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Abstract: Currently, among the various areas of targeted wastewater treatment, great attention
is being given by researchers to the solid-phase extraction of organic dyes using metal–organic
frameworks (MOFs). In this work, a mixed-ligand Zr-MOF containing terephthalic acid and 1,10-
phenanthroline as linkers was used for this purpose. The limiting adsorption of the dyes Congo red
and methylene blue, according to experimental data, is 40 mg/g. The influence of various parameters
(time, temperature, adsorbent dosage, pH, and coexisting ions) on adsorption characteristics was
studied. The sorbent was tested for the removal of dyes from drinks in water and in artificial seawater.
The possibility of the separation of dyes by column chromatography using a sorbent as a filler
was studied.

Keywords: adsorption; metal–organic frameworks; organic dyes; sorbent; solid-phase extraction

1. Introduction

Zirconium-based metal–organic frameworks (Zr-MOFs) have become the focus of
research in analytical chemistry due to their promising properties, including good selec-
tivity, high performance, low cost, and regeneration, as well as the strong interaction of
framework metal centers with functional groups of organic pollutants [1–7]. The strong
bonds between the metal and carboxyl groups are responsible for the high stability of
Zr-MOF [1,8–10]. As one type of stable MOF, Zr-MOFs show high efficiency in removing
dyes [11], antibiotics [12], and heavy metal ions [13].

The disadvantages of Zr-MOFs include low adsorption rates and a long time for
the establishment of an equilibrium state. Of the methods for increasing the adsorption
capacity, the following should be singled out. Thus, the use of crystallization modulators in
the synthesis makes it possible to increase the size of Zr-MOF crystallites by four orders of
magnitude (from 10 to 100 µm) [14–18]. Typical modulators are monocarboxylates to bind
to metal clusters (coordination modulators) and thus to compete with the linker [14–17], or
acidic species to reduce the deprotonation of linkers (protonation modulators) [19]. The
stability of such solids is well suited for further study of the effect of functionalization
on their properties, and several experimental studies have established the possibility of
additionally introducing new functional groups into the structure of these compounds [20].

Among the generally accepted methods of synthesis, including stepwise and bottom-
up, the mixed-ligand strategy has become widespread in MOF design [21,22]. The term
“mixed ligands” means that two types of linkers with similar spatial architectures or
completely different structures are used for MOF synthesis. Regarding ligand attachment,
a carboxyl ligand is often used in MOF construction due to the variety of coordination
modes, and a polypyridine organic ligand can bind or chelate a metal ion. As an example,
the use of a mixed-ligand strategy to produce Zr-MOF, including, in addition to carboxylate
ions, various polypyridine ligands such as 2,2′-bipyridine and 1,10-phenanthroline can be
mentioned [23–31]. In relation to our study, 1,10-phenanthroline, which has a rather rigid,
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flat, geometric structure, is of the greatest interest. In addition, the electron-conjugated
heterocyclic aromatic ligand imparts a significant redox inertness to the complex, which
favorably distinguishes MOF synthesized by us from those described earlier. The presence
of a vacant π-orbital in the phenanthroline molecule makes it possible to expect that the
formed mixed-ligand complex will have a significant charge transfer from the metal atom to
the ligand, possibly in the visible and UV regions, which was also not previously described
for MOFs of this type.

The aim of our study was to use a ligand-mixed Zr-MOF containing terephthalic acid
and 1,10-phenanthroline as linkers in the solid-phase extraction (SPE) of organic dyes.

2. Materials and Methods
2.1. Materials

Zirconium(IV) chloride (ZrCl4), chloroform (CHCl3), ethanol (C2H6O), methanol
(CH4O), hydrochloric acid (HCl), N,N′-dimethylformamide (DMF), and sodium hydroxide
(NaOH) were purchased from Sigma-Aldrich and were used without further purification.

