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Abstract: In multi-scale topology optimization methods, the analysis encompasses two distinct scales:
the macro-scale and the micro-scale. The macro-scale refers to the overall size and dimensions of the
structural domain being studied, while the micro-scale pertains to the periodic unit cell that constitutes
the macro-scale. This unit cell represents the entire structure or component targeted for optimization.
The primary objective of this research is to present a simplified MATLAB code that addresses the multi-
scale concurrent topology optimization challenge. This involves simultaneously optimizing both the
macro-scale and micro-scale aspects, taking into account their interactions and interdependencies.
To achieve this goal, the proposed approach leverages the Bi-directional Evolutionary Structural
Optimization (BESO) method. The formulation introduced in this study accommodates both cellular
and composite materials, dealing with both separate volume constraints and the utilization of a single
volume constraint. By offering this simplified formulation and harnessing the capabilities of the
multi-scale approach, the research aims to provide valuable insights into the concurrent optimization
of macro- and micro-scales. This advancement contributes to the field of topology optimization and
enhances its applications across various engineering disciplines.

Keywords: topology optimization; microstructure; homogenization; concurrent; BESO; 2D and 3D
design domains

1. Introduction

A topology optimization problem formulation can be adopted to determine the opti-
mal geometry for either the structural domain, the material, or both, with the objective of
minimizing, e.g., structural compliance while considering a specific volume fraction. The
structural domain involved in such a problem consists of a periodically repeated cellular
material, which is represented by a unit cell. To solve these types of Topology Optimization
(TO) problems, two approaches are commonly employed: the mono-scale approach and
the multi-scale approach. In the multi-scale approach, establishing a connection between
the different scales can be achieved through various methodologies. One popular method
is the utilization of the Homogenization method. This technique enables the translation
of the periodic unit cell geometry into a homogenized elasticity tensor, which can then
be employed in the finite element analysis of the structural domain. The theoretical foun-
dations of the homogenization methodology were initially presented by Bensoussan and
Lions in [1] and Sanchez-Palencia in [2]. The process of numerical homogenization involves
implementing the homogenization theory using finite elements and the finite element anal-
ysis method to compute the homogenized elasticity tensor. Further insights into numerical
homogenization can be found in the works of Guedes and Kikuchi in [3] as well as Hassani
and Hinton in [4–6]. The homogenization theory has been effectively employed to solve the
TO formulation in the context of homogenization-based TO problems, as demonstrated by
Bendsøe and Kikuchi in [7]. Moreover, Arabnejad and Pasini in [8] utilized homogenization
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to compute the mechanical properties of various periodic unit cells with different relative
densities. Notably, numerical implementations of the homogenization method in the form
of MATLAB codes have been provided by Andreassen and Andreasen in [9] for 2D spaces
and by Dong et al. in [10] for 3D spaces. These resources offer practical tools for applying
the homogenization method in topology optimization.

The optimization procedure of the multi-scale TO problem formulation can be imple-
mented in either hierarchical or concurrent form. In the case of the hierarchical implemen-
tation, introduced by Rodrigues et al. in [11] the optimization procedure consists of two
separate problems, the inner and outer problem. In the inner problem, the geometry of the
unit cell is optimized for a fixed structural domain. In the outer problem, the geometry of
the structural domain is optimized for a fixed periodic unit cell. Thus, at every optimization
step, the inner and outer problems are solved hierarchically, providing each other with new
geometries. In the concurrent optimization procedure, the geometries of the micro and
macro-scales are updated simultaneously, like the procedure presented by Liu et al. in [12].
This is achieved by augmenting the TO problem with the two sets of design variables
representing the two different scales. The first set of design variables consists of the relative
material densities of the finite elements discretizing the structural domain, whereas the
second set of design variables consists of the relative material densities of the finite ele-
ments discretizing the periodic unit cell. Thus, in the presented methodology, the periodic
unit cell geometry is optimized by directly changing all parts of the unit cell geometry
through the assigned material densities. To gain additional insights into the multi-scale TO
formulations, readers are encouraged to refer to the review published by Wu et al. in [13].

The solution of the concurrent multi-scale TO formulation is based on the BESO
approach. BESO in contrast to the popular SIMP approach is based on the discrete imple-
mentation of the TO problem and is categorized as a soft-kill approach. The BESO-based
TO optimization approach was based on the Evolutionary Structural Optimization (ESO)
approach, which was first introduced by Xie and Steven in [14–16]. The focus of the ESO-
based TO problem was to slowly remove elements from the structural domain during
the optimization procedure. The initial main criterion for the element removal was set
as the stress field. Chu et al. in [17] proposed a change in the criterion from stress to
strain energy. The modified version of ESO called the BESO approach was proposed by
Querin et al. in [18,19] in which new elements can be added by the algorithm. To avoid
completely removing elements during the optimization procedure, a soft-BESO approach
is proposed. Zhu et al. in [20] and Huang and Xie in [21] utilized material interpolation
schemes similar to the Solid Isotropic Material with Penalization (SIMP) to include the
soft elements during the optimization procedure. The soft-kill version of BESO combined
with a modified version of SIMP is utilized in the presented implementation. Regarding
multi-scale concurrent topology optimization (TO) and optimal material design, several
notable studies have been conducted. Huang et al. in [22,23] introduced a formulation
for optimal material design encompassing cellular and composite materials, employing
the BESO approach. In a similar vein, Yan et al. in [24] proposed a concurrent multi-scale
TO formulation utilizing the BESO approach for both macro and micro-scales, employing
composite microstructures of two-phase materials. Furthermore, Xu et al. in [25] presented
a formulation concerning multi-scale TO based on the BESO approach, utilizing dynamic
compliance as the objective function for the formulation.

Regarding the TO formulation, many different code implementations have been
published. The first code implementation was published by Sigmund in [26] and is referred
to as top99, 99 lines of MATLAB code for the SIMP-based TO formulation in 2D. The top99
was later formatted to the top88, 88 lines of MATLAB code published by Andreassen et al.
in [27]. Later, the top99 code was expanded to the 3D space by Liu and Tovar in [28] and a
more optimized version for both 2D and 3D by Ferrari et al. in [29]. Based on the SIMP
MATLAB implementations, Huang and Xie in [30] published a BESO-based TO MATLAB
implementation for the 2D space. Based on the homogenization method and their MATLAB
implementations mentioned above, Xia and Breitkopf in [31] as well as Kazakis and Lagaros
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in [32,33] presented MATLAB implementations for the optimal design of materials using
the TO formulation. In these implementations, only the geometry of the periodic unit
cell was optimized. Lastly, Gao et al. [34] presented a MATLAB implementation for the
multi-scale concurrent TO formulation based on the SIMP approach.

In this optimization problem, the structural domain consists of periodically repeated
cellular material in the form of a unit cell. Thus, the focus of the optimization procedure is
to find the optimal geometry of both structure and material for minimizing the structural
compliance for a given volume fraction. These types of Topology Optimization (TO)
problem formulations can be solved using two different approaches, the mono-scale and
multi-scale approach. In the mono-scale approach, only one scale is considered for the
optimization procedure, whereas in the multi-scale approach, typically two different scales
are considered for the optimization procedure. These scales consist of the macro-scale
and micro-scale. The macro-scale refers to the scale of the structural domain, whereas the
micro-scale refers to the scale of the periodically repeated unit cell representing the cellular
material. The main objective of this work is to present a simple formulation for the multi-
scale concurrent topology optimization problem based on the Bi-directional Evolutionary
Structural Optimization (BESO) approach. In the presented formulation, the multi-scale
approach will be implemented for the solution of the optimization procedure.

