derivative characteristics [14,26]
21: ddPPG height (H) PPG’s 2nd derivative characteristics [14,26]
22: MXAP The pulse’s maximum amplitude [30]
23: MIAP The pulse’s minimum amplitude [30]
24: MEU The blood’s viscosity [30]
25: FHR The frequency of HR [30]

3.2. Hybrid Feature Decision

This study proposes a hybrid feature selection algorithm that integrates the F-test,
RNCA, and AIC to select valuable features for BP and CI estimations. Feature selection
typically comprises two steps: calculating the weight for each feature and selecting the
optimal subset as input features. Therefore, the F-test [38] was used to obtain a set of ranked
features. Subsequently, the RNCA [39] was applied to select weighted feature vectors from
among the original features. The AIC [40] was then used to determine the best feature
subset. Finally, the AIC measured the quality of the selected features from the F-test and
RNCA to determine the hybrid situation, as indicated in Algorithm 1. Feature selection
involves selecting essential features that are more uniform, nonoverlapping, and effective
in improving the performance of ML algorithms. As mentioned in the introduction, the best
feature subset with high weights was obtained from the original feature set. Additionally,
reducing the number of features by determining which features have higher weights makes
ML algorithms easier to understand and explain.

Feature Weighting Using the F-Test

This study used the F-test to select meaningful features for BP estimation [38]. The
F-test is a statistical test weighted by computing the variance ratio. In this study, the F-test
based on a one-way ANOVA was used to calculate the between- and within-group variance
ratios for each feature. A group represented the instances with the same response value.
Higher weights indicated shorter intragroup distances and greater intergroup distances.
Thus, features were ranked based on higher weights using an F-test based on a one-way
ANOVA [38]. The null hypothesis was that the target values grouped by function in each
F-test were drawn from populations with the same mean, as opposed to the alternative
hypothesis that all population means were unequal:

H0 : µ1 = µ2 = ... = µm, H1 : µ1 6= µ2 6= ... 6= µm (1)

where m is the number of group and µm denotes the mean for group m. The overall mean
was calculated as

µ =
1
n

m

∑
k=1

µknk, (n =
m

∑
k=1

nk) (2)

where nk is the number of the kth group. Hence, the mean of a real feature’s samples was
given by

x̄k =
1
n

nk

∑
i=1

xik, (3)
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The total mean was computed as

x̄ =
1
n

m

∑
k=1

nk

∑
i=1

xik, (4)

The sum of the mean squared deviation (MSD) within groups was given as

SW =
1
n

m

∑
k=1

nk

∑
i=1

(xik − x̄k)
2 (5)

The sum of the MSD between groups was computed by

SB =
1
n

m

∑
k=1

nk

∑
i=1

(x̄k − x̄)2 (6)

Hence, we obtained the F-score as

FS =
SB/(m− 1)
SW/(n−m)

(7)

Algorithm 1 Hybrid F-test and RNCA using AIC based on GP algorithm.

1: Procedure F-TEST(X, Y): training data set
2: return (w f ) that produces weighted feature vectors using F-test
3: select (w f ) ≥ threshold
4: EndProcedure
5: Procedure RNCA(X, Y): divided data set into 5 folds
6: for i = 1, n do
7: λi,k: tuning using 5-fold cross-validation
8: for k = 1, 5 do
9: call NCA(D,λi,k): train NCA for λ

10: compute Li,k: record loss values
11: end for
12: end for
13: Cµ = mean(Ck,i): calculate average costvalue
14: λb = arg minCµ

(y|x, λk,i, Cµ): detect best λb
15: call RNCA(D,λ, ζ): ζ = @(yk, yj)1− exp(−|yk − yj|)
16: return (wr) weighted features using RNCA
17: select (wr) ≥ threshold
18: EndProcedure
19: Procedure AIC
20: call GP (X, Y): returnM a maximum likelihood
21: call AIC (M,W) :W is the number of (w f , wr)
22: decide (wb): the best feature subset
23: EndProcedure

The F-test accepts an alternative hypothesis if p < 0.05. This indicates a significant
difference in a feature between the two groups. When p ≥ 0.05, the null hypothesis is
accepted, and the alternative hypothesis is rejected. This indicates that there is no significant
difference in a feature between the two groups. The smaller the p-value, the more significant
the difference in a feature between the two groups, making it more beneficial for estimating
BPs. Therefore, a small p-value for the test statistic indicates the importance of a feature, as
shown in Figure 4a,b. Table 4 lists the ranked features obtained using the F-test.
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Figure 4. The weighted feature sets were obtained using the F-test and RNCA algorithms, where
(a,b) denote the ranked features acquired using the F-test and (c,d) were obtained from the RNCA.

