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Abstract: The train basic resistance characteristic is crucial for ATO performance. However, this
characteristic is slow time-varying with wheel rail wear and fast time-varying with weather conditions.
The parameters of train basic resistance are difficult to measure directly, usually only a set of empirical
parameters can be obtained through repeated experiments. These factors result in an inconsistency
between the model parameters in the ATO controller and the actual train basic resistance parameters
(TBRP), leading to a decrease in the effectiveness of the model-based controller. Therefore, this paper
proposes an indirect TBRP identification method based on speed trajectory fitting to improve the
effectiveness of the TBRP for model-based ATO controllers. Firstly, the original TBRP identification
problem is transformed into an optimization problem, which is to minimize the deviation between
the actual speed trajectory and the model-calculated one. Then, the Newton’s method is used to
accelerate the search for the best set of TBRPs with minimum deviation. Finally, case studies are used
to verify the effectiveness of the proposed method.

Keywords: train basic resistance; parameter identification; Newton’s method

1. Introduction

Automatic Train Operation (ATO) technology plays a key role in the Intelligent Railway
System, which executes the control of automatic train operation process and determines
the quality of train operation [1]. The train basic resistance is an important component of
train dynamics, which consists of axle bearing friction, rolling, and sliding friction between
wheels and rails, impact resistance and air resistance. Its value accuracy affects the control
performance of ATO system, but itself is affected by train formation, geometry, weight,
wheel rail, climatic conditions, train running speed [2], etc. These factors have complex
high-order coupling characteristics, making it difficult to directly calculate accurate resis-
tance value using mechanism models. As a consequence, TBRPs are usually measured
under experimental conditions to obtain a set of empirical parameters [3]. However, due to
environmental conditions, such as wind speed, weather, air humidity, altitude, and air pres-
sure, as well as the body wear and replacement of vehicle components, the TBRP change
both fast and slowly over time. This leads to a deviation between the empirical parameters
and the actual parameters, which may cause severe overshoot and oscillation of the model-
based controller. In addition, basic resistance measurement techniques based on sensors
are difficult to develop and costly. In response to this issue, researchers mainly approach it
from two aspects: Basic resistance modeling and TBRPs identification.

The first basic resistance formula was determined by Davis [4], as shown in
Equation (1):

w(v) = a + bv + cv2 (1)

where v is running speed of train. The parameters a, b, c are resistance characteristic
parameters. a is related to wheel rolling friction and bearing friction, b is related to wheel
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rail sliding friction, c is related to air resistance. Parameters a, b, c can be confirmed
in the official train parameter specification when vehicle category has been determined.
Subsequently, Stanley [5] built models for freight train and rolling resistance, and proposed
introducing suspension resistance in the Davis formula. Xue [6] analyzed the influence
of air pressure and temperature change on the basic resistance of locomotive and vehicle
operation by studying the data of the Sichuan-Tibet Railway. Kang [7] analyzed the
composition of high-speed train basic resistance and its relationship with train weight,
achieving the decoupling of air resistance and other resistances.

The above research has achieved significant results in basic resistance modeling. How-
ever, the high-order and complex basic resistance models are not suitable for the design of
some linear controllers. The ever-changing operating environment and vehicle mechan-
ical wear still cause basic resistance uncertainty. These factors led to some identification
methods being proposed.

One of the identification methods is the basic resistance characteristics identification
method [8–12]. This method uses speed differences to calculate acceleration, then obtain the
calculated basic resistance by Newton’s second law. The objective function is to minimize
the deviation between the characteristic curve of a set of TBRPs and the calculated basic
resistance, as shown in Equation (2):

min
θ∈Θ

OLS = ‖Y−Φθ‖ (2)

