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Abstract: In recent years, joint entity–relation extraction (ERE) models have become a hot research
topic in natural language processing (NLP). Several studies have proposed a span-based ERE frame-
work, which utilizes simple span embeddings for entity and relation classification. This framework
addresses the issues of overlap and error propagation that were present in previous entity–relation
extraction models. However, span-based models overlook the influence of lexical information on the
semantic representation of the span and fail to consider relations with a strong intrinsic connection
between span pairs. To tackle these aforementioned issues, we present a new ERE model called ER-
LAC (Span-based Joint Entity and Relation Extraction Model with Multi-level Lexical and Attention
on Context Features). This model is designed with multi-granularity lexical features to enhance the
semantic representation of spans, and a transformer classifier is employed to capture the internal
connections between span pairs, thereby improving the performance of relational classification. To
demonstrate the effectiveness of the proposed model, ablation experiments were conducted on the
CoNLL04 dataset. The proposed model was also compared with other models on three datasets,
showcasing its computational efficiency. The results indicate that the introduced lexical features and
classifier enhance the F1 score for entity extraction by 0.84% to 2.04% and improve the F1 score for
relationship classification by 0.96% to 2.26% when compared to the previous state-of-the-art (SOTA)
model and the baseline SpERT model, respectively.

Keywords: named entity recognition; relation extraction; lexical features; internal connections;
natural language processing

1. Introduction

Entity and relation extraction (ERE) is the process of automatically identifying entities
and the relations between them from natural language text. This task includes two subtasks:
named entity recognition (NER) and relation extraction (RE). ERE plays a crucial role in
various applications [1]. In practical applications, entity–relation extraction techniques
have been widely used in knowledge graphs, question-and-answer systems, information
retrieval, intelligent customer service, and other fields. Traditional supervised entity–
relation extraction methods are mainly divided into feature engineering-based methods
and kernel function based methods [2,3]. However, these methods rely on manual feature
extraction, which can lead to issues such as error propagation and limited effectiveness in
capturing long-tailed entities and complex relations. In recent years, there has been a surge
of research on entity–relation extraction methods based on deep learning. These methods
have demonstrated consistent improvements in performance across multiple datasets [4–7].

Two commonly used categories of deep learning-based supervised methods for entity–
relation extraction are pipelined learning and joint learning. In pipelined learning, the entity
extraction task is performed first using approaches based on recurrent neural networks
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(RNNs), convolutional neural networks (CNNs), or long short-term memory (LSTM).
Subsequently, the relationship extraction task is carried out. For instance, MV-RNN [8]
was the first to propose using RNN for entity–relation extraction, building semantic vector
representations of words and phrases based on parse trees. However, this approach relies
on the syntax tree used in the process, and errors in syntactic analysis can affect the
final results of the model. Yan et al. [9] proposed a method for entity–relation extraction
based on LSTM by combining the shortest path of dependency analysis with word vector
features and lexical features. However, all of these methods encounter the issue of error
propagation, wherein an error in entity recognition can significantly impact the subsequent
relation extraction. Furthermore, the interdependence between the two subtasks of entity
extraction and relation extraction is frequently overlooked.

In contrast, the joint ERE model offers a specific methodological framework for ad-
dressing ERE tasks. This model leverages shared features and inherent connections between
the subtasks of entity extraction and relation extraction. By doing so, it efficiently and
effectively extracts entities and relations from textual data, resulting in improved perfor-
mance [4]. This approach can also avoid problems with error propagation. Deep learning
models based on sequence labeling frameworks are a common method for joint extrac-
tion of entity and relations. However, they are unable to identify overlapping entities,
which are frequently found in natural language [5,10]. To overcome this limitation, pointer
network-based approaches have been proposed, which use multiple pointer networks for
multi-sentence annotation and multiple tags to represent a sentence [11,12]. However,
such an approach may suffer from label imbalance. Therefore, more recent methods are
attempting to use novel span-based entity–relation joint extraction models to handle ERE
tasks [13–15].

In the span-based joint entity–relation extraction method, word spans in a sentence
are enumerated, and the representation embedding of spans is shared in one model to
accomplish the tasks of NER and RE. This method overcomes issues such as overlapping
entity recognition and repeated encoding in entity–relation joint extraction models [13–15].
For this method, named entity recognition is regarded as a classification task for each
word span sample, and relation extraction is treated as a relation classification task for
the combinations of spans and context embeddings. Fundamentally, the entity–relation
joint extraction task is transformed into an entity and relation classification task based on
span representation embedding in the method. Therefore, the representation embedding of
spans has a significant impact on the model performance. Previous studies have optimized
the span embedding representation to improve the performance of the model on entity
and relation extraction [1,6,7,13,14,16–18]. For instance, Dixit et al. [13] and Luan et al. [1,6]
used Bi-LSTM to obtain global span representation, which enhanced span representation
richness by encoding information of bidirectional sequential context in a span, and im-
proved model effectiveness. DyGIE++ [7] and SpERT [14] used pre-training models to
enhance span representation, fused span representation based on pre-training models
trained on large-scale corpus, and made the span representation have more extensive and
accurate semantic expression. However, most studies on span representation embedding
currently ignore the multi-level grammatical structure information in text. Most multi-span
representations used for relationship classification also adopted simple concatenation and
lack detailed semantic expression of contextual words in spans. At the same time, although
the pre-training models with an attention mechanism have been used for span-based joint
entity–relation extraction methods to obtain initial word embeddings, existing models still
lack dynamic attention weighting for complex span or span pair embeddings in entity
recognition and relation extraction tasks. These issues significantly limit the performance
of the span-based joint entity–relation extraction models.