This study is structured into seven sections, together with the Introduction and Con-
clusions sections. The mathematical problem formulation for the concurrent multi-scale
topology optimization (TO) is presented in Section 2. The sensitivity analysis of the objec-
tive function for the two sets of design variables is detailed in Section 3, building upon
the mathematical formulation. The implementation of the BESO approach is explained in
Section 4, and subsequent to that, the MATLAB implementation for both 2D and 3D design
domains is provided in Section 5. Various numerical examples demonstrating the presented
methodology are showcased in Section 6, and Section 7 delves into the extensions necessary
for dealing with two-phase composite materials, along with additional numerical examples.

2. Multi-Scale Topology Optimization—Problem Formulation

Since the optimization problem formulation, involves both scales (structure and peri-
odic unit cell) the design variables, i.e., relative densities are applied in both scales. Thus,
similarly to the classic TO formulation, the relative material densities applied to the finite
elements discretizing the macro domain (structure) are presented as x, whereas the relative
densities applied to the finite elements discretizing the microdomain (periodic unit cell)
are presented as y. In addition, to separate the indicators of the two sets of finite elements
(of the macro and micro-scale), the indicator for the finite elements discretizing the macro
domain is e whereas the indicator for the finite elements discretizing the microdomain is
el. Hence, xe refers to the relative density of a finite element of the macro domain and yel
refers to the relative density of a finite element of the microdomain. The mathematical
formulation of the optimization problem follows the expression of Equation (1).

min
x,y

C(x, y) = FT · U(x, y)

s.t.

F = K(x, y) · U

V(x)/Vx = fx

V(y)/Vy = fy

0 ≤xe ≤ 1

0 ≤yel ≤ 1

(1)

where the term C(x, y) refers to the structural compliance that was chosen as the objective
function to be optimized. The terms F and U refer to the loading vector and the resulting
displacement field, respectively. The equation F = K · U refers to the equilibrium equation,
which is solved using the finite element method (FEM). The terms V(x) and V(y) refer
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to the volumes of the structure and periodic unit cell, respectively. Similarly, the terms
Vx and Vy refer to the volumes of the whole structure and periodic unit cell, respectively.
The volume fractions for the two scales which are the target volumes for the final optimal
designs are referred to as fx and fy for the macro and micro-scale, respectively. Lastly, as
mentioned at the beginning of this section, xe and yel refer to the relative material densities
for the macro and micro-scale, respectively. Similarly to the classic TO formulation, the
relative densities of both scales are bounded between the values of zero and one.

As illustrated in the equilibrium equation, the two groups of material densities have
a notable impact on the global stiffness matrix values. This influence stems from the
definition of the elemental stiffness matrices denoted as ke for each individual element
e. These element stiffness matrices ke for each finite element e conform to the expression
provided in Equation (2).

ke(x, y) = Ee(x) · kH
e (y) (2)

where term E(x) refers to the influence of the relative material density xe and term kH
e (y)

refers to the homogenized element stiffness matrix. The influence of the material density
xe is implemented using the modified SIMP approach [35]. Using the modified SIMP
approach, the zero-based material densities are assigned a minimum value to avoid zero-
valued stiffness matrices. The penalization term has no meaningful effect in our case but is
included to keep the expression similar to the modified SIMP. Thus, the term E(x) follows
the expression of Equation (3).

Ee(x) = xp
e · (1 − xmin) + xmin (3)

where xmin refers to a minimum value for the influence term to avoid zero values and the
term p refers to the SIMP penalization factor. The homogenized element stiffness matrix kH

e
is only a function of the material densities y through the elasticity tensor. Hence, the term
kH

e follows the typical expression of a Q4 finite element stiffness matrix, i.e., the expression
of Equation (4).

kH
e (y) =

∫
Ve
(BT

e · CH(y) · Be)dVe (4)

where Be refers to the strain-displacement matrix and CH refers to the homogenized
elasticity tensor. Due to the macrostructure consisting of only one type of periodic unit
cell, the homogenized elasticity tensor is the same for all finite elements e. To obtain the
values of the homogenized elasticity tensor, CH the theory of numerical homogenization is
utilized. According to numerical homogenization, the term CH follows the expression of
Equation (5).

CH(y) =
1

Vy

nel

∑
el=1

∫
Vel

(u0
el − uel) · kel(y) · (u0

el − uel)dVel (5)

where nel refers to the number of finite elements el. From the theory of homogenization,
the terms u0

el and uel refer to the displacement fields resulting from the globally (in the unit
cell) applied unit strains and the element application of the unit strains, respectively. Lastly,
the term kel refers to the element stiffness matrix of the elements el. Similarly to the element
stiffness matrix for the finite elements e, the term kel follows the expression of Equation (6).

kel(y) = Eel(y) · k0 (6)

where the term Eel refers to the Young’s modulus of the finite element el as a function of
the material density y and the term k0 refers to the elemental stiffness matrix for an element
with a unit Young’s modulus (E = 1). Similarly to the macro-scale, the value of the term
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Eel is obtained using the modified SIMP approach [35]. Therefore, the term Eel is obtained
following the expression of Equation (7).

Eel(y) = Emin + yp
el · (E0 − Emin) (7)

where the term E0 refers to the material Young’s modulus and the term Emin refers to a
minimum value of the Young’s modulus to avoid zero Young’s modulus values. Similarly
to Equation (3), in Equation (7) the penalization term can be omitted but is included to
retain the modified SIMP expression.

3. Sensitivity Calculations for Concurrent Multi-Scale Expressions

In this part of the study, the sensitivity analysis of the concurrent multi-scale TO
formulation is presented. Due to the two different sets of material densities, the sensitivity
of the compliance is obtained through two different expressions. Hence, the sensitivity of
the objective function with respect to the two sets of material densities x and y follows the
expressions of Equation (8).

∂C
∂xe

= −UT
e · ∂k

∂xe
· Ue

∂C
∂yel

= −
Ne

∑
e=1

UT
e · ∂k

∂yel
· Ue

(8)

where the term Ue refers to the displacement field of element e and the term Ne refers to
the number of elements e. For the case regarding the material densities, x the sensitivity
of the objective function requires the sensitivity of the element stiffness matrix ∂k/∂xe.
The sensitivity of the element stiffness matrix is obtained by differentiating the expression
of Equation (2) with respect to xe. Hence, the term ∂k/∂xe follows the expression of
Equation (9).

∂k
∂xe

=
∂E
∂xe

· kH
e (9)

The term kH
e is only a function of, y and thus is not affected by the differentiation. To

obtain the value of the term ∂E/∂xe, the expression of Equation (3) is differentiated as well.
Thus, the term ∂E/∂xe is obtained following the expression of Equation (10).

∂E
∂xe

= p · xp−1
e · (1 − xmin) (10)

Moving to the second set of objective function sensitivities, the sensitivity of the
objective function with respect to the y set of material densities requires the sensitivity
of the stiffness matrix ∂k/∂yel . The term ∂k/∂yel can be obtained by differentiating the
expression of Equation (2) with respect to yel . Hence, the term ∂k/∂yel is obtained following
the expression of Equation (11).