The dyes used as adsorbates were methylene blue (MB), Congo red (CR), and mala-
chite green (MG), with the molecular formulas C16H18N3SCl, C32H22N6Na2O6S2, and
C23H25ClN2, solubility in water of 50, 10, and 110 g/L (20 ◦C), as well as molecular weights
of 319.85, 696.66, and 301.453 g/mol, respectively (Figure 1). They were purchased from
Sigma-Aldrich. The original dye solution with a concentration of 200 mg/L was obtained
by dissolving an accurate weighed portion of the dye in distilled water. When preparing
the experimental solutions, the dye stock solution was diluted in exact proportions to the
required initial concentrations.
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2.2. Synthesis of Sorbent

The sorbent was synthesized in accordance with the procedure described in the work
of [32]. Briefly, ZrCl4 (3.5 g, 10 mmol), terephthalic acid (4.95 g, 30 mmol), and 1,10-
phenanthroline (2.7 g, 15 mmol) were dissolved in DMF. The resulting mixture was sealed
into a glass ampoule, which was completely immersed in a vessel with fine calcined sand
and heated at 132 ◦C for 72 h. After that, the ampoule was opened, the resulting precipitate
was filtered off, washed with hot DMF, and then with hot ethanol and dried at 60 ◦C in
air. The dried substance was washed in a Soxhlet apparatus with ethyl acetate for 6 h and
activated by heating in vacuum at 150 ◦C for 8 h.

2.3. Characterization

A CHNOS vario EL cubic analyzer (Elementar Analysensysteme GmbH, Germany)
was used for elemental analysis. An energy-dispersive X-ray fluorescence spectrometer
“X-Art M” (Comita, Russia) or atomic absorption spectrometer “MGA-915” (Lumex, Russia)
were used to determine the content of zirconium. An AUTOSORB-1 instrument (Quan-
tachrome, Boynton Beach, FL, USA) was used to study nitrogen adsorption/desorption
isotherms at 77 K (liquid N2) using the static volumetric method. The samples were de-
gassed by heating at 150 ◦C for 12 h in a vacuum before the start of the experiments. The
calculation of the Brunauer–Emmett–Teller surface area was made from the amount of
N2 physically adsorbed at various P/P0 ratios based on the linear part of the six-point
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adsorption data at P/P0 = 0.02–0.10. The experiments were carried out using ultra-high
purity gases (99.995%).

2.4. Solid-Phase Extraction Procedures

In this work, the experiments were carried out using the solid-state extraction of
MB, CR, and MG as the main dyes from aqueous solutions using the synthesized sorbent.
Solutions of the dyes (200 mL) were placed into a thermostated beaker with a volume of
300 mL at temperatures of 10, 18, and 35 ◦C. After the specified temperature was reached,
the sorbent (0.1 g) was added, and 10 mL of the sorbent suspension was taken from the
dye solution every 5, 10, 15, 30, 45, and 60 min, followed by centrifugation for 5 min at
4500 rpm. The concentration of the residual dye in the fugate was determined at λmax
492 nm (CR) [33] or 664 nm (MB) [34] on a UV–visible spectrophotometer (Varian, Cary 50).

The removal efficiency R (%) was calculated from Equation (1):

R =
(Co − Ct)

Co
× 100% (1)

where Co is the initial concentration and Ct is the dye concentration at time t.
The equilibrium adsorption qe (mg/g) was calculated using Equation (2):

qe =
(c0 − ce)V

m
(2)

where V is the volume of the adsorbate solution (L) and m is the weight of the adsorbent (g).
The pseudo first-order adsorption model can be expressed by Equation (3) [35]:

dq
dt

= k1(qe − qt) (3)

where k1 (min−1) is the rate constant of the pseudo first-order model.
After a definite integration, Equation (3) takes the form:

ln(qe − qt) = lnqe − k1t (4)

The constant k1 can be experimentally determined from the slope of the linear plots
ln(qe − qt) versus t.

The effect of pH on dye adsorption was studied in solutions with pH 3–11. The
residual dye concentration was determined after shaking the dye suspension for 120 min at
18 ◦C until equilibrium was reached, followed by filtration through membrane filters with
a pore size of 0.2 µm.

The adsorption isotherms were calculated in accordance with the linearized Equations
of Langmuir (5) and Freundlich (6).