To address the aforementioned issues, the span-based joint entity and relation extrac-
tion model with multi-level lexical and attention on context features (ER-LAC) is proposed
in this paper. In this model, multi-level lexical information, including coarse-grained and
fine-grained lexicon features, is integrated into the span embedding representation for
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both NER and ER tasks. Coarse-grained and fine-grained lexical features are encoded at
the span and token levels, respectively, and combined with the original span embeddings
to form enriched span embeddings with lexical information. Furthermore, multi-head
self-attention modules [19] are employed in both sub-tasks, dynamically weighting span
representations based on the intrinsic correlations among different feature dimensions
of the spans, to improve the performance of the model on named entity recognition and
relation extraction. The proposed model has been comprehensively evaluated on three com-
monly used entity–relation extraction datasets, and it is observed that the proposed model
achieves 0.84% and 0.96% F1 score improvements over the SOTA models in NER and RE
sub-tasks, respectively. The main contributions of this work are listed as follows:

1. A multi-level lexical feature embedding method enhanced for span embedding rep-
resentation was proposed, which enhances the semantic expression ability of span
embedding representation in entity recognition and relation extraction through coarse-
grained and fine-grained lexical feature embedding encoding at the span level and
token level.

2. A relation extraction submodule based on a transformer encoder structure with multi-
head self-attention was proposed, which can enhance the model’s relation extraction
performance by extracting temporal information of words in span and allocating
self-attention weights accordingly.

3. The proposed model was found to outperform other SOTA models in three commonly
used entity–relation extraction datasets.

In the remaining part of the paper, the related works that are relevant to the proposed
method in this paper are introduced in Section 2. Then, in Section 3, a detailed description
of the proposed method is provided. The experimental setup and results are presented and
then a discussion of the method and experimental results is given in Section 4. Finally, in
Section 5, the conclusion of this work is given.

2. Related Work

Traditional methods for entity and relation extraction usually adopt a pipeline learning
framework in which entity and relation extraction tasks are treated as two independent
and sequential tasks. Although this framework is flexible, it has limitations such as the
possibility of errors in named entity recognition affecting the accuracy of subsequent
relation extraction tasks, and the neglect of the inherent connections between entities and
relationships, leading to insufficient semantic expression in single-task modeling, which
restricts model performance [9,20]. Recently, joint extraction methods have been widely
used, which use a unified model for learning and extracting entities and relationships. This
approach can integrate the unique information of entities and relationships, enriching the
features used in both sub-tasks, and training entity recognition and relationship extraction
tasks simultaneously can facilitate optimization and improve the performance of both
tasks [6].

There are three commonly used joint extraction models: sequence labeling models,
pointer network models, and span-based models. Sequence labeling models are commonly
used in named entity recognition and convert the joint extraction task into a sequence
labeling prediction task, allowing for the extraction of entities and relations in a single
model. Yuan et al. [10] used a relation-aware attention mechanism to construct specific
sentence representations for each relation, and then performed sequence labeling to extract
their corresponding head and tail entities. Zheng et al. [5] proposed a new labeling scheme
and an end-to-end model with a biased objective function to jointly extract entities and
their relations. However, this model cannot handle the problem of entity overlap.

The pointer network is a more complex sequence labeling model that uses multiple
annotation sequences to represent entities in a sentence and classifies the relationships
between entities, thereby solving the problem of entity–relation overlap. Park et al. [21]
proposed a relation extraction model based on a double pointer network with multi-
head attention mechanism, using the forward decoder of an object decoder to find n-to-1
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subject–object relationships and the backward decoder of a subject decoder to find 1-to-n
subject–object relationships. Mukherjee et al. [11] adopted an encoder–decoder architecture
with a pointer network-based decoding framework, which generates a complete opinion
triplet at each time step. The decoder captures the interaction between aspects and opinions
by considering their entire detection span while predicting their connection sentiment. On
the other hand, Guo et al. [12] proposed a novel BERT-based enhanced lexical adapter
(BLA) model, which deeply integrates external dictionary features into the pre-trained
language model BERT. However, the pointer network is vulnerable to imbalanced labels,
which affects its performance, and its decoding process is complicated, requiring a special
program to determine entities based on the pointer network results.

Span-based models identify all possible word spans in text and construct a classifi-
cation module to predict whether a span is an entity and whether there is a relationship
between entities. This type of model can directly obtain entities and relations, solving
the problem of entity–relation overlap, and does not require a complex transformation
process from labels to entities, making it currently the more advantageous method for
joint entity–relation extraction. Several span-based models have been proposed, such as
DyGIE [6], which uses a dynamically constructed span graph to share span representations,
propagate coreference relationships and relation types in the dynamic graph, and facilitate
iterative updates of the span representations. DyGIE++ [7] extended the DyGIE model by
integrating global and local information to assist tasks, and uses BERT to construct span
representations, while SpanProto [16] introduced global boundary matrices to learn span
boundary information and uses prototype learning and margin-based learning to train
the model. Ji et al. [17] proposed a span-based joint extraction framework that generates
semantic representations for specific spans and contexts based on attention. Ye et al. [18]
proposed a new span representation method called the Padding and Layered Marker (PL-
Marker), which strategically wraps markers in the encoder to consider the relationships
between spans, especially using a neighborhood-based packing strategy to model entity
boundary information more effectively. Shen et al. [22] constructed a memory module to
remember the category representations learned in entity recognition and relation extraction
tasks, and design a multi-level memory flow attention mechanism to enhance bidirectional
interaction between entity recognition and relation extraction. These models perform entity
and relation classification as two-stage subtasks in a single model. However, enumerating
all spans could cause a problem of sample imbalance, as most sentences likely contain
few relations between entities. SpERT, a span-based model proposed by Eberts et al. [14],
addresses this issue by sampling spans before entity classification and generating negative
samples that are strongly negatively related to the positive samples, thereby balancing the
training data.