∂ke

∂yel
= Ee(x) · ∂kH

e
∂yel

(11)

Here, the term Ee(x) is not a function of y and thus is not affected by the differentia-
tion. The derivative of the homogenized stiffness matrix with respect to y is obtained by
differentiation of the expression of Equation (4). Therefore, the term ∂ke/∂yel is obtained
following the expression of Equation (12).

∂kH
e

∂yel
=

∫
Ve
(BT

e · ∂CH

∂yel
· Be)dVe (12)



Appl. Sci. 2023, 13, 10545 6 of 24

The derivative of the homogenized elasticity tensor with respect to y is obtained
by differentiation of the expression of Equation (5). Consequently, the term ∂CH/∂yel is
obtained following the expression of Equation (13).

∂CH

∂yel
=

1
Vy

nel

∑
i=1

∫
Vel

(u0
el − uel) ·

∂kel
∂yel

· (u0
el − uel)dVel (13)

The derivative of the element stiffness matrix with respect to y is obtained by differen-
tiation of the expression of Equation (6). Hence, the term ∂k/∂yel is obtained following the
expression of Equation (14).

∂k
∂yel

=
∂E
∂yel

· k0 (14)

The term k0 is not a function of y and thus is not affected in the differentiation. The
final part of the sensitivity analysis is to obtain the derivative of the material Young’s
modulus with respect to y. Thus, the term ∂E/∂yel is obtained following the expression of
Equation (15).

∂E
∂yel

= p · yp−1
el · (E0 − Emin) (15)

4. BESO Implementation of Concurrent Treatment of the Multi-Scale Problem

The BESO approach is a discrete-based approach that uses a specified value for each
element as an indicator of the element’s existence. This indicator is generally called
sensitivity number and is based on the element’s sensitivity. In this section, the general
idea of the soft-BESO approach will be presented first, and then it will be expanded for the
concurrent multi-scale TO formulation. In the general representation, the indicator x will
be used as an indicator for the material densities due to the classic form of the TO problem
formulation. The general form of the sensitivity number of an element a of the soft version
of BESO is obtained following the expression of Equation (16).

ae = − 1
p
· ∂C

∂xe
(16)

whereas described in the previous section, the term ∂C/∂xe refers to the sensitivity of the
objective function and the term p refers to the penalty factor. Due to BESO being a discrete
approach for the TO problem, material densities x are allowed to only take the values
of zero or one. The mapping of the material densities is achieved using the sensitivity
numbers of each finite element. A threshold value ax for the sensitivity numbers is usually
used in the mapping procedure. Thus, utilizing the sensitivity numbers as well as the
threshold value, ax the mapping procedure follows the expression of Equation (17).

xe =

{
1 f or ae ≥ ax

0 f or ae < ax
(17)

The specification of the value of the sensitivity number threshold ax is achieved using
the expression of Equation (17) and performing a search for the threshold value that satisfies
the volume constraint imposed onto the classic TO optimization problem. The elemental
Young’s modulus can be obtained by combining the modified SIMP approach [35] and
the expression of Equation (17). Hence, the mapping of the Young’s modulus using the
threshold sensitivity number follows the expression of Equation (18).

Ee =

{
(E0 − Emin) f or ae ≥ ax

Emin f or ae < ax
(18)

Thus, using the modified SIMP approach, there is no element removal during the
optimization procedure. Alternatively, elements with zero-valued material densities are
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assigned with a very small Young’s modulus, making the optimization procedure more
stable. To stabilize the optimization procedure even more in general the volume constraint
is not applied at once. In contrast, the volume constraint is gradually imposed onto the
optimization procedure, with the target volume usually initializing at 100% and gradually
decreasing at every optimization step. The rate of decrease is generally a parameter of the
optimization procedure and can affect the stability of the optimization.

Moving to the presented formulation, the general idea of the soft-BESO implementa-
tion remains the same as in the classic TO formulation presented above. In this case, due to
the two sets of material densities and by extension sensitivities of the objective function
and constraints, the BESO implementation is basically applied separately at each set. Thus,
the sensitivity numbers are obtained by applying the expression of Equation (16) to the
new formulation and following the expressions of Equation (19).

ae = − 1
p
· ∂C

∂xe

ael = − 1
p
· ∂C

∂yel

(19)

Due to the two different volume constraints (one for each scale), the threshold for
the sensitivity numbers is two ax for the macro-scale and ay for the micro-scale. As
described in the general implementation of the soft-BESO approach, the values of the
two threshold numbers are obtained using the two different volume constraints and the
expression of Equation (17) implemented for the material densities x and y. Hence, to
obtain the elemental Young’s modulus for the micro-scale as well as the term Ex for
the macro-scale, the expression of Equation (18) is modified following the expressions
of Equations (3) and (7). Therefore, the term Ex is obtained following the expression of
Equation (20).

Ee =

{
(1 − xmin) f or ae ≥ ax

xmin f or ae < ax
(20)

and the Young’s modulus of each finite element el is obtained following the expression of
Equation (21).

Eel =

{
(E0 − Emin) f or ael ≥ ay

Emin f or ael < ay
(21)

5. MATLAB Implementation

In this section, a MATLAB implementation of the multi-scale concurrent formulation is
presented for both 2D and 3D design spaces. The MATLAB code for the 2D implementation
is based on the optimal material design MATLAB codes presented by Kazakis and Lagaros
in [32] as well as the top88 MATLAB code presented by Andreassen et al. in [27] and the
MATLAB implementation of the soft-BESO approach presented by Huang and Xie in [30].
For the 3D MATLAB implementation, the code is based on the optimal material design
using TO in 3D presented by Kazakis and Lagaros in [33] as well as the top3D MATLAB
code presented by Liu and Tovar in [28] and the soft-BESO implementation mentioned
above. For the homogenization method, modified implementations of the MATLAB codes
presented by Andreassen and Andreasen in [9] and Dong et al. in [10] for 2D and 3D
space, respectively.

5.1. MATLAB Implementation for 2D Design Space

The UCOpt MATLAB function developed for the optimal material design using
TO [32] was used as the basis for the multi-scale concurrent MATLAB code presented in
the current section. Thus, only the parts of the MATLAB code modified will be highlighted.
The name of the new MATLAB function for solving the multi-scale concurrent TO problem
formulation is set as ConcTopOptBESO.
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The first set of modifications is focused on the input and output parameters. The
volume target variable vol f rac of the original UCOpt function is changed to take into
account the two different volume constraints applied to the optimization problem. Thus,
vol f rac is modified into vol f x and vol f y as the target volume fractions of the macro and
micro-scales, respectively. Similarly, the filtering radius variable rmin is modified into two
different variables named rxmin and rymin. The first variable is utilized for the filtering of
the sensitivities of the macro-scale whereas the second variable is utilized for the filtering
of the sensitivities of the micro-scale. Parameter f t is due to the filtering application on
only the sensitivity number, with no density filtering available. An additional variable
is added to the input parameters of the ConcTopOptBESO MATLAB function called er.
As described in [30], the er variable is the evolutionary rate of the two target volumes.
Regarding the output parameters, the final geometries of the macro and micro-scales as well
as the homogenized elasticity matrix are added in the form of the variables x, y and CH,
respectively. Hence, the final form of the input function is formulated following Listing 1.