1
qe

=
1

qmaxKLce
+

1
qmax

(5)

ln qe = ln KF +
1

nF
ln ce (6)

The thermodynamic parameters of adsorption ∆G0, ∆H0, and ∆S0 are calculated
graphically from the dependence of lnKd on 1/T, where Kd is the adsorbate distribution
coefficient, calculated by Equation (7) [36]:

Kd =
C0−Ce

Ce
·V
m

(7)
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3. Results and Discussion
3.1. Synthesis and Characterization of the Sorbent

In this work, a sorbent was synthesized using the solvothermal method by reacting
ZrCl4, terephthalic acid, and 1,10-phenanthroline in DMF. Based on the literature data and
the results obtained in the work, we can assume the following structure of the synthesized
compound (Figure 2).
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Figure 2. Plausible structure of the sorbent.

The obtained N2 adsorption–desorption isotherms at 77 K and the pore size distribu-
tion for the synthesized MOF are shown in Figure 3. The analysis of nitrogen physiosorption
isotherms shows that MOF has a constant porosity and a mesoporous structure with a
large surface area corresponding to adsorption type II. These characteristics are typical
of high-quality MOF material with little pore collapse and no residual reagent. A high
nitrogen adsorption of 561 cm3/g at 77 K was determined for the MOF sample with a pore
size of 9.6 Å. The presence of a pronounced hysteresis loop (Figure 3A) makes it possible
to attribute the obtained isotherm to type IV according to the IUPAC classification and
indicates that mesopores are present along with micropores [37].
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3.2. Solid-Phase Extraction of Organic Dyes

To determine the adsorption of CR and MB from their aqueous solutions by the
synthesized sorbent, we used the method described in [38]. The effect of pH of the sample
solution, the amount of adsorbent, and the adsorption time on the removal efficiency was
studied. The results are shown in Figure 4. In the initial period, the adsorption capacity of
the sorbent increases rapidly, and then significantly decreases with increasing adsorption
time. First, diffusion to the outer surface occurs, accompanied by diffusion into the pores
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of the sorbent, because of which equilibrium is quickly achieved. The limiting adsorption,
according to the experimental data, is 40 mg/g.
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The temperature dependence of the removal efficiency at pH = 7 is shown in Figure 5.
It turned out that an increase in the temperature leads to a more rapid achievement of
adsorption equilibrium and the limiting degree of removal is reached within 20 min.
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The resulting product of the SPE of CR and the synthesized sorbent luminesces in blue
when irradiated with UV light with a wavelength of 385 nm, which may indicate that a
π–π interaction occurs between the dye molecule and the adsorbent during the extraction
process (Figure 6) [39].
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Figure 6. Appearance of the SPE product of CR: (A)—in daylight and (B)—in ultraviolet light
(λ = 385 nm).

Based on the results of the study, it can be concluded that the sorbent effectively
removes the CR dye from an aqueous solution at a temperature of 35 ◦C. However, at a
temperature of 18 ◦C, this complex was not effective enough. When extracting MB food
coloring with a sorbent in an aqueous solution, the opposite situation is observed. A more
efficient extraction is observed at a temperature of 18 ◦C with a short-term increase in
the first 10 min, at which, apparently, the substance activation process occurs, since after
15 min, the concentration of the MB dye sharply decreased from 25.8 mg/L to 0.4 mg/L.
Thus, after 15 min, the concentration of the dye decreased by 64.5 times, and after 60 min,
by 7500 times, which indicates a high efficiency of the sorbent in the extraction of the MB
dye at room temperature.

When the dye is extracted at a temperature of 35 ◦C, the moment of activation is also
present, but it is shifted and appears after 30 min. In the period from 30 min to 45 min, the
concentration of the food coloring MB in an aqueous solution decreases from 16.8 mg/L to
4.4 mg/L, that is, almost four times. This indicates the effectiveness of using the sorbent,
but not as effective as at room temperature.

The study of the effect of acidity was carried out in the pH range 3–11. We have found
that the degree of MB removal is practically independent of the pH of the medium in this
range, while for CR, this dependence is quite significant (Figures 7 and 8).
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To describe the adsorption of dyes using the synthesized sorbent, a pseudo first-order
kinetic model was used, the compliance of which was confirmed by regression analysis
using the least squares method (Figure 9). The pseudo first-order adsorption rate constants
calculated by the graphical method are shown in Table 1.
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Table 1. Best fit parameters for the dye adsorption onto the sorbent by the Langmuir and Freundlich
models.