However, the approach described above overlooks the impact of lexical information
on the span-based models. Wei et al. [23] proposed a method that considers the advantages
of Bi-LSTM in capturing bidirectional semantic dependencies and the attention mechanism
in assigning different weights to different parts-of-speech features of words, and combines
them to perform entity–relation extraction. Jiang et al. [24] proposed a BERT-BiLSTM-CRF
model that integrates part-of-speech (POS) features and regularization methods (BBCPR).
However, lexical features and the structures with multi-head self-attention, such as trans-
former encoder, have not been utilized by span-based models. This may enhance the rich
semantic expression of spans based on the advantage of resolving overlapping entities in
a span-based model and improve the performance of entity and relationship recognition
by filtering effective information through multi-head self-attention. In this paper, we pro-
pose a method that enhances the span using multi-level lexical features. Additionally, we
introduce an attentional sequential learning structure based on the transformer encoder
in the relationship extraction process, which enables the adaptive capturing of intrinsic
connections and contextual information between span pairs, improving performance of
ERE tasks.
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3. Methods

The structure of the proposed span-based joint entity and relation extraction model
with multi-level lexical and attentional context features (ER-LAC) is shown in Figure 1. The
proposed model consists of three parts: a multi-level lexical feature extraction module, an
entity classification module, and a relation classification module with attentional context
features. The multi-level lexical feature extraction module extracts the part-of-speech (POS)
tags of words based on the original text, and then encodes the POS tags that frequently
occur in entities and relationships. The POS tags are then fused at both the word and span
levels into the original span embedding representation. The enhanced span representation
is then classified in the entity classification module to recognize named entities. The
recognized named entities are then input into the relation classification module, which
uses a transformer structure to extract contextual relationships with attention within and
between entities, and extracts relations between entities.
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Figure 1. The BERT pre-trained model obtained token embeddings and a sentence embedding C.
Two types of POS embeddings were proposed to enhance the span embeddings. The enhanced span
embeddings were used in the entity classification stage. The embeddings of span pairs and a center
embedding with local information were used in the multi-label relation classification stage. The
relation classifier used a transformer encoder to extract internal connections between spans.

3.1. Multi-Level Lexical Features Extraction Module

The multi-level lexical feature extraction module first acquires the key POS tags from
the original text and encodes each POS tag into an embedding, which is only related to
the POS tags. At the same time, a pre-trained language model, BERT, is used to obtain
word embeddings for each word. The POS tag embedding representation is then converted
into fine-grained and coarse-grained feature representation vectors at the word and span
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levels, respectively, and combined with the word embeddings to form a span embedding
representation with multi-level lexical feature enhancement.

3.1.1. Acquisition of POS Tags

The CoNLL04 [25] dataset was used as a basis for extracting and analyzing the part-
of-speech (POS) tags highly associated with named entities, and a POS tag table was
determined for POS tag embedding based on the analysis results. The number of corre-
sponding words, entities, and related entities for different POS tags in the CoNLL04 dataset
were extracted using the NLTK toolkit [26], as shown in Table 1.

Table 1. The numbers of word tokens, entities and entities with relations related to different POS tags
in the CoNLL04 dataset.

Type of
the POS Tag

Meaning of
the POS Tag Word Tokens Entities Entities with

Relations

NNP and NNPS Proper noun 3045 1125 868
JJ Adjective 308 96 73

IN conjunctions 113 17 10
VB Verb 123 40 26
RB Adverb 37 26 18
DT Determiner 73 16 9

NN and NNS Noun 5061 3575 2914
CD Cardinal number 503 253 10

Others Other parts of speech 279 15 10

It can be observed from the statistical results in Table 1 and the case depicted in
Figure 2, that nouns or nouns with modifiers are mostly present in named entities and
those with relationships. The POS tags, such as proper nouns singular (NNP), proper
nouns plural (NNPS), nouns singular or plural (NN) or nouns plural (NNS), etc., are
often observed. Therefore, it can be concluded that the lexical feature could be crucial
prior knowledge for entity and relationship extraction tasks. Forty-five types of POS tags
were used in the enhanced span embedding in this work, such as NNP, NNPS, NN, NNS
and others.
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Figure 2. An example of lexical properties. The line above the sentence shows the POS annotations
of each word in the sentence. In the sentence, the entities were highlighted in blue. The relation was
highlighted in green. As can be seen, the POS tags of words in most entities were NNP or NN.