Listing 1 Input and output parameters of the main function for the 2D problem

1 func t ion [ c ,CH, x , y ] = ConcTopOptBESO ( lx , ly , nelx , nely , nlx , nly ,
volfx , volfy , penal , rxmin , rymin , er , p )

At the beginning of the new function, in addition to the initialization of the variables
E0, Emin and nu, an extra variable xmin is initialized for the later implementation of the
expression of Equation (3). The value of xmin is set as a small number, in this case 1e − 8. In
the case of the multi-scale concurrent TO, the topology optimization is performed in both
the macro and micro-scales. Thus, two different sets of material densities are implemented,
one for the macro and one for the micro-scale. To distinguish between the two sets, a
different variable is assigned to each set. The variable x is set for the macro-scale material
densities and the variable y is set for micro-scale material densities. The MATLAB function
UCOpt was formulated to perform the optimal material design using TO in the micro-scale.
Hence, to formulate the two different sets of material densities, all instances of the variable
x in the original UCOpt function are modified to y.

Moving to the preparation of the filtering matrices and the initialization sections, two
different filtering matrices in the form of Hx, Hsx and Hy, Hsy are computed for the macro
and micro-scale, respectively. The procedure for computing both sets is identical, with
the only difference in the filtering radius considered for each scale (rxmin for the macro
and rymin for the micro-scale, respectively). In the initialization section, in addition to the
initialization of the y variable, the x variable is initialized following Listing 2.

Listing 2 Initialization of x variable

63 x = ones ( nely , nelx ) ;

For the initialization of matrix y, in the original UCOpt function and rectangle mesh
was set with a hole at its center. An Additional, initialization can include the set of ones
to all y values. Furthermore, two new variables are implemented called volx and voly,
and initialized at one. Similarly to the code provided in [30], variables volx and voly
represent the current volume fraction target of each iteration for the macro and micro-
scale, respectively.

Moving inside the optimization procedure, an extra step is added at the beginning
of the optimization iteration. In this step, the iterations target volume fractions for each
scale are computed utilizing the evolutionary rate parameter. Hence, the final form of the
optimization step is formulated following Listing 3.
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Listing 3 Update scheme for the two target volumes

79 %% UPDATE VOLUME
80 volx = max( volx *(1 − er ) , vo l fx ) ;
81 voly = max( voly *(1 − er ) , vo l fy ) ;

After the volume update step and following the sensitivity filtering implementation
presented in [30], each iteration’s sensitivity values are stored for both scales using the
following Lines presented in Listing 4.

Listing 4 Saving of sensitivities of previous optimization iteration

82 i f loop > 1 ; olddc = dc ; end
83 i f loop > 1 ; olddcy = dcy ; end

In the finite element analysis step, Line 90 is modified according to the expression of
Equation (3). Hence, Line 90 is formulated following Listing 5.

Listing 5 Computation of element stiffnesses into the sK variable

90 sK = reshape (KE ( : ) * ( xmin+x ( : ) ’ . ^ penal *(1 −xmin ) ) , 6 4 * nelx * nely , 1 ) ;

The sensitivity analysis step of the optimization procedure is modified; thus, both sets
of sensitivities are computed. For the macro set of sensitivities, the code implementation
follows the top88 implementation presented in [27]. For the micro set of sensitivities, the
code implementation follows the original UCOpt function, utilizing the cellfun MATLAB
function to eliminate the need for the double loop implemented in UCOpt. The filtering of
sensitivities step of the optimization procedure is modified, performing only the option
2 of the original UCOpt function for both scales. In addition, as suggested in [30] the
sensitivities are averaged between the two last iterations. The whole filtering step of the
optimization procedure is implemented following Listing 6.

Listing 6 Filtering of sensitivities for the micro and macro scales

103 %% FILTERING/MODIFICATION OF SENSITIVITIES MACRO
104 dc ( : ) = Hx* ( dc ( : ) ) ./Hsx ;
105 i f loop > 1 ; dc = ( dc+olddc ) / 2 . ; end
106 %% FILTERING/MODIFICATION OF SENSITIVITIES MICRO
107 dcy ( : ) = Hy* ( dcy ( : ) ./Hsy ) ;
108 i f loop > 1 ; dcy = ( dcy+olddcy ) / 2 . ; end

The last step of the optimization procedure is the BESO update scheme. As presented
in [30], the BESO update scheme utilizes the sensitivities and the iteration target volumes
calculated in the previous steps to produce the new set of material densities. The update
scheme is implemented separately for the macro and micro-scales following Listing 7.

Listing 7 Update of design variables for the micro and macro scales

109 %% SOFT−BESO UPDATE OF DESIGN VARIABLES MACRO
110 l 1 = min ( min ( dc ) ) ; l 2 = max(max( dc ) ) ;
111 while ( l2 − l 1 ) /( l 1 + l 2 ) > 1e−3
112 lmid = 0 . 5 * ( l 2 + l 1 ) ;
113 x = max ( 0 . 0 0 1 , s ign ( dc−lmid ) ) ;
114 i f sum( x ( : ) ) > volx * nelx * nely , l 1 = lmid ; e l se , l 2 = lmid ; end
115 end
116 %% SOFT−BESO UPDATE OF DESIGN VARIABLES MICRO
117 l 1 = min ( min ( dcy ) ) ; l 2 = max(max( dcy ) ) ;
118 while ( l2 − l 1 ) /( l 1 + l 2 ) > 1e−3
119 lmid = 0 . 5 * ( l 2 + l 1 ) ;
120 y = max ( 0 . 0 0 1 , s ign ( dcy−lmid ) ) ;
121 i f sum( y ( : ) ) > voly * nlx * nly , l 1 = lmid ; e l se , l 2 = lmid ; end
122 end
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Lastly, due to the discrete nature of the material densities, the convergence criterion is
modified from the maximum change in the material density values to the change in the
objective function values.

5.2. MATLAB Implementation for 3D Design Space

The MATLAB implementation of the 3D multi-scale concurrent TO formulation was
based on the UCOpt3D MATLAB function published by Kazakis and Lagaros in [33].
Hence, similarly to the 2D implementation presented in the previous subsection, only the
parts modified to formulate the new optimization problem will be presented in the current
subsection. In addition, the name of the new MATLAB function is set as ConcTopBeso3D.

The first set of modifications is on the input and output parameters of the original
UCOpt3D function. The modifications are similar to the ones presented in the 2D version.
Thus, due to the two different scales present in the multi-scale optimization procedure,
variables vol f rac as well as rmin are replaced with vol f x, vol f y and rxmin, rymin, respec-
tively. Variables vol f x and vol f y refer to the target volume fractions of the macro and
micro-scale, respectively. Likewise, variables rxmin and rymin refer to the filter radius
of the macro and micro-scale, respectively. Additionally, the BESO evolutionary rate is
added in the form of the variable er and in this case the second Model Order Reduction
Model (MOR) is removed with the MOR applied only in the finite element analysis of the
macro-scale. Furthermore, four different output variables are set as c, CH, x and y referring
to the compliance, homogenized elasticity tensor, and material densities of the macro and
micro domain, respectively. Hence, the final form of the input function is formulated
following Listing 8.