where Y is the calculated basic resistance, θ is basic resistance parameters, Φ = [1, v, v2] is
the input-output data information vector, Θ is the definition domain of θ. The objective
function is greatly affected by the accuracy and precision of data acquisition. When data
shaping or high amplitude sporadic noise exists, the error of basic resistance is large. In
terms of algorithm design, researchers have proposed least squares method [8,9], heuristic
algorithm [10,11], and the multi-innovation theory-based identification algorithm [12] to
solve the problems of this method, but issues with computational efficiency and stability
still exist. On the other hand, researchers consider model inconsistency as a disturbance and
use adaptive control strategies to address parameter uncertainty [13,14]. These methods
can handle parameter uncertainty problems, but some control accuracy and stationarity
may be lost due to the need for real-time adjustment of deviation.

Faced with these problems, this paper proposes an indirect train basic resistance
parameter identification method based on speed-fitting objective (TBRPI-SF). Unlike in
Equation (2), the parameter identification problem of TBRPI-SF is transformed into an
optimization problem, which is to find a set of basic resistance parameters that can minimize
the deviation between the fitting curve obtained from the model-based calculation and
the actual speed trajectory curve. The Newton’s method is used to find the optimal TBRP
adjustment direction. In addition, this paper discusses the boundary constraints and local
solution problems of this algorithm. Finally, cases are set to verify the effectiveness and
stability of this algorithm.

2. Train Dynamics Modeling

The objective function of BRPI-SF in this paper is to minimize the deviation between
the fitting curve and the actual operating curve. The fitting curve is calculated using the
traction calculation method based on train operation data and the train dynamics model.

The state of the train is affected by train weight, traction or braking force, basic
resistance and additional resistance during operation. Considering the uneven additional
resistance caused by different positions of each vehicle, this paper establishes the multi-
mass train model, and its schematic diagram is shown in Figure 1.
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Figure 1. Schematic diagram of the multi-mass train model.

According to Newton’s second law, the dynamic functions are described as:{
ds
dt = v
dv
dt = F−W0(θ,v)−G(s)

(1+γ)·M
(3)

where v is running speed (m/s) of train, t is running time (s), s is train position (m). M is
train mass (t), γ is the rotating mass coefficient. F represents the train control force (kN),
with positive and negative indicating traction and braking forces, respectively. W0(θ,v) is
train basic resistance (kN). According to Davis formula, W0(θ,v) can be expressed as
a univariate quadratic equation with train running speed as a variable, as shown in
Equation (4):

W0(θ, v) = Mgw0(θ, v)/1000 = Mg(a + bv + cv2)/1000 (4)

where w0(θ,v) represents unit basic resistance (N/kN). g is the gravity coefficient, taken as
9.81 (N/kg or m/s2). θ = [a, b, c], a, b, and c are basic resistance parameters. G(s) represents
the additional resistance (kN), which is affected by the train operation position s, and its
calculation formula is written as follows:

G(s) = Mg(wi + wr)/1000

=
J

∑
j=1

mig
[
i(sj) +

α
r(sj)

]
/1000 (5)

where wi and wr represent unit additional resistance (N/kN) of gradient and curve. mj is
the mass (t) of j-th car. sj is the position of the j-th car’s centroid. i(sj) means the gradient
thousand fraction at position sj. r(sj) means the curve radius (m) at position sj. α is usually
600.

To facilitate analysis, train speed v and running time t are expressed as functions with
train position s as independent variables, using Equation (3) to get:

{ dv
ds (1 + γ)Mv = F−W0(θ, v)− G(s)
dt
ds = 1

v
(6)

With the changes in speed and position, the combined force acting on the train will also
change. Therefore, the train operation process is a complicated non-uniform motion, which
cannot be solved directly by Equation (6). The traction calculation method divides the
train operation process into some stages through discretization and assumes that combined
force acting remains constant within each stage. Therefore, the train acceleration remains
unchanged within a single stage and is considered constant acceleration operation.