To incorporate POS tags into span representation embedding, the NLTK tool is used
to extract the POS tags of word tokens and spans, and then the POS tags are converted into
embedding representation. The POS tag of a token or a span is defined by:

Pti = POS(ti), Psi = POS(si) (1)

POS is the POS tag recognition function provided by the NLTK toolbox. Pti is the POS
tag of the ith word token ti. Psi is the POS tag of the ith span si, which is the combination of
word tokens in the span:

si =
{

tj, tj+1, . . . , tj+m−1
}

(2)

These POS tags are then converted into two types of lexical feature embeddings at
span-level and token-level, then transformed into coarse-grained and fine-grained POS em-
beddings, respectively, where they are used to enhance the span embedding at two levels.
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3.1.2. Coarse-Grained and Fine-Grained POS Embedding

Coarse-grained POS embedding is an Nc dimensional embedding representation
obtained by converting the POS tag at the span level. It is calculated by embedding the
POS tag by Equation (3):

ec
i = Ec(Psi), ec

i ∈ RNc (3)

ec
i is the Nc dimensional coarse-grained POS embedding of span si. Ec is the trainable

embedding function that is commonly used in deep learning. Ec maps a POS tag ID into a
Nc dimensional vector. Nc is the dimension of the coarse-grained POS embedding, which
is a hyperparameter.

The lexical information of each word within a span is calculated as the fine-grained
POS embedding at token level. It calculates the embedding vector of each word POS tag in
a span by Equation (4):

et
j = Ef

(
Ptj

)
, et

i ∈ RNf (4)

et
j is the POS embedding of token tj, which converted the POS tag tj into a Nf dimen-

sional vector. Nf is a hyperparameter. However, each span contains a different number
of POS embeddings of tokens, which cannot be simply concatenated to form the embed-
ding vector of a span. Therefore, a weighted sum embedding vector was calculated by
these embeddings of tokens to form the fine-grained POS embedding vector of a span, by
Equation (5):

ef
i = ∑j+m−1

k=j wket
k, ef

i ∈ RNf (5)

ef
i is the Nf dimensional fine-grained POS embedding vector of span si. wk is the

trainable weight for token k in the span.

3.2. Entity Classification Module
3.2.1. Acquisition of Raw Span Embedding

The text features of input sentences are calculated with n word tokens D = {t1, t2, . . . tn}
by Equation (6):

{e1, e2, . . . en, C} = BERT(D), ei ∈ RNd (6)

BERT is the pre-trained BERT model. ei is the raw word embedding calculated by
BERT. C is the sentence embedding. Nd is the dimension of the word vector output by
BERT. The maximum pooling function is used to obtain the raw span embedding vector es

i ,
calculated by Equation (7):

es
i = maxpool

(
ej, ej+1, . . . ej+m−1

)
(7)

ej, . . . , ej+m−1 are the word embeddings of word tokens tj, tj+1, . . . , tj+m−1 in span si.

3.2.2. Lexical Feature Enhanced Entity Classification

The span embedding representation utilized in the entity extraction stage of the
proposed model is composed of the raw span embedding, a sentence embedding, a width
embedding, coarse-grained POS embeddings, and fine-grained POS embeddings. Coarse-
grained and fine-grained POS embeddings are used to enhance and highlight the part-of-
speech features in the span. The enhanced span feature is shown in Figure 3. For example,
for a span “Hakawati Theatre”, the POS of span “NNP” is obtained using NLTP toolbox, an
embedding layer Ec is used to convert the POS of span into coarse-grained POS embedding
ec. Then, the POS tags of words in spans are obtained, “NNP” for “Hakawati” and “NNP”
for “Theatre”. The POS embedding of each POS of word token et is converted by embedding
layer Ef. Next, the fine-grained POS embedding is obtained from et using Equation (5). The
enhanced embedding of span is composed of ef, ec, the raw span embedding, a sentence
embedding and a width embedding.
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Figure 3. The span for entity classification mainly consists of five parts: first, the basic span embedding
obtained through maximum pooling (blue), then the width feature of the span (deep purple), sentence
vector C as the classification vector for entity classification (light purple), fine-grained part of speech
embedding obtained by calculating the part of speech feature of the word vector within the span
(orange), and coarse-grained part of speech embedding (brown) obtained by calculating the part of
speech features of the span.

In entity classification, the width of the span was embedded by Equation (8):

em
i = Em(mi), em

i ∈ RNm (8)

em
i is the width embedding. Em is the embedding function for width. mi is the width

of span si, which is the number of words in the span si. Nm is the dimension of width
embedding which is a hyperparameter. All the embeddings of a span were concatenated
and form the span vector as

i for classification by Equation (9):

as
i = concat

(
es

i , em
i , C, ec

i , ef
i

)
, as

i ∈ RNs (9)

as
i is the span embedding enhanced by the lexical feature used for named entity

recognition, which contains the raw span embedding es
i , the width embedding em

i , the
sentence embedding C, and two POS embeddings (ec

i and ef
i). Ns = Nd ∗ 2+Nm +Nc +Nf.

Finally, a fully connected layer with softmax function is used to calculate the probabil-
ity of entity for a span using Equation (10):

ŷe
i = softmax(Was

i + b) (10)

ŷe
i is the probability of predicting to be an entity for span si. W and b are the trainable

weight and bias in the fully connected layer.
After the entity classification, spans that were predicted not to be entities were filtered

and did not enter the following relation classification.

3.3. Relation Classification Module

After the named entity recognition, span pairs were selected from the set, S, of spans
predicted to be entities for relation classification. Since relations have asymmetry, the input
span pair si, sj is different from span pair sj, si for the relation classification.