Listing 8 Input and output parameters of the main function for the 3D problem

1 [ c ,CH, x , y]=ConcTopBeso3D ( lx , ly , lz , nelx , nely , nelz , nlx , nly , nlz ,
volfx , volfy , penal , rxmin , rymin , er , p )

Due to the UCOpt3D MATLAB function implementing the optimal material design
using TO, the x variable refers to the material densities of the micro-scale. Thus, in the
ConcTopBeso3D implementation, all references to x are modified as y. In addition to the
initialization of the material parameters, an extra variable is added, set as xmin, which
represents the minimum value presented in the expression of Equation (3). Moving to the
filtering and initialization sections, matrices H, Hs are initialized for both the macro and
micro-scale using the same procedure utilized in the UCOpt3D MATLAB function. In the
initialization section, in addition to the initialization of the material densities of the micro-
scale, the material densities of the macro-scale are set to have a value of one. Furthermore,
the variables volx, voly representing the target volume fraction for each iteration for the
macro and micro-scale, respectively, are also initialized to one.

Inside the optimization procedure, the modifications mirror the ones made in the 2D
implementation. Thus, an extra step for the update of the target volume fractions is added
at the start of the optimization procedure. Furthermore, the creation of the vector sK used
in the construction of the global stiffness matrix is modified according to the expression of
Equation (3) and thus formulated following Listing 9.

Listing 9 Computation of element stiffnesses into the sK variable

118 sK = reshape (KE ( : ) * ( xmin+x ( : ) ’ . ^ penal *(1 −xmin ) ) , 576* nelx * nely *
nelz , 1 ) ;

In the sensitivity analysis step, the sensitivity of the macro-scale is computed following
the implementation of the top3d presented in [28] whereas the sensitivity of the micro-scale
is computed following the existing implementation of the original UCOpt3D function. In
the filtering of the sensitivities, the filtering procedure follows the second option of the
original UCOpt3D function and similarly to the 2D implementation, an average of the
two last iterations is considered for the sensitivities. Regarding the BESO update scheme
implementation, similarly to the 2D version, the new sets of material densities are computed
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separately. The code of the implementation of the BESO update scheme remains the same
as the one implemented in the 2D version, due to the use of the MATLAB matrices.

6. Numerical Results

In this section, different test cases regarding the presented formulation are illustrated
in both 2D and 3D space. All test cases are taken from the literature and illustrate different
applications of the presented formulation. In all test cases, the final geometry of both
the macro and micro-scales is presented. The starting material densities for all test cases
regarding the macro-scale were set equal to the volume fraction target value. In the micro-
scale, the starting geometry was set as a solid domain with a hole at the center of the unit
cell and a radius of 1/3 the dimensions of the periodic unit cell. A graphical representation
of the unit cell geometry for both 2D and 3D is presented in Figure 1.

(a) (b)
Figure 1. Initial geometries of the periodic unit cell. (a) Initial geometry of 2D periodic unit cell.
(b) Initial geometry of 3D periodic unit cell.

To display the hole at the center of the 3D unit cell, the geometry presented in Figure 1b
illustrates only half of the periodic unit cell geometry. Regarding the 2D test cases, three
different examples were selected to be optimized. Each of these examples was chosen to
illustrate a different application of the methodology. In Figure 2, the design domains along
with the loading and boundary conditions for the three test examples are presented.

(a)
(b)

(c)
Figure 2. The 2D test cases. (a) Cantilever beam with fixed hole. (b) L-Shape. (c) Long cantilever beam.
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The first test case presented in Figure 2a refers to a cantilever beam with a hole applied
at one-third of its horizontal length and the middle of its vertical length. The second test
case presented in Figure 2b refers to the “L shape” geometry with a load applied at its right
edge, one-fifth from the bottom. The third test case presented in Figure 2c refers to a long
cantilever beam with the load applied at the middle of its left side. In all test cases, the
proportions of the horizontal and vertical dimensions are presented in their Figures. For
the optimization procedure, the L value was considered equal to 1.

There are two sets of parameters considered for the concurrent multi-scale TO formu-
lation. The first set consists of the geometry parameters, whereas the second set consists
of the optimization parameters. In all cases, the periodic unit cell was considered to have
square geometry, with a difference in scale of 10−5. The periodic unit cell geometry was
discretized with a grid of 50 × 50 finite elements in the directions of the abscissa and
ordinate. Additionally, the loading applied in all test cases denoted as P was equal to 1
and the material was set as an isotropic material with a Young’s modulus E equal to 1 and
Poisson’s ratio equal to 0.25. The applied grid discretizing of each test case was different
between them. Hence, the cantilever with a fixed hole test case was discretized with a grid
of 150 × 100 finite elements in the directions of the abscissa and ordinate whereas, the L
shape test case was discretized with a grid of 80 × 80 finite elements in the directions of the
abscissa and ordinate. Lastly, the long cantilever test case was discretized with a gird of
160 × 40 finite elements in the directions of the abscissa and ordinate.

Moving to the second set of parameters, i.e., the optimization parameters, in all test
cases a maximum number of optimization iterations was set equal to 200 and an optimiza-
tion tolerance of 1%. Additionally, the penalization factor for the SIMP interpolation scheme
was set equal to 3 and the reduction rate for the target volume for the BESO approach
was set equal to 5%. Regarding the periodic unit cell, a target volume fraction of 50%
was considered for all test cases and a sensitivity filtering technique for the BESO-based
approach. The filtering radius for the sensitivity filtering was set equal to 1.5 elements.
Regarding the macro domains, different target volume fractions were considered between
the test cases, and a sensitivity filtering technique was applied with different filtering radii
for each test case. For the cantilever beam with a fixed hole test case, a target volume
fraction of 50% and a filter radius of 6 elements were considered. In addition, the long
cantilever beam had a target volume fraction of 50% and a filter radius of 3 was considered.
Lastly, for the L shape test case, a target volume fraction of 30% and a filter radius of
3 elements were considered. The resulting optimal geometries for both the structural and
periodic unit cell are presented in Figure 3.

The call to the ConcTopOptBESO function for the three test cases is presented below
in Listing 10.

Listing 10 Optimization parameters for the three 2D test cases

1 [ c ,CH, x , y ] = ConcTopOptBESO
( 1 . 5 , 1 , 1 5 0 , 1 0 0 , 5 0 , 5 0 , 0 . 5 , 0 . 5 , 3 , 6 . 0 , 1 . 5 , 0 . 0 5 , p ) % C a nt i l e v e r

2 [ c ,CH, x , y ] = ConcTopOptBESO
( 1 , 1 , 8 0 , 8 0 , 5 0 , 5 0 , 0 . 3 , 0 . 5 , 3 , 3 . 0 , 1 . 5 , 0 . 0 5 , p ) % L−shape

3 [ c ,CH, x , y ] = ConcTopOptBESO
( 4 , 1 , 1 6 0 , 4 0 , 5 0 , 5 0 , 0 . 5 , 0 . 5 , 3 , 3 . 0 , 1 . 5 , 0 . 0 5 , p ) % long C a n t i l e ve r

For the implementation of the different support and loading conditions, Lines 15 and
16 are modified depending on the test case. For the cantilever test case, Lines 15 and 16 are
modified following Listing 11.