The train operation process is divided into I stages. In the i-th stage, the train start
position is si-1. End position is si. Force is Fi-1. Initial speed is vi-1, which is obtained
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in (i-1)-th stage. We can obtain vi by combining Equations (4)–(6), which is shown in
Equation (7):

vi(θ) = vi(a, b, c) =

√√√√v2
i−1 + (si − si−1)

2g
1 + γ

[
Fi−1

Mg
−

a + bvi−1 + cv2
i−1 + G(si−1)

1000

]
(7)

where vi(θ) is the calculation speed under parameter θ. Therefore, based on train position
and control force data, we can obtain the fitting curves v under a set of θ, where v ∈ RI+1.

Figure 2 illustrates the fitting curves under three sets of TBRPs. We can see that accurate
parameters θ1 can better reproduce the train operation process. Incorrect parameters, like
θ2 and θ3, cause serious deviation from the fitting curve. It will lead to the unenforceability
of the optimization curve and a decrease in controller control accuracy.
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3. Algorithm
3.1. Objective Function

From a modeling perspective, if the parameters can make the train operation process
calculated by the train dynamics model closer to the real value, it will be considered more
accurate. Therefore, the objective of TBRPI-SF is to obtain the best set of TBRPs. After
selecting them for traction calculation, the square mean of speed error between the fitting
position speed curve and the actual position speed curve is the smallest.

Train operation data is obtained through two methods: Timed and event-triggered.
Divide the train operation process into I stages using the acquisition interval of operation
data. The operation data can be organized into: F̃, s̃, ṽ, where F̃, s̃, ṽ ∈ RI+1, they are the
control force, position, and speed information in the actual train operation data. Let F = F̃,
s = s̃, the fitting curves v for this set of operational data under a set of basic resistance
parameters θ is obtained by Equation (7).

The accuracy of the parameter is assessed using the mean square error between the
fitted curve and the actual curve, which is expressed as:

f (θ) = ‖v(θ)− ṽ‖2
2 =

1
I

I

∑
i=1

(vi(θ)− ṽi)
2 (8)
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As a result, the optimization problem of BRPI-SF can be described as:

min
θ∈Θ

f (θ) (9)

where, Θ is the definition domain of θ. Each basic resistance parameter has a corresponding
physical significance. Therefore, there exists a boundary Θ = [θmin,θmax] that satisfies
θmin < θ < θmax. From Equation (9), it can be seen that BRPI-SF is a constraint estimation
problem.

In summarize, the main steps of the parameter identification method proposed in
this paper are: (1) Configure train formation and line information, set train operation data,
(2) establish the train dynamics model to obtain fitted curves for any set of basic parameters,
(3) optimize to find the best set of TBRP.

For this optimization problem, heuristic algorithms are easy to apply to solve, but
their solving efficiency is relatively low. In order to meet the requirement of high efficiency
when this method is applied to the train controller, this paper uses the Newton’s method to
solve this problem.

3.2. Newton’s Method

The Newton’s method is an algorithm that uses a derivative to calculate the fastest
descent direction of the function value. The updated formula for the Newton’s method is:

θn+1 = θn −
[
∇2 f (θn)

]−1
∇ f (θn) = θn −Hn

−1∇ f (θn) (10)

where θn and θn+1 are the parameters of the n-th and (n+1)-th iteration period.
Hn = ∇2 f (θn) is the Hessian matrix of the f (θ). ∇ f (θn) is the gradient of the f (θ).