In the relation classification, a context embedding vector is used for extracting the
local context information between span si and span sj, which is calculated by Equation (11):

ci,j = maxpool(ek, ek+1, . . . , el), l ≥ k (11)
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ci,j is the context embedding vector between span si and sj. When span si and sj
overlap, we define ci,j = 0. ek, ek+1, . . . , el are the embeddings of word tokens between the
span pair.

The span embedding used in the relation extraction is calculated by Equation (12),
where N1 = Nf ∗ 2 + Nd + Nm:

ar
i = concat

(
es

i , em
i , ec

i , ef
i

)
, er

i ∈ RN1 (12)

The span embeddings for relation extraction of the two spans ar
i , ar

j and the context
embedding vector are concatenated and used in relation classification. The bidirectional
relation embeddings ar

I,j and ar
j,i are composed of two span embeddings and the context

embedding vector, where Na = N1 ∗ 2 + Nd:

ar
i,j = concat

(
ar

i , ci,j, ar
j

)
, ar

i,j ∈ RNa

ar
j,i = concat

(
ar

j , ci,j, ar
i

)
, ar

j,i ∈ RNa
(13)

Then the transformer encoder is used for classifying the relation embeddings, shown
in Figure 4. Relation classifiers use a transformer encoder with the sigmoid function to
calculate the probability of each relation type.
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The intrinsic connection between span-pair embeddings is captured and learned using
a multi-head self-attention layer, which contains multi-head self-attention encoder, and in
the experiments, the number of self-attention encoder is set to H = 4. Each self-attention
encoder contains three learnable parameters WQ, WK, WV, used to obtain Q, K and V.
Each of the three fully connected layers are defined as learnable parameters.

Qr
i,j,h = WQh

(
ar

i,j

)
, Kr

i,j,h = WKh

(
ar

i,j

)
, Vr

i,j,h = WVh

(
ar

i,j

)
(14)

h denotes the h-th self-attentive encoder. The result of multiplying the query matrix
Q with K is divided by the dimension of the input ar

i,j to obtain the scaled dot product
attention. Afterwards, softmax transforms probability scores, which are multiplied with
the matrix V to obtain the output weight Zr

i,j,h for each self-attention layer.

Zr
i,j,h = softmax(

Qr
i,j,h ×Kr

i,j,h
>

√
Na

)Vr
i,j,h (15)
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where Na is the feature dimension of input ar
i,j. The output Zr

i,j,h obtained from each
self-attention layer is stitched together to obtain the output Zr

i,j of the multi-head self-
attention layer:

Zr
i,j = ar

i,j·concat
(
Zr

i,j,1, Zr
i,j,2, . . . Zr

i,j,H
)
, Zr

i,j ∈ RNa (16)

The output is processed using residual joins as well as layer normalization.

Or
i,j = Layer norm

(
ar

i,j + Zr
i,j
)
, Or

i,j ∈ RNa (17)

Considering that the attention mechanism is not sufficient for fitting complex processes,
a feedforward connection layer is used to enhance the model fitting ability. After the
feedforward layer, the final output was obtained by using residual connections again, and
layer normalization.

Er
i,j = Layer norm

(
feed forward

(
Or

i,j

)
+ Or

i,j

)
, Er

i,j ∈ RNa (18)

The predicted results of the relation classifier are defined in Equation (19):

ŷr
i,jk = σ

(
T
(
WEr

i,j + b
))

, 1 ≤ k ≤ Tn (19)

where T denotes the the transformer encoder. ŷr
i,jk is the predicted probability of the kth

relation from span si to sj. σ is the sigmoid function. Nr is the number of relation types. If
all the ŷr

i,jk for Nr relations were below threshold (generally 0.5), the model would predict
no relation from si to sj. If any ŷr

i,jk was above the threshold, the model would select all kth
relations as the predicted relations.

3.4. Loss Function

We define the loss function L as the sum of the entity classification loss function and
the relation classification loss function. The loss function Lner for entity classification is the
cross-entropy and the loss function Lrel for relation classification is the average value of
binary cross-entropy for each relation type, calculated by Equations (20)–(22).

Lner = −
1

Nner
∑Ne

i=1 ye
i ln ŷe

i (20)

Lrel = −
1

Nrel
∑Nr

i=1 yr
i log ŷr

i + (1− yr
i )log

(
1− ŷr

i
)

(21)

L = Lner + Lrel (22)

Nner and Nrel represent the number of samples of entities and relations.

4. Discussion
4.1. Datasets and Experiment Setups

The proposed model was evaluated in three commonly used public ERE datasets:
CoNLL04 [25], ADE [27], and SciERC [1].

The CoNLL04 dataset contains sentences with annotated named entities and relations
extracted from news articles. It contains a training set consisting of 1153 texts and a test
set consisting of 288 texts written in English. The dataset comprises four entity types
(persons, locations, organizations, and others) and five relation types (Work-For, Kill,
OrganizationBased-In, Live-In, and Located-In). The partition of the CoNLL04 dataset that
was used for testing SpERT [14] and DyGIE++ [7] is utilized in the experiments.

The ADE dataset contains Medline case reports in which drugs, adverse effects, doses,
and their relations were annotated. Entities and relations are systematically annotated to
ensure data quality. Experiments were conducted using ten-fold cross-validation with a
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total sample size of 4272. For each validation, 3845 samples were used for training and the
rest of the 427 samples were used for testing.