Listing 11 Loading conditions and fixed degrees of freedom for the cantilever test case

15 F = sparse ( 2 * ( nely +1) * ( nelx +1) ,1 , − load , 2 * ( nely +1) * ( nelx +1) , 1 ) ;
16 f i x ed d of s = 1 : 2 * ( nely +1) ;

For the L-Shape test case, Lines 15 and 16 are modified following Listing 12.
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Listing 12 Loading conditions and fixed degrees of freedom for the L-Shape test case

15 F = sparse ( 2 * ( nelx * ( nely +1)+nely *4/5+1) ,1 , − load , 2 * ( nely +1) * ( nelx
+1) , 1 ) ;

16 f i x ed d of s = union ( 1 : 2 * ( nely +1) : 2 * ( nely +1) * nelx + 1 , 2 : 2 * ( nely +1) : 2 * (
nely +1) * nelx +2) ;

(a) Cantilever beam with fixed hole

(b) L-Shape

(c) Long cantilever beam
Figure 3. The 2D test cases—Resulting geometries for both structural (macro-scale) and periodic unit
cell (micro-scale).

Lastly, for the long cantilever test case, Lines 15 and 16 are modified following
Listing 13.

Listing 13 Loading conditions and fixed degrees of freedom for the long cantilever test case

15 F = sparse ( 2 * ( nelx * ( nely +1)+nely /2+1) ,1 , − load , 2 * ( nely +1) * ( nelx +1)
, 1 ) ;

16 f i x ed d of s = 1 : 2 * ( nely +1) ;

In the implementation of the cantilever beam with fixed hole and L-shape test cases, a
set of passive elements is necessary to enforce part of the macro domain to be void. The
passive element implementation follows the implementation presented in top88 in [27].
Thus, a matrix called passive is initialized during the initialization step of the optimization
procedure following Listing 14 for the Cantilever.
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Listing 14 Initialization of the passive element variable for the cantilever test case

1 pass ive = zeros ( nely , nelx ) ;
2 f o r i = 1 : nelx
3 f o r j = 1 : nely
4 i f s q r t ( ( j −nely /2) ^2+( i −nelx /3) ^2) < nely /3
5 pass ive ( j , i ) = 1 ;
6 end
7 end
8 end

and following Listing 15 for the L-shape.

Listing 15 Initialization of the passive element variable for the L-Shape test case

1 pass ive = zeros ( nely , nelx ) ;
2 f o r i = 1 : nelx
3 f o r j = 1 : nely
4 i f i > nelx /3 && j < 2* nely /3
5 pass ive ( j , i ) = 1 ;
6 end
7 end
8 end

With the matrix passive initialized, two extra Lines are added inside the soft-BESO
update scheme of the macro-scale following Listing 16.

Listing 16 Implementation of the passive elements inside the optimization procedure

1 x = max ( 0 . 0 0 1 , s ign ( dc−lmid ) ) ;
2 x ( pass ive ==1) = 0 ;
3 x ( pass ive ==2) = 1 ;

Regarding the 3D test cases, two different examples were selected for optimization.
These examples are the 3D cantilever beam and the 3D wheel. A graphic representation of
these two test cases is also illustrated in Figure 4.

(a) 3D wheel
Figure 4. Cont.
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(b) 3D cantilever beam
Figure 4. 3D test cases.

The first test case presented in Figure 4a refers to the 3D wheel test example, whereas
the second test case presented in Figure 4b refers to the 3D cantilever beam. Similarly
to the 2D test cases, there are two sets of parameters considered. The first set consists
of the geometry parameters and the second set consists of the optimization parameters.
Similarly to the 2D test cases, in both test cases, the periodic unit cell was considered to
have square geometry, with a difference in scale of 10−5. The periodic unit cell geometry
was discretized with a grid of 20 × 20 × 20 finite elements in the directions of x, y and z,
respectively. Furthermore, the loading condition applied to both cases is denoted as P and
was set equal to one. The material was set as isotropic with Young’s modulus of one and
Poisson’s ratio of 0.25. The discretization of the first test case, i.e., the 3D wheel was set as a
grid of 40 × 20 × 40 finite elements in the directions of x, y and z, respectively. Whereas,
the discretization of the second test case, i.e., the 3D Cantilever beam was set as a grid
of 60 × 20 × 4 finite elements in the directions of x, y and z, respectively. The maximum
number of optimization iterations was set to 200, with an optimization tolerance of 0.1%.
The penalization factor for the SIMP implementation was set equal to 3 and the reduction
rate for the volume constraint was set equal to 5%. The target volume fractions were set
equal to 20% and 30% for the 3D wheel and the cantilever test case, respectively. In both
cases, a sensitivity filter was applied with an effective radius of 1.5 elements. The resulting
optimal geometries are presented in Figure 5.

(a) 3D Wheel
Figure 5. Cont.
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(b) 3D cantilever beam
Figure 5. The 3D test cases—Resulting geometries for both structural (macro-scale) and periodic unit
cell (micro-scale).

The call to the UCOpt3D for the two 3D test cases is presented in Listing 17.

Listing 17 Optimization parameters for the three 3D test cases

1 [ c ,CH, x , y]=ConcTopBeso3D
( 1 , 1 , 0 . 5 , 4 0 , 2 0 , 4 0 , 2 0 , 2 0 , 2 0 , 0 . 2 , 0 . 5 , 3 , 1 . 5 , 3 . 0 , 0 . 0 5 , p ) % 3D
Wheel

2 [ c ,CH, x , y]=ConcTopBeso3D
( 1 5 , 5 , 1 , 6 0 , 2 0 , 4 , 2 0 , 2 0 , 2 0 , 0 . 3 , 0 . 5 , 3 , 1 . 5 , 3 . 0 , 0 . 0 5 , p ) % 3D Wheel

For the implementation of the different support and loading conditions, Lines 12–19
are modified depending on the test case. For the 3D Wheel test case, Lines 12–19 are
modified following Listing 18.

Listing 18 Definiton of loading conditions and fixed degrees of freedom for the 3D wheel
test case

12 % USER−DEFINED LOAD DOFs
13 i l = nelx /2; j l = 0 ; k l = nelz /2; %

Coordinates
14 loadnid = kl * ( nelx +1) * ( nely +1)+ i l * ( nely +1) +( nely+1− j l ) ; % Node

IDs
15 loaddof = 3* loadnid ( : ) − 1 ; % DOFs
16 F = sparse ( loaddof ,1 , − load , ndof , 1 ) ;
17 % USER−DEFINED SUPPORT FIXED DOFs
18 i i f = [0 0 nelx nelx ] ; j f = [0 0 0 0 ] ; kf = [0 nelz 0 nelz ] ; %

Coordinates
19 f ixednid = kf * ( nelx +1) * ( nely +1)+ i i f * ( nely +1) +( nely+1− j f ) ; %

Node IDs
20 f ixeddof = [ 3 * f ixednid ( : ) ; 3* f ixednid ( : ) −1; 3* f ixednid ( : ) −2] ; %

DOFs

Whereas, for the 3D cantilever test case, Lines 12–19 are modified following Listing 19.