Derive the composition of ∇ f (θn) and Hn:
Calculate the derivative of Equation (8):

∇ f (θn) = 2(vn − ṽ)∇vn =
2
I

I

∑
i=1

(vn,i − ṽi)∇vn,i (11)

where ∇vn,i is the gradient of the i-th stage’s calculated speed in n-th iteration period. The
composition of ∇ f (θn) and ∇vn,i is:

∇ f (θn) =

[
∂ f (θn)

∂an
,

∂ f (θn)

∂bn
,

∂ f (θn)

∂cn

]T
,∇vn,i =

[
∂vn,i

∂an
,

∂vn,i

∂bn
,

∂vn,i

∂cn

]T
(12)

According to Equation (7), we can obtain ∂vn,i/∂an:

∂vn,i
∂an

=
vn,i−1

∂vn,i−1
∂an

−(si−si−1)
g

1000(1+γ)

(
1+bn

∂vn,i−1
∂an

+2cnvn,i−1
∂vn,i−1

∂an

)
vn,i

=
vn,i−1−λi(bn+2cnvn,i−1)

vn,i

∂vn,i−1
∂an
− λi

vn,i
= kn,i

∂vn,i−1
∂an
− pn,i

(13)

where kn,i = vn,i−1− λi(bn + 2cnvn,i−1)/vn,i, λi = g(si− si−1)/1000/(1+γ), pn,i = λi/vn,i.
When i = 1, ∂vn,0/∂an = 0, so ∂vn,1/∂an = −pn,i.

Similarly, we can obtain ∂vn,i/∂bn and ∂vn,i/∂cn:

∂vn,i

∂bn
= kn,i

∂vn,i−1

∂an
− pn,ivn,i−1 (14)

∂vn,i

∂cn
= kn,i

∂vn,i−1

∂cn
− pn,iv2

n,i−1 (15)

As a result, ∇ f (θn) can be calculated iteratively by combining Equations (11)–(15).
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Furthermore, we derive the Hessian matrix and calculate the derivative of
Equation (11):

Hn = ∇2 f (θn) = 2∇vn∇Tvn − 2(vn − ṽ)∇2vn =
2
I

I

∑
i=1

[
∇vn,i∇Tvn,i + (vn,i − ṽi)∇2vn,i

]
(16)

The composition of Hn and ∇2vn,i is:

Hn =


∂2 f (θ)

∂a2
n

, ∂2 f (θ)
∂anbn

, ∂2 f (θ)
∂ancn

∂2 f (θ)
∂anbn

, ∂2 f (θ)
∂b2

n
, ∂2 f (θ)

∂bncn
∂2 f (θ)
∂ancn

, ∂2 f (θ)
∂bncn

, ∂2 f (θ)
∂c2

n

,∇2vn,i =


∂2vn,i
∂a2

n
, ∂2vn,i

∂anbn
, ∂2vn,i

∂ancn
∂2vn,i
∂anbn

, ∂2vn,i
∂b2

n
, ∂2vn,i

∂bncn
∂2vn,i
∂ancn

, ∂2vn,i
∂bncn

, ∂2vn,i
∂c2

n

 (17)

According to Equation (13), we can obtain ∂2vn,i/∂a2
n:

∂2vn,i
∂a2

n
= − 1

vn,i

∂vn,i
∂an

∂vn,i
∂an

+
vn,i−1−λi(bn+2cnvn,i−1)

vn,i

∂2vn,i−1
∂a2

n
+ 1−λi2cn

vn,i

∂vn,i−1
∂an

∂vn,i−1
∂an

=
vn,i−1−λi(bn+2cnvn,i−1)

vn,i

∂2vn,i−1
∂a2

n
− 1−λi2cn

vn,i

∂vn,i−1
∂an

∂vn,i−1
∂an
− 1

vn,i

∂vn,i
∂an

∂vn,i
∂an

= kn,i
∂2vn,i−1

∂a2
n
− qn,i

∂vn,i−1
∂an

∂vn,i−1
∂an
− un,i

∂vn,i
∂an

∂vn,i
∂an

(18)

where qn,i = (1 − λi2cn)/vn,i, un,i = 1/vn,i. When i = 1, ∂2vn,0/∂a2
n = 0,

so ∂2vn,1/∂a2
n = −un,i(∂vn,1/∂an)

2.
Similarly, we can obtain ∂2vn,i/∂b2

n, ∂2vn,i/∂c2
n, ∂2vn,i/∂anbn, ∂2vn,i/∂ancn and

∂2vn,i/∂bncn:

∂2vn,i

∂b2
n

= kn,i
∂2vn,i−1

∂b2
n
− qn,i

∂vn,i−1

∂bn

∂vn,i−1

∂bn
− un,i

∂vn,i

∂bn

∂vn,i

∂bn
− 2pn,i

∂vn,i−1

∂bn
(19)

∂2vn,i

∂c2
n

= kn,i
∂2vn,i−1

∂c2
n
− qn,i

∂vn,i−1

∂cn

∂vn,i−1

∂cn
− un,i

∂vn,i

∂cn

∂vn,i

∂cn
− 4pn,ivn,i−1

∂vn,i−1

∂cn
(20)

∂2vn,i

∂anbn
= kn,i

∂2vn,i−1

∂anbn
− qn,i

∂vn,i−1

∂an

∂vn,i−1

∂bn
− un,i

∂vn,i

∂an

∂vn,i

∂bn
− pn,i

∂vn,i−1

∂an
(21)

∂2vn,i

∂ancn
= kn,i

∂2vn,i−1

∂ancn
− qn,i

∂vn,i−1

∂an

∂vn,i−1

∂cn
− un,i

∂vn,i

∂an

∂vn,i

∂cn
− 2pn,ivn,i−1

∂vn,i−1

∂an
(22)

∂2vn,i

∂bncn
= kn,i

∂2vn,i−1

∂bncn
− qn,i

∂vn,i−1

∂bn

∂vn,i−1

∂cn
− un,i

∂vn,i

∂bn

∂vn,i

∂cn
− 2pn,ivn,i−1

∂vn,i−1

∂bn
− pn,i

∂vn,i−1

∂cn
(23)

As a result, Hn can be calculated iteratively by combining Equations (13)–(23).

3.3. Boundary Constraints and Local Solution Problems

The Newton’s method is generally used to solve unconstrained optimization prob-
lems, but the TBRPI-SF problem has a limited range of parameters. On the other hand, the
TBRPI-SF problem is a non-convex problem with multiple local optimal solutions. There-
fore, the algorithm proposed in this paper needs to be improved to solve these issues.

For the boundary constraint problem of BRPI-SF, this paper adopts a step size adjust-
ment method based on the Wolfe criterion:

When θn −Hn
−1∇ f (θn) /∈ Θ, find a step size α (0 < α < 1), which meet:{

f
[
θn − αH−1

n ∇ f (θn)
]
≤ f (θn)− c1α∇ f (θn)

TH−1
n ∇ f (θn)

−∇ f
[
θn − αH−1

n ∇ f (θn)
]TH−1

n ∇ f (θn) ≥ −c2∇ f (θn)
TH−1

n ∇ f (θn)
(24)
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where c1 and c2 are constants, and 0 < c1 < c2 < 1. Starting from α = 1, we search for α that
satisfies Equation (24) and θn − αHn

−1∇ f (θn) ∈ Θ. The parameters update formula in
this iteration period is θn+1 = θn − αHn

−1∇ f (θn). Wolfe criterion preserves the descent
direction of the optimal gradient and makes function value drop sufficiently under the
constraint conditions.

The ending criterion of this algorithm is:

f (θn+1) < ε1 (25)

where ε1 is maximum acceptable deviation, as the stop condition for this algorithm.
For non-convex problem, ∇ f (θn) = 0 does not mean that the optimal solution has

been found. Therefore, when θn+1 − θn < ∆θT and Equation (25) is not satisfied, it means
falling into local optima. Where ∆θT means the minimum acceptable update distance
in one iteration period. We expect the algorithm to jump out of the local solution and
start searching again now. At this time, a parameter random updated method is used to
search for a parameter that satisfies θn+1 ∈ Θ, θn+1 − θn > ∆ θ̂, where ∆ θ̂ is a parameter
limitation, reducing the possibility of re-entering local solutions.