The SciERC dataset includes annotations of scientific entities, the relations between
them, and co-citation clusters for 500 scientific abstracts. These abstracts are extracted from
the AI conference/workshop proceedings. We used the same dataset partition as in [1],
containing a training set (1861 sentences), a development set (275 sentences) and a test (551
sentences). For the actual training, we used both the training set and the development set
together for training. The details of the three datasets are shown in Table 2.

Table 2. The details of the three datasets.

Datasets Entities Relations Total Number of Samples Cross-Validation

CoNLL04 5349 2048 1441 NO
SciERC 8089 4716 2687 NO

ADE 10,839 6821 4272 YES

In the experiments, we evaluated the proposed model using the predefined training
and test datasets in CoNLL04 and SciERC. Additionally, the model was evaluated in the
ADE dataset using ten-fold cross-validation. To test the performance of the proposed lexical
features and the transformer encoder for relation classification, ablation experiments were
conducted based on a basic span-based ERE model SpERT in the CoNLL04 dataset [14].
The proposed model was compared with several state-of-the-art (SOTA) entity–relation
extraction models on the three datasets. The performance of each model was evaluated
using precision, recall, and F1 scores in both ablation experiments and comparisons with
other models, and the advantages of the proposed method were analyzed as well. However,
the proposed method has more added features and network structures, which may result
in additional computational complexity. To ensure that the proposed model did not have
too much of an increase in computational complexity compared to the basic SpERT model,
a computational complexity analysis of the proposed method was conducted.

The hyperparameters were manually optimized and set as follows: batch size = 2,
learning rate = 5e− 5, number of epochs = 20, Nr = 5, m is the width of spans, 1 ≤ m ≤ 10,
Nc = 100, Nf = 50, Nm = 20. The hyperparameters used in the proposed model were
manually optimized and set to the same values as in SpERT, and the AdamW optimizer
was used. The experiments were implemented on a workstation with 24 CPU cores, 64G
RAM, one NVIDIA RTX 3090 GPU, CentOS 7.5, Python 3.6, and Pytorch 1.9.0.

4.2. Experiment Result
4.2.1. Ablation Experiments

Ablation experiments were conducted on the CoNLL04 dataset to verify the effective-
ness of multi-level lexical features and the transformer encoder in relation classification.
The SpERT model was used as the baseline model, and the proposed features and classifiers
were added to the SpERT model to evaluate the effectiveness of the proposed methods. All
gains in the experiments were absolute gains. Six different models were built as follows,
based on the SpERT model and adding the proposed features or classifiers:

1. SpERT+E
(
ec

i
)
: SpERT model with coarse-grained POS embedding in the entity classification;

2. SpERT+E
(
ef

i
)
: SpERT model with fine-grained POS embedding in the entity classification;

3. SpERT+E
(
ec

i + ef
i
)
: SpERT model with coarse-grained and fine-grained POS embed-

ding in the entity classification;
4. SpERT+R

(
ec

i
)
+ E

(
ec

i + ef
i
)
: Model 3 with coarse-grained POS embedding in the

relation classification;
5. SpERT+T: SpERT model with the transformer encoder;
6. SpERT+R

(
ec

i
)
+ E

(
ec

i + ef
i
)
+ T Model 4 with the transformer encoder.

The results of the ablation experiments are shown in Table 3, and all evaluation metrics
in the experiment were calculated using macro-averaged values. It can be seen from the
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analysis of models 1 and 2 that the performance of the entity recognition and relation
extraction subtasks can be improved by adding fine-grained and coarse-grained POS
features. The impact of coarse-grained POS features is greater, and the F1 scores of entity
and relation extraction are increased by 0.85% and 0.99%, respectively, compared with the
baseline model. The fine-grained POS features improved the F1 scores of entity recognition
by 0.31% and 0.36% relative to the baseline model. In model 3, both fine-grained and
coarse-grained POS features were added in the entity–relation extraction subtask, and the
results showed that adding both features to the entity subtask can improve the performance
of entity recognition and relation extraction. The F1 scores were increased by 0.95% and
1.31%, respectively, compared with the baseline model. In model 4, coarse-grained POS
features were added in the relation classification subtask based on model 3. The results
showed that the F1 scores of model 4 were increased by 0.25% and 0.69% relative to model 3,
and by 1.2% and 2.00% relative to the baseline model. This indicates that the proposed POS
features can not only improve the performance of the overall task in the entity recognition
subtask, but also have a promotion effect on the overall performance of the model in the
relation extraction subtask. As the impact of fine-grained POS features is small, fine-grained
POS features were not added separately in relation classification.

Table 3. Results of ablation experiments on the dataset CoNLL04. The SpERT model was used
as the baseline model. The macro precision, recall and F1-scores were calculated for named entity
recognition (NER) and relation extraction (RE) subtasks. The bolded portion indicates the best result
for each column.