Listing 19 Definiton of loading conditions and fixed degrees of freedom for the 3D can-
tilever test case

12 % USER−DEFINED LOAD DOFs
13 i l = nelx ; j l = 0 ; k l = 0 : nelz ; %

Coordinates
14 loadnid = kl * ( nelx +1) * ( nely +1)+ i l * ( nely +1) +( nely+1− j l ) ; % Node

IDs
15 loaddof = 3* loadnid ( : ) − 1 ; % DOFs
16 F = sparse ( loaddof ,1 , − load , ndof , 1 ) ;
17 % USER−DEFINED SUPPORT FIXED DOFs
18 [ j f , kf ] = meshgrid ( 1 : nely + 1 , 1 : nelz +1) ; %

Coordinates
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19 f ixednid = ( kf −1) * ( nely +1) * ( nelx +1)+ j f ; %
Node IDs

20 f ixeddof = [ 3 * f ixednid ( : ) ; 3* f ixednid ( : ) −1; 3* f ixednid ( : ) −2] ; %
DOFs

7. Code Extensions

This section introduces the expansion of the MATLAB implementation discussed in
Section 5 to accommodate two-phase composite microstructures. Additionally, it includes
additional numerical tests to those presented in Section 6 that are compared to results
obtained from existing literature for assessment purposes.

7.1. Two-Phase Composites

In this sub-section, the extension of the two MATLAB codes for two-phase composite
microstructures is presented, along with the modification of the volume constraint applied
for the micro-scale to accommodate the two different materials. The integration of the
two different volume constraints into a single optimization constraint. The single volume
constraint is designed to enable the optimization algorithm to allocate the allowed volume
fraction target value between the micro and macro-scales. The extension for the use of two-
phase composite microstructures in the code implementations is relatively straightforward
through the use of the modified SIMP approach. Thus, in Equation (7) the second material
can be simulated by replacing the term Emin with the Young’s modulus of the second
material denoted as E2. Thus, if additionally term E0 is denoted as E1 representing the
Young’s modulus of the first material, the expression of Equation (7) is modified into the
Equation (22).

Eel(y) = E2 + yp
el · (E1 − E2) (22)

Thus, for elements with yel equal to one their Young’s modulus is equal to, E1 whereas
for elements with yel equal to zero their Young’s modulus is equal to E2. Another popular
implementation includes the modification of Equation (22) to a more straightforward
expression following Equation (23).

Eel(y) = yel · E1 + (1 − yel) · E2 (23)

where the sensitivity of the term Eel is following the expression of Equation (24).

∂E
∂yel

= E1 − E2 (24)

The modification of the volume constraint for the micro-scale is based on the constraint
presented by Yan et al. in [24]. Thus, in order to balance the two phases, the new volume
constraint in addition to the material densities y takes into consideration the difference
in density between the two phases. Therefore, the term V(y) of the volume constraint
presented in multi-scale problem formulation (1) is modified following the expression of
Equation (25).

V(y) =
nel

∑
el
(yel + (1 − yel) ∗

ρ1

ρ2
) (25)

where terms ρ1 and ρ2 refer to the densities of phases one and two, respectively.
The implementation of the two-phase composite microstructures into the two MAT-

LAB codes requires small changes. For the integration of the second Young’s modulus,
if the modified SIMP expression is not replaced with Equation (23), then the only change
in both codes is the introduction of the variable E2 which replaces variable Emin. If the
modified SIMP expression is replaced with Equation (23), then Lines 85 and 113 of the 2D
and 3D codes, respectively, are replaced with the following Lnes presented in Listing 20.
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Listing 20 Modified expressions for the Youg’s modulus for the two-phase composite
microstructure

1 E = y * E0 + (1 −y ) * E2 ;
2 dE = ones ( nly , nlx ) * ( E0 − E2 ) ; % 2D implementation
3 dE = ones ( nly , nlx , nlz ) * ( E0 − E2 ) ; % 3D implementation

Regarding the modified volume constraint, Lines 121 and 150 of the 2D and 3D codes,
respectively, are replaced with the following Line for the 2D presented in Listing 21.

Listing 21 Implementation of the microstructure volume constraint in 2D

1 i f sum( y ( : ) +(1 − y ( : ) ) * r ) > voly * nlx * nly , l 1 = lmid ; e l se , l 2 =
lmid ; end

And the following Line for the 3D presented in Listing 22.

Listing 22 Implementation of the microstructure volume constraint in 3D

1 i f sum( y ( : ) +(1−y ( : ) ) * r ) > voly * nlx * nly * nlz , l 1 = lmid ; e l se , l 2 =
lmid ; end

where variable r refers to the ratio of the densities of the two phases.
In the presented code implementations, the target volume fractions for the macro and

micro-scale are considered as a parameter of the optimization problem. Using different
combinations of these two target volumes can result in different objective function volumes.
To find the optimal combination of the two target volumes, the two volume constraints
can be combined into a single one, which is then imposed into the optimization procedure.
Thus, similarly to the constraint presented in [24], the single volume constraint follows the
expression of Equation (26).

(V(x)/Vx) · (V(y)/Vy) = f (26)

where the term V(y) follows the expression of Equation (25).
The implementation of the single constraint can be achieved by modifying the BESO

update step inside the optimization procedure. Hence, Lines 109–122 and 138–152 of the
2D and 3D implementations, respectively, are replaced with the following update scheme
presented in Listing 23.

Listing 23 Implementation of the BESO update scheme for the single volume constraint

1 %% SOFT−BESO UPDATE OF DESIGN VARIABLES
2 l 1 a = min ( dc ( : ) ) ; l1b = min ( dcy ( : ) ) ; l 1 = min ( l1a , l1b ) ;
3 l 2 a = max( dc ( : ) ) ; l2b = max( dcy ( : ) ) ; l 2 = max( l2a , l2b ) ;
4 while ( l2 − l 1 ) /( l 1 + l 2 ) > 1e−3
5 lmid = 0 . 5 * ( l 2 + l 1 ) ;
6 x = max ( 0 . 0 0 1 , s ign ( dc−lmid ) ) ;
7 y = max ( 0 . 0 0 1 , s ign ( dcy−lmid ) ) ;
8 i f sum( x ( : ) ) /nelx/nely * sum( y ( : ) +(1 − y ( : ) ) * r ) /nlx/nly > vol ,

l 1 = lmid ; e l se , l 2 = lmid ; end % f o r 2D
9 i f sum( x ( : ) ) /nele * sum( y ( : ) +(1 − y ( : ) ) * r ) /nlx/nly/nlz > vol ,

l 1 = lmid ; e l se , l 2 = lmid ; end % f o r 3D
10 end

7.2. Formulation Comparisons

In this part of the study, two test cases comparing the three different implementations
are presented. These implementations include the use of cellular material, composite
material, and the single volume constraint. Thus, the following notation is used subse-
quently for denoting the 3 formulations: Formulation I denoting the multi-scale concurrent
formulation with cellular material and two volume constraints; Formulation II denoting the
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multi-scale concurrent formulation with composite two-phase material and two volume
constraints; and Formulation III denoting the multi-scale concurrent formulation with com-
posite two-phase material and a single volume constraint. The first test case considered
refers to a cantilever beam, as illustrated in Figure 6.

Figure 6. Cantilever beam test case.

For this test case, the total volume target for all three implementations was considered
equal to 25%. This target volume is then divided into 50% for the macro-scale and 50%
for the micro-scale. Thus, the volume ratio in the case of the two volume constraints is
manually set, whereas for the case of the single constraint, the optimization algorithm will
decide it. The parameter setup for the long cantilever test case considered is formulated
following Listing 24.