In summary, the proposed basic resistance parameter identification based on the
Newton’s method is shown as Algorithm 1:

Algorithm 1: Basic resistance parameter identification based on the Newton’s method

1. Initialize train formation information, including number of vehicles J, length lj, and weight mj
of each vehicle.

2. Set train operation data, including control force F̃ and actual speed ṽ and position s̃.

3. Initialize line information, including gradient i(s) and curve r(s) at each position s.

4. Initialize basic resistance parameters θ1 and calculate f (θ1).

5. for episode = 1,. . .n,. . .N do

6. Use θn to calculate the calculated speed vn.

7. Calculate the coefficient kn, pn, qn, un.

8. Calculate the gradient ∇vn and ∇ f (θn).

9. Calculate the Hessian matrix ∇2vn and Hn.

10. Determine if θn −Hn
−1∇ f (θn) ∈ Θ. If so, update parameters as Equation (10). If not,

find α based on the Wolfe criterion and update parameters as θn+1 = θn − αHn
−1∇ f (θn).

11. Calculate f (θn+1) and determine if f (θn+1) < ε1. If so, end for. If not, randomly search
for a set of parameters θn+1 that satisfies θn+1 ∈ Θ, θn+1 − θn > ∆ θ̂.

12. End for

4. Case Analysis
4.1. Simulation Setting

This paper selects the Wuhan-Guangzhou high-speed railway as the simulation line,
with a main line length of 1069 kilometers. Sample train operation data form the train
monitoring device. These operation data include train position, speed, traction, and braking
force. The train parameters are shown in Table 1.

Table 1. Train parameters.

Train Type CRH380C

Train formation 8M8T
Length (m) 400.47
Weight (t) 981.7
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Some parameters setting of the Newton’s method are shown in Table 2. The range of
basic resistance parameters is set to match the characteristics of the actual high-speed train.
The value of c1 is chosen to easier to facilitate the identification of an appropriate step size
α. The value of c2 is chosen to achieve faster convergence. As for ε1, its value depends on
the magnitude of data disturbance, and a generally suitable value is considered to be 0.05.

Table 2. Parameters setting of the Newton’s method.

N 100
θmax [3, 0.2, 0.01]
θmin [0.4, 0, 0]

c1 0.1
c2 0.9
ε1 0.05

∆θT [10−5, 10−6, 10−7]
∆ θ̂ [0.1, 0.002, 0.0001]

4.2. Case Studies
4.2.1. Effectiveness Test without Disturbance

Firstly, to verify the effectiveness of this method under no disturbance, we created
four sets of simulation data with different TBRPs. The actual basic resistance parameter
values are shown in Table 3. This method was used to identify the TBRPs with random
initial parameters. The acceptable deviation ε1 was adjusted to 10−5. The four identification
results are recorded in Table 3. In the case of no data disturbance, the TBRPs obtained
by this method were basically the same as the actual values. In these four identification
processes, the minimum number of iterations was 4 and the maximum was 7. The mean
square errors in each case were very small and met the acceptable deviation ε1, which
proves the effectiveness of the parameters and this method. The same conclusion can be
drawn from Figure 3, where the fitting curve calculated by the identified parameters is
consistent with the actual curve.

Table 3. Parameter identification results for four cases.

Case
Number

Actual Parameters Identified Parameters
Iterations

Mean
Square
Errora b c a b c

1 0.79 0.0229 0.001493 0.7901 0.0229 0.001493 5 2.8 × 10−9

2 0.2955 0.0242 0.00159 0.2956 0.0242 0.00159 4 5.6 × 10−8

3 1.0501 0.0253 0.00140 1.0525 0.0252 0.00140 6 1.7 × 10−6

4 0.3488 0.0596 0.00112 0.3485 0.0596 0.00112 7 1.9 × 10−7
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4.2.2. Effectiveness Test under Random Disturbance