Experiment
NER (%) RE (%)

Precision Recall F1-Score Precision Recall F1-Score

SpERT 85.78 86.84 86.25 74.75 71.52 72.87
SpERT+E

(
ec

i
)

88.47 85.98 87.06 (±0.12) 73.38 75.22 73.86 (±0.14)
SpERT+E

(
ef

i
)

87.06 86.23 86.56 (±0.28) 76.33 70.89 73.23 (±0.50)
SpERT+E

(
ec

i + ef
i
)

87.34 87.17 87.20 (±0.14) 75.70 72.98 74.18 (±0.11)
SpERT+R

(
ec

i
)
+ E

(
ec

i + ef
i
)

89.33 86.00 87.45 (±0.27) 75.46 74.56 74.87 (±0.10)
SpERT+T 88.60 86.23 87.28 (±0.56) 74.88 73.46 74.16 (±1.03)

SpERT+R
(
ec

i
)
+ E

(
ec

i + ef
i
)
+ T 87.81 88.80 88.29 (±0.22) 75.72 74.91 75.13 (±0.33)

Model 5 added a transformer encoder for classification in the relation classification task
compared to the baseline model. The results showed that adding a transformer encoder
alone can increase the F1 scores of entity recognition and relation extraction by 1.04% and
1.29%, respectively. Model 6 added a transformer encoder in the relation classification task
based on model 5, which fully utilized the multi-level lexical features proposed in this
paper and the transformer encoder in relation classification. The results showed that the
F1 scores of model 6 were increased by 1.01% and 0.97% compared with model 5, and by
2.04% and 2.26% relative to the baseline model. This indicates that the transformer encoder
model in the relation classification task can not only improve the baseline model alone, but
also have a significant improvement effect on the performance of the baseline model when
combined with POS features. The results of the above ablation experiments also show that
the lexical features and the transformer encoder in the relation classification proposed in
this paper are important for entity–relation extraction tasks, which can greatly improve the
comprehensive performance of the span-based entity–relation joint extraction model.

Figure 5 shows the confusion matrix of the final model tested on the dataset CoNLL04,
with the baseline results, including entity classification as well as relation classification. It
can be seen that our proposed ER-LAC model, model 6 in the ablation experiments, has
better classification results than the base model for both subtasks, which illustrates the clear
advantage of our proposed method in the entity–relation extraction task.
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4.2.2. Comparison with Other Models

The proposed ER-LAC model was also compared with other SOTA models on three
datasets. The results with the CoNLL04 dataset are shown in Table 4. Since other models
reported the performance of the model using micro-averaging and macro-averaging metrics,
we calculated the micro-averaged and macro-averaged evaluation metrics of the proposed
model in the entity recognition and relation extraction subtasks. It can be seen that the
proposed model can achieve the highest F1 score in the relation extraction subtask, with a
macro F1 score of 75.13% and a micro F1 score of 73.04%, which are 2.26% and 1.57% better
than the best-performing SOTA models, respectively. The micro F1 score of the proposed
model in the entity recognition subtask reached the highest at 90.47%, which is 0.69% better
than the best-performing model. Although the macro F1 score of entity recognition did
not reach the highest level, it was second only to the TriMF model [22]. However, the
same model has a much higher score in relation extraction than other models, indicating
that the reason for the proposed model’s macro F1 score not reaching the highest in entity
recognition may be due to the fact that the entity–relation joint extraction task is more
biased towards relation extraction.

Table 5 shows the results of the proposed model and other SOTA models on the ADE
dataset. The evaluation metrics for all models were based on macro-averaged values. It can
be seen that the proposed model achieved the highest F1 scores in both entity recognition
and relation extraction subtasks, with scores of 92.34% and 84.86%, respectively. The F1
score of the proposed model improved by 0.84% to 5.23% relative to the SOTA models in
the entity recognition subtask, and by 0.96% to 7.57% in the relation extraction subtask.
Moreover, the proposed model achieved the highest precision and recall in the entity
recognition, as well as precision in the relation extraction.
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Table 4. Performance of the proposed model and other SOTA models on the CoNLL04 dataset. The
bolded portion indicates the best result for each column.

Model

CoNLL04

NER (%) RE (%)

Precision Recall F1 Precision Recall F1

Global [28] - - 85.60 - - 67.80
Multi-turn

QA [29] 89.00 86.60 87.80 69.20 68.20 68.90

SpERT [14] 85.78 86.84 86.25 74.75 71.52 72.87
SpERT [14] * 88.25 89.64 88.94 73.04 70.00 71.47
Deeper [30] 89.72 86.42 87.00 77.73 68.38 72.63

Deeper [30] * 89.84 89.73 89.78 78.69 64.84 71.08
TriMF [22] 90.26 90.34 90.30 73.01 71.63 72.35
ER-LAC 87.81 88.80 88.29 75.72 74.91 75.13

ER-LAC * 89.93 91.01 90.47 74.57 71.56 73.04
* The reported performance is a micro-average.

Table 5. Performance of the proposed model and other SOTA models on the ADE dataset. All the
metrics use macro-averaged values. The bolded portion indicates the best result for each column.