Table 4. The high-score ranked features were selected using the F-test and RNCA algorithms for the
SBP and DBP estimations.

F-test RNCA F-test RNCA
Rank SBP DBP SBP DBP Rank SBP DBP SBP DBP

1 dppgH HR HR HR 14 S2 S4 PPGk MXAP
2 ddppgPH PAT1 ST ST 15 PPGk PIR S4 IPA
3 PAT2 dppgH DT ddppgH 16 MXAP MEU FHR MIAP
4 ddppgH ddppgPH PAT3 AI 17 DT IPA MXAP MEU
5 PAT1 PAT3 ddppgW PAT1 18 MEU DT MEU DT
6 ddppgFH ST ddppgFH PAT3 19 LASI dppgW IL dppgH
7 ST ddppgH AI S2 20 AI FHR IPA ddppgPH
8 PAT3 LASI PAT1 ddppgW 21 PIR ddppgW dppgW S4
9 HR PAT2 S3 ddppgFH 22 FHR MXAP PAT2 S1
10 S3 S3 S2 FHR 23 S4 S1 LASI LASI
11 dppgW ddppgFH ddppgH dppgW 24 IPA MIAP S1 PIR
12 ddppgW S2 dppgH S3 25 MIAP AI PIR PAT2
13 S1 PPGk ddppgPH PPGk

3.3. Feature Selection Using Neighbor Component Analysis (NCA)

Feature selection involves selecting essential features from the original feature set.
This implies that only a few features affect the target BPs. Thus, reducing the dimensions
of the feature space while retaining only valid information is essential for BP estimation.

Weighted feature vectors were extracted from the original feature set using the RNCA
algorithm [39]. The NCA method [44] trains a weighted feature vector by minimizing a
loss function, in which diagonal adaptation measures the mean deviation leave-one-out
regression loss from the training dataset. Thus, a dataset is defined as

Dw =
p

∑
m=1

w2
m|xim − xjm|, (8)



Appl. Sci. 2023, 13, 1221 10 of 20

Here, Dw is the weighted distance and wm denotes the mth weighted feature. Thus,
the probability P(γ(x) = xj|Td) that point x is chosen from Td as the reference point is:

P(γ(x) = xj|Td) =
k(Dw(xi − xj))

∑n
j=1 k(Dw(xi − xj))

(9)

Here, (k(z) = exp(−z/σ)) denotes the kernel, and the kernel width σ is a parameter
that affects the probability that each point is chosen as a reference [44]. Here, we assumed
that P(γ(x) = xj|Td) ∝ k(Dw(xi, xj)) and estimated the response to xi using the training
data set in T −i

d , (xi, yi). The probability that xj is chosen as the reference point for xi is
given as

γij=P(γ(x) = xj|T −i
d ) =

k(Dw(xi − xj))

∑n
j=1,j 6=i k(Dw(xi − xj))

(10)

Li = E(L(yi, ŷi)|T −i
d ) =

n

∑
j=1,j 6=i

γijL(yi, yj) (11)

where L is the loss function that gives the difference between (ŷi, yi). Thus, we applied the
regularization parameter λ to minimize the loss function as follows:

Fw =
1
n

n

∑
i=1
Li + λ

p

∑
m=1

w2
m (12)

Hence, we used the regularization parameter to choose weighted feature vectors
from high-dimensional features employing the NCA algorithm as given in (8)–(12), with
λ(= 0.015) [44] .

3.4. RNCA

The performance of the RNCA algorithm is affected by the normalization parameter
λ. Therefore, the RNCA algorithm must be defined to set the parameters effectively. The
regularization parameter was adapted using the mean squared error and 5-fold cross-
validation, as shown in (Algorithm: RNCA). A user-defined robust loss function was
applied, given as ζ = 1− exp(−|yi− yj|). Thus, the value of λ was determined to represent
the minimum average loss value. Finally, the weighted feature vectors were detected using
RNCA without selecting other features, as shown in Table 4. Therefore, the feature selection
reduced the dimensionality of the algorithm training.