Listing 24 Input parameters for the long cantilver beam test case

1 [ c , ch , x , y ] = ConcTopOptBESO
( 2 , 1 , 8 0 , 4 0 , 5 0 , 5 0 , 0 . 5 , 0 . 5 , 3 , 3 . 0 , 2 . 0 , 0 . 0 2 , p ) ;

The Young’s modulus considered was set equal to 2 for the main material and 1.5
for the secondary material, with a Poisson’s ratio of 0.3 for both. In addition, the second
material was considered to have a lower by eight times density than the main material.
The final geometries as well as the homogenized elasticity tensors for the three different
implementations are presented in Figure 7.

(a) Formulation I

(b) Formulation II

(c) Formulation III
Figure 7. Resulting optimal geometries and homogenized elasticity tensor for all three formulations.

In Figure 7a, the optimal geometries for the implementation with the utilization of
the cellular material and two volume constraints are presented. In Figure 7b, the optimal
geometries for the implementation with composite two-phase material and two volume con-
straints are presented. Lastly, in Figure 7c, the optimal geometries for the implementation
with composite two-phase material and a single volume constraint are presented.

The first implementation, which utilized a cellular material configuration for the
micro-scale achieved a relatively (to the other two) high value of the objective function
equal to 64.40. For the second case, where a composite material is utilized but the ratio of
volume fraction for the macro and micro-scales was set as an optimization parameter the
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value of the objective function was lower, equal to 18.30. In the third case, the optimal ratio
of the volume fractions between the two scales resulted as equal to 85.6% and 29% for the
macro and micro-scale, respectively. For this combination of volume fractions, the value of
the objective function achieved was the lowest of all three equal to 13.10.

In Figure 8, the evolution histories of the three different formulations are presented.
The figures display the total volume fraction, which is calculated as the product of the
volume fractions in the macro and micro domains. As depicted in these figures, the
third formulation exhibits a smoother transition in the objective function as it approaches
the optimization target of a 25% volume fraction.

(a) Formulation I (b) Formulation II (c) Formulation III

Figure 8. Evolution histories of the mean compliance and total volume fraction for the three formulations.

The second test case considered refers to a 3D MBB beam example, as illustrated
in Figure 9.

Figure 9. 3D MBB beam test case.

For this test case, the total volume target for all three implementations was considered
equal to 30%. For the formulation with two volume constraints, the total 30% is set as 50%
for the macro-scale and 60% for the micro-scale. In addition, the input parameters for the
3D MBB beam test case are formulated following Listing 25.

Listing 25 Input parameters for the 3D MBB beam test case

1 [ c , ch , x , y ] = ConcTopBeso3D
( 1 5 , 5 , 1 , 4 0 , 1 0 , 1 0 , 2 0 , 2 0 , 2 0 , 0 . 5 , 0 . 6 , 3 , 3 . 0 , 2 . 0 , 0 . 0 2 , p ) ;

Similarly to the 3D test cases presented in the previous section, the boundary and
loading conditions are provided by replacing the Lines 12–19 in the UCOpt3D function
following Listing 26.

Listing 26 Implementation of the loading conditions and fixed degrees of freedom in the
3D MBB beam test case

12 % USER−DEFINED LOAD DOFs
13 i l = nelx /2; j l = nely ; k l = nelz /2; %

Coordinates
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14 loadnid = kl * ( nelx +1) * ( nely +1)+ i l * ( nely +1) +( nely+1− j l ) ; % Node
IDs

15 loaddof = 3* loadnid ( : ) − 1 ; % DOFs
16 % USER−DEFINED SUPPORT FIXED DOFs
17 i i f = [0 0 nelx nelx ] ; j f = [0 0 0 0 ] ; kf = [0 nelz 0 nelz ] ; %

Coordinates
18 f ixednid = kf * ( nelx +1) * ( nely +1)+ i i f * ( nely +1) +( nely+1− j f ) ; %

Node IDs
19 f ixeddof = [ 3 * f ixednid ( : ) ; 3* f ixednid ( : ) −1; 3* f ixednid ( : ) −2] ; %

DOFs

Similarly to the 2D test case, the Young’s modulus for the main material was set equal
to 2, and for the secondary material, equal to 1.5, and the Poisson ratio was equal to 0.3 for
both materials. The resulting optimal geometries for both the macro and micro-scales are
presented in Figure 10.

In Figure 10b,c, both the unit cell and half of the unit cell are presented, both better
understanding of the final geometry. The first implementation presented in Figure 10a man-
aged to achieve an objective function value of 36.57 whereas the second implementation
presented in Figure 10b achieved an objective function value of 11.38. The third implemen-
tation presented in Figure 10c as expected achieved the lower value of the objective function
equal to 10.04. The optimal volume fraction achieved from the third implementation is
94.2% for the macro-scale and 31.8% for the micro-scale.

(a) Formulation I

(b) Formulation II

(c) Formulation III

Figure 10. Resulting optimal geometries for all three formulations.

8. Conclusions

The primary objective of this study was to present a straightforward and efficient
implementation of the concurrent multi-scale topology optimization (TO) formulation
using the BESO method. By optimizing both the micro and macro-scales concurrently,
the implementation ensures optimal topologies without the need for additional black-
and-white filtering techniques commonly required in SIMP-based implementations. In
our approach, the soft-BESO technique is employed in both the micro and macro-scales,
allowing for smooth and continuous transitions in the resulting optimal topologies. This
eliminates the issue of checkerboard patterns that can arise in certain TO implementations.
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As a result, the obtained optimal designs exhibit clear and well-defined structures, repre-
sented in black and white. The versatility of our implementation is demonstrated through
a range of test cases conducted in both 2D and 3D spaces. These test cases illustrate the
implementation’s capability to handle different structural configurations and complexities,
showcasing its potential across various practical applications. To further enhance and refine
our implementation, we welcome feedback and suggestions from the research community.
Interested parties may direct their inquiries or suggestions to the corresponding author
via email at nlagaros@central.ntua.gr. Collaborative efforts and constructive feedback will
help advance the field of concurrent multi-scale topology optimization and pave the way
for improved applications in engineering design and beyond. Furthermore, this work
includes the provision of the MATLAB implementation for the proposed methodology. The
code will be made available for better understanding and reproducibility of the results.
Additionally, a comparative investigation is carried out to assess the performance of the pro-
posed methodology in comparison to existing literature. This allows for a comprehensive
evaluation of its effectiveness and highlights any potential improvements or advantages it
may offer.

Our research results hold potential for various practical applications, which encom-
pass (i) Engineering Design, (ii) Material Design, and (iii) Multi-Functional Materials. The
findings from our study show promise for real-world engineering and material design
endeavors, offering advantages in terms of concurrent optimization and material flexi-
bility. However, it is essential to acknowledge that these benefits are accompanied by
computational costs and implementation complexities that require careful consideration
in practical applications. Looking ahead, future research and collaborative efforts could
focus on addressing these limitations to enhance the usability and applicability of our
proposed methodology. By tackling these challenges, we can further expand the scope
and impact of our research, leading to more efficient and effective solutions for a broader
range of engineering and material design applications. The complete MATLAB code
for both the 2D and 3D implementations is provided in the GitHub repository listed in
https://github.com/nikoslagaros/TOPcodes (accessed on 17 September 2023) here.
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