Model

ADE

NER (%) RE (%)

Precision Recall F1 Precision Recall F1

Relation-Metric [31] 86.16 88.08 87.11 77.36 77.25 77.29
CLDR+CLNER [32] - - 88.3 - - 79.97

SpERT [14] 88.99 89.59 89.28 77.77 79.96 78.84
Table-Sequence [33] - - 89.70 - - 80.10

CMAN [34] - - 89.40 - - 81.14
REBEL [35] - - - - - 82.20
Deeper [30] 89.06 89.63 89.48 80.51 86.81 83.74

PFN(ALBERT) [36] - - 91.50 - - 83.90
ER-LAC 91.67 93.03 92.34 83.07 86.74 84.86

Table 6 shows the results of the proposed model and other SOTA models on the
SciERC dataset. All models’ evaluation metrics use micro-averaged values. The proposed
model achieves the highest F1 score in entity recognition, reaching 70.72%, which is an
improvement of 0.19–5.52%, compared to other models. In the relation extraction subtask,
the ER-LAC model is second only to the PL-Marker model, achieving the second highest F1
score. However, the proposed model performs better than the PL-Marker model in entity
recognition. Therefore, this result may also be caused by the bias in the training of the two
subtasks. Based on this result, it can also be seen that the proposed model has reached the
level of the best SOTA model on the SciERC dataset. Overall, the proposed ER-LAC model
outperforms, or is on par, with the current best SOTA models in all three public datasets.

4.2.3. Complexity Analysis

Although the superior performance of the proposed ER-LAC model has been validated
in both ablation experiments and comparison experiments with other SOTA models, the
model introduces more feature extraction and selection modules compared to the baseline
model SpERT, which may significantly increase the training and inference time and make
it difficult to be deployed in practice. Therefore, to demonstrate that the ER-LAC model
still has lower resource consumption and higher computational speed, we conducted a
complexity analysis on the model, primarily comparing the parameter size, average sample
training time, and inference time between ER-LAC and the baseline model. Table 7 shows
the results of the complexity analysis experiments. The average sample training time is
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the time taken to compute each sample on average during the training process, and the
inference time is the time taken to compute each sample on average during the inference
process. The results show that the proposed model has increased the parameter size by
9.27% and added less than 5% of the training time and inference time compared to the
baseline model, which indicates that the increase in computational cost is minimal and the
proposed model still has lower computational consumption, ensuring efficient usage in
practical applications.

Table 6. Performance of the proposed model and other SOTA models on the SciERC dataset. All the
metrics use micro-averaged values. The bolded portion indicates the best result for each column.

Model

SciERC

NER (%) RE (%)

Precision Recall F1 Precision Recall F1

PFN [37] - - 69.9 - - 53.2
DyGIE [6] - - 65.2 - - 41.6

DyGIE++ [7] - - 67.50 - - 48.40
Cross-sentence [38] - - 68.90 - - 50.10
SpERTSciBERT

∆ [8] 70.87 69.79 70.33 53.40 48.54 50.84
SpERT.PLSciBERT [39] 69.82 71.25 70.53 51.94 50.62 51.25
PL-MarkerSciBERT [18] - - 69.90 - - 53.20

ER-LACSciBERT 65.26 77.18 70.72 46.51 59.70 52.29
∆ indicates that there are overlapping entities in the dataset.

Table 7. Complexity analysis.

Model Baseline Model
(SpERT) ER-LAC Increment

The number of
parameters 108,331,782 118,383,920 +9.27%

Training time (ms) 24.10 24.36 +1.07%
Inference time (ms) 10.54 11.24 +6.64%

5. Conclusions and Future Works

In this paper, we propose a span-based joint entity and relation extraction model with
enhancement of lexical features and internal connections (ER-LAC). On the basis of using
BERT to obtain word embedding and span embedding, we added two types of lexical
part-of-speech (POS) features to enrich the embedding representation of span and used
transformer to capture the internal connection between span pairs.

We conducted two types of experiments to verify the effectiveness of the proposed
method. Firstly, in the ablation experiments using the SpERT model as the baseline model
on which the multi-granularity lexical features were verified separately from the ablation
experiments, it can be seen that the coarse-grained lexical feature has a relatively obvi-
ous improvement for entity extraction. Further enhancing the semantic representation
of span, the f1 score of entity classification is significantly improved by 0.95%, while the
enhancement of span embedding brings a 1.31% improvement to the f1 score of relation
classification, proving that the enhancement of lexical features for span embedding is
effective and also very effective for the entity–relation classification task. Secondly, we ex-
perimented with the encoder structure of the transformer alone without adding any lexical
features to capture the intrinsic connection between span pairs in the relation classification
task, and we can see that the f1 score of entity classification is significantly improved by
1.03%, while the enhancement of span embeddings brings a 1.29% improvement in the f1
score of relation classification. Finally, we fused all the innovations into the model to obtain
the ER-LAC model with a 2.04% improvement in entity classification f1 score. The f1 score
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of relational classification was improved by 2.26%. The effectiveness of the innovation
points is proved.

We also conducted experiments on two other datasets, ADE and SciERC, which are
more popular in the field of entity relations and compared them with the SOTA model
to demonstrate the advancement of our model’s innovation points as well as its usability.
The experimental results showed that the two types of proposed POS features and internal
connection relation classifiers were effective for entity and relation joint extraction. The
proposed ER-LAC model also outperformed the other state-of-the-art models in three
commonly used datasets. In future studies, it still has great potential for improvement,
such as in how to improve the embedded representation of span in ERE tasks.

In our experiments, it can be seen that enhancing the semantic information across the
span is a feasible solution for the entity–relation classification task, and in future work,
we will also consider adding other features, such as syntactic tree structure information,
phrase categories, etc., to enhance the representation capability. Moreover, we will explore
more efficient entity–relation classifiers to reduce the additional computation associated
with the additional features.

Due to the recent proposal of the Large Language Model, we found a great advantage
in the GPT-based model on NLU tasks, and in future work, we will think about how to
merge the existing work with the GPT-based model for research innovation.
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