AIC Based on GP Algorithm

The AIC can be used to compare and rank multiple feature sets and determine the most
appropriate feature set [40]. After computing several other groups, they were compared
using this criterion. A feature set was considered as a group. According to Akaike’s theory,
the best feature subset has the lowest AIC value.

A = −2 ln(M) + 2η (13)

whereM denotes the maximum likelihood obtained from the previous result of the GP
algorithm, and η represents the number of feature dimensions selected. The weight of the
features can change according to the target variables SBP and DBP, as shown in Table 4. The
weight of the features also changes according to repeated experiments. Thus, an effective
feature subset that could most accurately estimate SBP and DBP was determined using the
proposed GFSDP algorithm.

3.5. GP Based on Bayesian Inference

This section describes the GP regression [31] used to train and test the proposed
algorithm. Owing to the size of the paper, the description of the conventional algorithms is
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omitted. The GP algorithm is a robust, flexible, nonparametric Bayesian algorithm used
in supervised ML [31]. To train the GP algorithm, the explanatory and response variables
should be prepared as the input and output data, respectively, as D = {xi, yi}I

i=1, x ∈ RI×D,
and y ∈ RI×1. Here, we used a mapping function fm = f (x) to estimate y given x. Hence,
we assumed that the response variable y was acquired using the corresponding xTw by
including noise, as follows

y = xTw + ε, ε v N(0, σ2I) (14)

The weighted vectors w and variance σ2 were acquired from the resampled signal
dataset. The GP algorithm estimates the response variable based on Gaussian processes
(GPs) using the mapping function fm(x) and explicit essential functions β.

fm(x) v GP(0, k(x, x
′
)) (15)

where fm(x) is acquired from a zero-mean GP algorithm using a covariance function
k(x, x

′
) [32]. Hence, we can obtain the mapping function fm(x) = β(x)Tw. The mean

function of the input data can be defined as the expected value of the mapping function
θ(x) = E[ fm(x)]. A latent variable covariance function obtains the smoothness of the
response variables, and the basic function projects the input data x into the dimensional
feature space.

k(x, x
′
) = E[( fm(x)− θ(x))( fm(x

′
)− θ(x

′
))T] (16)

We defined the expected value of (16) as

k(x, x
′ |η) ≈ σ2 exp

(
−‖x− x

′‖2

2η2

)
(17)

where k is a kernel for the GP [31], η is a hyperparameter, and σ2 is a variance based on
resampled signals. In the study, we used exponential squares as the kernel, as in (17).
Thus, the kernel decided the properties of the mapping function fm(x). We could define an
instance of response variables y using the Bayesian inference based GP as

p(yi| fm(xi), xi) v N
(
yi|β(xi)

Tw + fm(xi), σ2) (18)

where β(xi) denotes a basic function transforming the original explanatory variable x into
a new variable β(x). Thus, we determined Θ = {w, η, σ2} from the dataset D, and the
marginal likelihood was expressed as

p(y|x) = p(y|x, Θ) ≈ N(y|Ωw, k(x, x
′ |η) + σ2I), (19)

Generally, the local maxima for the hyperparameter Θ can be determined and used to
train the GP algorithm. In addition, choosing an appropriate kernel depends on hypotheses,
such as the smoothness and expected patterns of the data. By maximizing the log marginal
likelihood, we could estimate the hyperparameter Θ, as follows

log p(y|x, Θ) = −1
2

log
∣∣k(x, x

′ |η) + σ2I
∣∣− 1

2
i log 2π

− 1
2
(y−Ωw)T[k(x, x

′ |η) + σ2I
]−1

(y−Ωw) (20)

where k(x, x
′ |η) is the kernel matrix and Ω denotes the matrix of the explicit basic function.

Herein, we applied a penalty-fitting scale to represent the logarithmic likelihood and maxi-
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mized it using a gradient approach using optimization techniques. The hyperparameters
Θ = {w, η, σ2} using the GP algorithm maximized the likelihood p(y|x) as a function of Θ.