Secondly, we set up a set of simulation data and introduced white noise acquisition
disturbances into the velocity data. The basic resistance parameter of the simulation data
is set to θ = [0.79, 0.0229, 0.001493]. Using the Newton’s method to identify the TBRPs of
the data. The acceptable deviation ε1 is adjusted to 0.05. Compare the curve calculated
from the Newton’s method with the actual curve and obtain Figure 4a. The results verify
that the basic resistance parameter obtained from the Newton’s method are accurate and
can effectively reproduce the operation process of the train. The simulation results in
Figure 4b shows that the standard deviation between the fitted curve and the actual curve
was reduced from 904 to 0.033 within 5 iterations. The computational efficiency of the
algorithm is pretty good. From Figure 4c, we can see the process of TBRPs changing
with iterations. The final parameter is [0.483, 0.0273, 0.001492]. Compared to the actual
parameters, the parameter c is the same, but error in parameter a and b. These errors are
considered normal because of the existence of random disturbance. Actually, the unit basic
resistance corresponding to the two sets of parameters is basically consistent in the speed
domain [270, 305] (km/h), as shown in Figure 4d.
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Figure 4. Parameter identification results. (a) Comparison between fitted curves and actual curves,
(b) standard deviation changes with iteration, (c) TBRPs with iteration, (d) comparison between
actual parameter characteristics and parameter characteristics obtained by Newton’s method.

4.2.3. Online Identification Test

Finally, we set up a set of simulation experiments on the TBRPs changing with the
position of the line. This simulation simulates the scenarios of reduced friction caused
by smooth track after rain and increased air resistance caused by increased external wind
speed. The simulation conditions of TBRPs in different sections are shown in Table 4.
We introduced random disturbances in the last two sections. In this simulation process,
the TBRPs of the current section were identified online based on real-time operation data
generated by the train. The sampling interval was 100 m, and the data capacity I was 20.

Table 4. The simulation conditions of TBRPs in different sections.

Section a b c Disturbance

[0, 22] km 0.79 0.002288 0.001368 No
[22, 52] km 0.49 0.001208 0.001368 No
[52, 64] km 0.79 0.002288 0.001368 No
[64, 82] km 0.79 0.002288 0.001368 Yes

[82, 120] km 0.79 0.002288 0.002557 Yes
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Figure 5 illustrates the results of this simulation. The identification algorithm accu-
rately predicted the basic resistance values of most positions, but significant deviations
exist in the positions of parameter switching. Similar to the previous simulation case, in
the section of no data disturbance, the TBRPs obtained by this method are basically the
same as the actual values, but in the section of existing data disturbance, the identification
results of parameter c are relatively close to the actual situation, and deviations exist in the
identification results parameters b and c.
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4.2.4. Summary

In summary, the TBRPs identification method based on the Newton’s method can
find more accurate TBRP to improve the accuracy of traction calculation. The above cases
prove the effectiveness of the algorithm under the condition of disturbance or not. The
algorithm can find the optimal solution within several generations, which is short enough
for designing periodicity real-time identification to use in the train controller.

5. Conclusions

This paper proposes an indirect TBRP identification method based on speed trajectory
fitting. We transform the original TBRP identification problem into an optimization prob-
lem, which is to minimize the deviation between the actual speed trajectory and the model
calculated one. By deducing the gradient and Hessian matrix of the objective function, the
Newton’s method is used to determine the optimal updating direction of the TBRPs. This
paper discusses the boundary constraints and local solution problems of this algorithm
and solves them by Wolfe criterion and random movement. Finally, simulation cases are
set up to verify its effectiveness. The results show that this method can accurately identify
the TBRPs under the condition without disturbance and obtain the accurate basic train
resistance under the condition with random disturbance. In the online identification test,
this method accurately predicted the basic resistance value of most sections. This parameter
identification method can be embedded into the train control equipment to realize the
online identification, so as to improve the performance of train controller.
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