L(Θ̂) = arg max
Θ

log(y|x, Θ) (21)

First, we determined ŵ(η, σ2) to predict hyperparameters that maximized the log-
likelihood concerning w for a given (η, σ2) as

ŵ(η, σ2) =
{

ΩT[k(x, x
′ |η) + σ2I

]−1
Ω
}−1

ΩT[k(x, x
′ |η) + σ2I

]−1y (22)

Second, we needed a probability density function p(y∗|y, x, x∗) for the probabilistic
estimation of the Bayesian GP algorithm using known hyperparameters. However, we
estimated a response variable y using a finite amount of new input data x∗ and predicted the
output of these data based on a multivariate Gaussian distribution with a kernel-generated
covariance matrix. Thus, we denoted the conditional probability distribution, as follows.

p(y∗|y, x, x∗) =
p(y∗, y|x, x∗)

p(y|x, x∗)
(23)

In order to acquire the joint density probability function in the numerator, as expressed
in (23), the mapping functions f ∗m and fm should be used, as follows.

p(y∗, y|x, x∗) =
∫ ∫

p(y∗, y, f ∗m, fm|x, x∗)d f d f ∗

=
∫ ∫

p(y∗, y| f ∗m, fm, x, x∗)p( f ∗m, fm|x, x∗)d f d f ∗ (24)

The GP algorithm assumes that each response variable yi depends only on the corre-
sponding latent variable fm(xi) and input vector xi. Given y, x and the hyperparameters Θ,
the expected value of the estimation is given as:

E(y∗|y, x, x∗, Θ) = θ(x∗)Tw + c(x, x
′ |η)ϕ

= β(x∗)Tw +
I

∑
i=1

ϕik(x∗, xi|η)
(25)

where ϕ = [k(x, x) + σ2I]−1(y−Ωw). Practically, we determined an optimal point predic-
tion ŷ∗ based on the loss function as

EL(ŷ∗|x∗) =
∫
L(y∗, ŷ∗)p(y∗|x∗, D)dy∗ (26)

We obtained an predicted y∗ ≈ ŷ∗ and minimized the expected value of the loss
function L(y∗, ŷ∗) by minimizing between y∗ and ŷ∗ as

ŷopt|x∗ = arg min
ŷ∗

EL(ŷ∗|x∗) (27)

In this study, we used the mean absolute error (MAE) as the loss function, given by: L.
Generally, we can use the MAE metrics to evaluate the estimation accuracy.

3.6. CIs Estimation

CIs were calculated using the bootstrap method to represent the uncertainty of the
estimated BPs (SBP and DBP) for the conventional and proposed algorithms. This was
denoted as the bootstrap concept of the parametric algorithm. Each patient had four to
eight estimated BP results, and many pseudo-BPs could be generated using these estimated
results, E = [e1, . . . , en], using n independent measurements from an unknown distribution
T to estimate a CI for µ̂(E).



Appl. Sci. 2023, 13, 1221 13 of 20

In addition, we assumed that E was the random data of the distribution T with
unknown parameter [µ, σ] to estimate a CI for µ̂(E∗). Thus, we obtained pseudo-BP
results E∗ = [e∗1 , . . . , e∗n] from T̂(µ̂, σ̂|E) based on the Monte Carlo algorithm, where [µ̂, σ̂]
commonly denotes a maximum likelihood estimate from E = [e1, . . . , en]. In this study, we
obtained the CIs using the bootstrap technique [10,35], which could be acquired using the
estimated BP results with respect to each algorithm. Subsequently, we obtained a matrix as:

M∗(i | Ê∗i ) =

e∗i1,1 . . . e∗i1,B
...

. . .
...

e∗in,1 . . . e∗in,B

 (28)

where (28) was obtained as µ̂∗i + σ̂∗i × rand(n, B), then we calculated vertically each column
to acquire the average of each column as µ̂∗b = 1/n ∑n

j=1 e∗ij,b, where∗ denotes the resampled
BPs acquired from the bootstrap algorithm. Then, we performed ascending sorts and the
sorted BP results were given by (µ̂∗1 , µ̂∗2 , · · ·, µ̂∗B), supposing µ̂∗α denotes the 100αth percentile
of B(= 100) bootstrap replications (µ̂∗1 , µ̂∗2 , · · ·, µ̂∗B). We could obtain the CI as µ̂∗lower, µ̂∗upper
of the 1− 2 · α, from this bootstrap algorithm as (µ̂∗α, µ̂∗1−α).

4. Experimental Results
4.1. Parameter Fine-Tuning and Complexity of the ML Model

The parameters of the proposed GFSDP and conventional algorithms were set before
training. These parameters are essential because they can improve the algorithm’s perfor-
mance when configured effectively. This study applied a fivefold cross-validation and grid
search to fine-tune these parameters. The core parameters for each ML algorithm were
defined, and the range of possible values for each parameter was determined.

Subsequently, a grid search on all possible combinations of the parameters was per-
formed for each ML algorithm, which observed the best parameter sets that helped the ML
algorithms obtain the highest results. Finally, a fivefold cross-validation was performed
to improve the robustness of the algorithm with the optimal parameters obtained. The
training data were randomly segregated into five nonoverlapping subsets of equal sizes.
Five iterations were obtained: four folds were used for learning each iteration, and the
remaining fold was applied to perform the evaluation. The final output was the average of
the five folds. Table 5 lists the parameter ranges for each parameter of each ML algorithm
under consideration and the optimized parameters after performing the grid search. The
feature training and testing times were calculated using MATLAB ®2022 [45], as listed in
Table 6. The proposed GFSDP algorithm required more computational time than the GP
algorithm using the MIMIC II dataset.

4.2. Evaluation Protocols

The selected feature subset was then randomly split into 80% for training and 20% for
testing. Subsequently, systolic reference BPs and diastolic BPs were calculated from the
ABP envelope signals, as shown in Figure 2c. First, the mean absolute error (MAE) and
standard deviation of the error (SDE ) of the GFSDP algorithm were compared with those
of the conventional algorithms to evaluate the experimental results, as shown in Table 7.
The probability of the British Hypertension Society (BHS) protocol [46] was also obtained
based on the results of the MAE and SDE, as shown in Table 8. The average error of the
GFSDP algorithm was calculated by eri = (epi − rpi) for each record i, where ep denotes
the estimated BPs (SBP or DBP), and rp is a reference BP. Thus, the mean error (ME) and
MAE were given as ( 1

n ∑n
i=1 eri) and ( 1

n ∑n
i=1 |eri|), respectively. The results were obtained

as the average of the 30 experiments for each algorithm.
Second, the ME and SDE of the ME were used [10], as shown in Table 9. The ME

and SDE between the estimated and calculated reference BPs were calculated using the
recommendations of the Association for the Advancement of Medical Instrumentation
(AAMI) protocol [47]. A device passes the AAMI protocol if its measurement error has an
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ME value of less than 5 mmHg with an SDE of less than 8 mmHg [47]. Table 10 lists the
CI results of the cuffless BP signals. The CIs obtained using the proposed algorithm were
lower than those obtained using the conventional algorithm for acquiring CIs using an
SVM with a Student’s t-distribution (SVMST) [8].

Table 5. Summary of the parameters of the proposed GFSDP and conventional algorithms, where SE
is a squared exponential kernel for the GP algorithm.

Parameters ANN MLR SVM LSTM GP GFSDP

Input dimension 25 25 25 25 25 13 to 16
Output dimension 1 1 1 1 1 1
Optimizer Bayes Bayes Bayes Bayes Bayes Bayes
Activation Relu - - Relu - -
Hidden unit on the layers - - 200 to 300 - -
Iterations - - - 1000 - -
Fully connected layer - - - 50 - -
Dropout - - - 50% - -
Max epoch - - - 200 - -
Gradient threshold - - - 1 - -
Epsilon - - 0.5 1.00 e-08 - -
Weight threshold - - - - - 1 to 3
Shrinkage factor - - 0.05–0.1 - - -
Subsampling factor - - 0.1–0.5 - - -
Kernel function - - Gauss. - SE SE

Table 6. Compared feature training and testing times between the proposed and conventional
methods based on hardware (Intel®Core(TM) i5-9400 CPU 4.1 GHz, OS 64 bit, RAM 16.0 GB), and
software (Matlab®2022 (The MathWorks Inc., Natick, MA, USA)) specifications.

Algorithm ANN MLR SVM LSTM GP GFSDP

Time (s) 1.67 0.13 0.37 7.48 3.84 5.56

Table 7. MAE (SDE) relative to the reference ABP and the conventional ANN, MLR, SVM, LSTM,
GP and using the proposed GFSDP algorithms.

mmHg ANN MLR SVM LSTM GP GFSDP
SBP DBP SBP DBP SBP DBP SBP DBP SBP DBP SBP DBP

MAE 12.23 8.33 12.49 7.67 11.37 7.23 10.78 6.84 10.03 6.70 7.66 5.47
SDE 0.61 0.78 0.54 0.57 0.50 0.55 0.98 0.30 0.49 0.37 0.23 0.56

Table 8. We used the results of the ANN, MLR, SVM, LSTM, GP algorithms and the proposed GFSDP
algorithm to grade the algorithm based on the BHS standard [46], where each result represents the
average of 30 experimental data.

SBP DBP SBP/DBP
Methods Mean Absolute Difference (%) Mean Absolute Difference (%) BHS

≤5 mmHg ≤10 mmHg ≤15 mmHg ≤5 mmHg ≤10 mmHg ≤15 mmHg Grade

ANN 26.75 49.65 68.35 39.35 72.39 88.97 C/C
MLR 29.45 49.04 65.94 47.89 79.71 87.42 C/C
SVM 30.64 54.47 70.96 54.61 79.48 88.13 C/C
LSTM 34.20 60.07 73.16 48.65 79.48 90.65 C/C
GP 36.30 62.07 76.56 48.65 80.71 90.71 C/C
GFSDP 49.49 73.01 84.97 60.26 85.39 93.74 C/B

Grade A 60 85 95 60 85 95 [46]
Grade B 50 75 90 50 75 90
Grade C 40 65 85 40 65 85
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Table 9. ME and SDE relative to the reference ABP and the conventional ANN, MLR, SVM, LSTM,
GP algorithms and using the proposed GFSDP algorithm.

mmHg ANN MLR SVM LSTM GP GFSDP
SBP DBP SBP DBP SBP DBP SBP DBP SBP DBP SBP DBP

ME 0.17 0.27 0.57 −2.81 0.46 −2.59 −1.29 −1.46 0.10 0.10 0.08 0.15
SDE 15.68 12.75 15.93 11.21 14.70 10.96 14.22 9.87 13.30 9.28 10.83 8.31

Table 10. Summary of the CIs for SBP and DBP compared to the proposed and conventional methods,
where ST denotes the Student’s t-distribution and BT is the bootstrap method.

SBP (SDE) DBP (SDE)
Methods 95% CI Lower CIs Upper CIs 95% CI Lower CIs Upper CIs

ANNST 15.81 (10.23) 114.39 (11.35) 130.21 (11.82) 10.96 (6.73) 65.88 (4.05) 76.76 (5.12)
MLRST 18.54 (10.30) 113.37 (10.66) 131.91 (10.99) 7.31 (4.80) 66.08 (1.51) 73.38 (3.60)
SVMST 20.83 (9.83) 112.16 (8.55) 132.99 (10.36) 6.05 (3.54) 66.26 (2.80) 72.32 (2.84)
LSTMST 18.61 (10.13) 113.20 (9.68) 131.81 (9.83) 6.48 (4.10) 65.88 (3.25) 72.36 (3.40)
GP 21.38 (3.56) 120.92 (10.43) 142.30 (8.03) 13.74 (1.19) 64.83 (2.85) 78.57 (3.17)
GFSDP 20.09 (3.27) 123.49 (15.59) 143.58 (13.08) 13.98 (1.33) 64.42 (1.97) 78.40 (2.25)
GFSDPBT 11.19 (8.59) 118.34 (7.77) 129.53 (10.07) 2.19 (2.47) 70.75 (1.34) 75.94 (2.28)

4.3. Statistical Results

This study used the ANN, MLR, SVM, LSTM, and GP algorithms [17,31] as conven-
tional algorithms to evaluate the performance of the proposed GFSDP algorithm. The first
experiment obtained the objective MAE and SDE results. The MAEs of the SBP (12.23
mmHg) and DBP (8.33 mmHg) obtained using the ANN algorithm were compared with
the reference BP shown in Table 7. The MAEs of the MLR algorithm for the SBP (12.49
mmHg) and DBP (7.67 mmHg) were compared with the reference BP. Table 7 shows the
MAEs of the SBP (11.37 mmHg) and DBP (7.23 mmHg) obtained using the SVM algorithm.
The MAEs of LSTM algorithm for the SBP (10.78 mmHg) and DBP (6.98 mmHg) were
compared with the reference BP. Finally, the MAEs of the SBP (10.03 mmHg) and DBP (6.70
mmHg) acquired using the GP algorithm are shown. As shown in Table 7, the proposed
GFSDP algorithm obtained lower MAEs for the SBP (7.66 mmHg) and DBP (5.47 mmHg)
compared with the conventional ANN, MLR, SVM, LSTM, and GP algorithms.

The GFSDP algorithm was compared with the conventional ANN, MLR, SVM, LSTM,
and GP algorithms, according to the British hypertension protocol (BHS) [46]. The MAEs for
the three groups of less than 5 mmHg, less than 10 mmHg, and 15 mmHg were evaluated.
Table 8 shows the BHS grading obtained using the GFSDP algorithm: grades C and B were
obtained for the SBP and DBP, respectively. The readings obtained using the proposed
method in the test scenario were 49.49% (≤5 mm Hg), 73.01% (≤10 mmHg), and 84.97%
(≤15 mmHg) for the SBP and 60.26 (≤5 mmHg), 85.39 (≤10 mmHg), and 93.74 (≤15 mmHg)
for the DBP. The probabilities of the proposed algorithm based on the BHS were higher
than those obtained using the conventional ANN, MLR, SVM, LSTM, and GP algorithms,
as shown in Table 8.

Table 9 shows the SDEs of the MEs for the SBP (15.68 mmHg) and DBP (12.75 mmHg)
obtained using the ANN algorithm compared with the reference BP. In addition, the SDEs
of the MEs for the SBP (15.93 mmHg) and DBP (11.21 mmHg) from the MLR algorithm, for
the SBP (14.70 mmHg) and DBP (10.96 mmHg) obtained using the SVM algorithm, and for
the SBP (14.22 mmHg) and DBP (9.87 mmHg) from the LSTM algorithms are also presented.
Table 9 shows the SDEs of the MEs for the SBP (13.30 mmHg) and DBP (9.28 mmHg)
obtained using the GP algorithm. The GFSDP algorithm obtained lower SDEs of the MEs
for the SBP (10.83 mmHg) and DBP (8.31 mmHg) than the conventional ANN, MLR, SVM,
and GP algorithms. In addition, the Bland–Altman method [48] comparing the proposed
GFSDP algorithm with the reference ABP is shown in Figure 5. The agreement between
the conventional SVM and ABP reference values was also compared by Bland–Altman
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plots (Figure 5c,d). The limits of agreement (bold horizontal lines in Figure 5) used in this
study were (ME ± 2 × SD) for all plots. The bias (horizontal center lines) for all plots was
small (≤±0.5 mmHg). These results indicate that the cuffless BP estimates obtained by the
proposed GFSDP algorithm and conventional SVM were in close quantitative agreement
with those obtained by the ABP reference values without being overly biased in any
direction.

The CIs represent the uncertainties from the GFSDP when estimating cuffless BP.
Table 10 shows the lower and upper CI estimations obtained using the GFSDP algorithm.
The CIs for the SBP and DBP obtained using the GFSDP with bootstrap algorithm GFSDPBT
were smaller than those obtained using conventional methods. The difference between
10.19 mmHg and 11.55 mmHg of the GFSDP and GP algorithm for the SBP and DBP was
confirmed. The results of the CI estimation were also shown by applying the Student’s
t-distribution to the conventional algorithms.
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Figure 5. We compared the performance between the proposed GFSDP and the reference ABP for the
SBP (a) and DBP (b). We also compared the performance between the SVM and the reference ABP for
the SBP (c) and DBP (d).

5. Discussion

This study is the first to propose a GFSDP algorithm to concurrently estimate cuffless
BPs and CIs. Table 4 lists the high-scoring features selected using the F-test and RNCA
algorithms [38,39]. The ranked features relied on the selection method. They also changed
according to the SBP or DBP target variables. Therefore, the final decision process using
the AIC algorithm [40] for the proposed hybrid-feature-selected sets was more significant
for improving the performance of ML than using a fixed subset.

Table 6 confirms that the proposed GFSDP algorithm was more complex than the
GP algorithm in computational complexity. This indicates that computing resources were
consumed during the HFD process to weigh the features and finalize the assigned weights.
Nevertheless, in terms of estimation accuracy, the proposed GFSDP algorithm exhibited
the lowest MAE for the SBP (7.66 mmHg) and DBP (5.47 mmHg) compared with those
of the ANN, MLR, SVM, LSTM, and GP algorithms. In particular, compared with the
conventional GP algorithm, the accuracy of the SBP and DBP estimation was 30.94% and
22.49%, respectively, confirming that the hybrid feature selection and decision effectively
improved the accuracy of estimating SBP and DBP. In addition, the proposed GFSDP
algorithm exhibited an improved performance of 48.43% and 32.18% for the SBP and DBP
estimations, respectively, compared with the SVM algorithm. The SDEs of the MAEs in all
algorithms showed stable values, as shown in Table 7.



Appl. Sci. 2023, 13, 1221 17 of 20

The proposed GFSDP algorithm exhibited a slight performance loss compared with
the BHS protocol [46], as shown in Table 8. The MAEs were 49.49% (≤5 mmHg), 73.01%
(≤10 mmHg), and 84.97% (≤15 mmHg) for the SBP and 60.26% (≤5 mmHg), 85.39%
(≤10 mmHg), and 93.74% (≤15 mmHg) for the DBP, as shown in Table 8. Therefore, the
proposed GFSDP obtained classes C and B for evaluating SBP and DBP. Furthermore, the
proposed GFSDP algorithm was more accurate than conventional algorithms for cuffless
BP estimation.

The SDE of the ME was also evaluated according to the AAMI protocol [47]. The
proposed GFSDP algorithm for the SBP (10.83 mmHg) and DBP (8.31 mmHg) had a lower
SDE of the ME than conventional algorithms; however, all algorithms failed to meet the
AAMI criteria, as shown in Table 9. Thus, the AAMI standards are stringent. Figure 5
shows the SDE results of the ME of the proposed GFSDP and SVM algorithms. These
results indicate that the results of the SVM were slightly more spread out than those of
the proposed algorithm. This further proves the superiority of the proposed algorithm,
in addition to its low MAE. Moreover, the proposed GFSDP algorithm is more favorable
because it correctly estimated errors based on the weighted feature subset. Therefore, the
GFSDP process accurately estimated cuffless BP values.

Cuffless BP-measuring devices typically provide single-point predictions without CIs.
Therefore, predicting CIs for cuffless BP measurements improves reliability. Thus, this
study predicted CIs using the GP and GFSDP algorithms to express uncertainties in cuffless
BP estimation. This study extracted four to eight PPG segment waveforms from each
patient’s record. A small sample size of each patient affected the accuracy of the bootstrap
CI estimation. The results confirmed that the CIs obtained from the proposed GFSDPBT for
SBP and DBP were also wide. The CIs derived from the conventional algorithm using the
Student’s t-distribution (ST) were broader than those obtained from the proposed method
for both SBP and DBP, as shown in Table 10. The CI estimates based on the ST distribution
are adequate when the sample size from each patient is large (at least 30) [8]. The results
confirmed that the proposed GFSDP algorithm was more accurate than the conventional
algorithms for cuffless BP and CI estimations. As previously mentioned, GP algorithms
predict distributions rather than single-response values. Therefore, CIs were provided
along with the predicted responses to represent the uncertainty. However, even with the
GP algorithm, few samples for each patient resulted in wide CIs [8].

6. Conclusions

The proposed method improved the accuracy and stability of BP and CI estimations
using the GFSDP algorithm. This algorithm measures uncertainties, such as CIs, error
standard deviation, and bias for cuffless SBP and DBP estimations. Features with high
weights for feature selection were selected by applying the F-test and RNCA methods. The
AIC algorithm was then used to determine the optimal set of features. In addition, despite
the small sample size for each patient, the CIs were presented using the bootstrap method to
represent the uncertainty in cuffless BP estimation. The proposed GFSDP is the only one that
provides BP and CI assessment concurrently for cuffless BP measurements. Furthermore,
the proposed GFSDP algorithm can be designed as a framework for improving healthcare
monitoring and optimizing clinical decision support systems. Although public datasets
were used in the experiments, the scope of this study is limited by the small sample size
for each patient. This is because the CIs of all algorithms representing the uncertainty are
extensive. The CIs generated by the GP algorithm are also wide owing to the wide SDE
of the ME. Future studies should improve the performance of the GFSDP algorithm by
reducing the SDE of the ME. Moreover, the complexity of the GFSDP algorithm should be
improved for BP and CI estimations.
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BPs Blood pressures
CIs Confidence intervals
CVD Cardiovascular disease
ML Machine learning
ECG Electrocardiogram
PPG Photoplethysmography
PTT Pulse transit time
PWV Pulse wave velocity
MLR Multiple linear regression
GP Gaussian process
SVM Support vector machine
ANN Artificial neural networks
LSTM Long short-term memory
RNCA Robust neighbor component analysis
NCA Neighbor component analysis
AIC Akaike’s information criterion
ABP Arterial blood pressure
SBP Systolic blood pressure
DBP Diastolic blood pressure
BHS British hypertension protocol
ME Mean error
SDE Standard deviation of the error
MAE Mean absolute error
AAMI Association for the Advancement of Medical Instrumentation
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