Dyes T [K]
Pseudo First-Order Kinetics

Constant k1 [min−1]
Langmuir Model Freundlich Model

KL [L/mg] R2 KF [mg−1/n L1/n g−1] R2

CR
283 0.0173 0.93 0.996 3.17 0.912
291 0.0555 2.16 0.991 4.12 0.956
308 0.317 3.12 0.998 5.4 0.974

MB
283 0.078 0.85 0.895 2.76 0.889
291 0.08 1.96 0.981 3.94 0.954
308 0.082 2.74 0.915 4.22 0.963

The Langmuir and Freundlich adsorption isotherms of dyes using a sorbent are shown
in Figures 10 and 11, and Table 1 shows the coefficients of these isotherms. Most of the
R2 values are greater than 0.9 for all isotherm models. The RL values for the Langmuir
adsorption of the dye on the sorbent were between 0 and 1, indicating favorable adsorption.
The KL values (0.93, 2.16, and 3.12 L mg−1 at 283, 291, and 308 K, respectively) indicate an
increase in dye adsorption on the sorbent with increasing temperature. The KF and 1/n
values increase and decrease with increasing temperature, respectively. The 1/n values
were between 0 and 1, indicating favorable adsorption.
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The calculated values of KD are presented in Table 2 and the dependence of the
distribution constant on the reciprocal temperature (Figure 12) was used to calculate the
thermodynamic parameters.
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Table 2. Calculated values of Kd.

Dyes T [◦C] KD

CR 283 2.4·104

MB 283 3.5·103

CR 291 3.2·104

MB 291 1.5·104

CR 308 4.9·104

MB 308 1.9·104
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As shown in Table 3, the negative values of ∆G0 at temperatures of 283, 291, and 308 K
indicate the spontaneous nature of the adsorption process. ∆G0 decreases with an increase
in the temperature, which indicates more efficient adsorption at a higher temperature.
In addition, a positive ∆S0 value indicates an increase in the degrees of freedom at the
solid–liquid interface during the adsorption of dyes on the sorbent and reflects the affinity
of the sorbent for dye ions in aqueous solutions and may indicate some structural changes
in the adsorbents.

Table 3. Thermodynamic parameters for the adsorption of the dyes on the sorbent.

Dyes ∆G0 [kJ/mol]
∆H0

283 [kJ/mol] ∆S0
283 [J/mol K]283 K 291 K 308 K

MB −7.9 −8.8 −11 −57 17.3
CR −5.9 −8.8 −11.16 −65 20.8

3.3. Solid-Phase Extraction of Dyes in Real Samples

Although dyes improve the appearance of food products, they significantly affect their
safety. Therefore, an important problem in the use of dyes in food is the threat to human
health due to the accumulation of dyes in food [40,41]. To test the reliability of a sorbent for
removing artificial dyes from a sample of a food product, which is the low-alcohol drink
“Cherry”, experiments were carried out to study the kinetics and adsorption isotherm. The
drink contains the dye carmosine (azorubine) E-122 (Figure 13) and natural cherry juice.
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Figure 13. Formula of carmosine.

To identify the dyes that make up the drink, we took a UV–vis absorption spectrum.
In Figure 14, there is an absorption band characteristic of carmosine in the region of 516 nm,
the intensity of which decreases depending on the time of contact with the sorbent [42,43].

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 15 
 

 
Figure 13. Formula of carmosine. 

To identify the dyes that make up the drink, we took a UV–vis absorption spectrum. In 
Figure 14, there is an absorption band characteristic of carmosine in the region of 516 nm, the 
intensity of which decreases depending on the time of contact with the sorbent [42,43]. 

 
Figure 14. UV–vis absorption spectra (A) of the drink before extraction (1) and 30 (2), 45 (3), and 120 
min (4) after the start of extraction. (B)—UV–vis absorption spectrum of anthocyanin. 

The characteristic absorption band (Figure 14B) corresponding to the natural antho-
cyanin of the cherry, represented by the two compounds cyanidin-3-glucosylrutinsoid 
(Cy-3-GR) and cyanidin-3-rutinoside (Cy-3-R) (Figure 15), was not detected. Figure 16 
shows the dynamics of SPE of MB with an absorption maximum at 664 nm. 

 

Figure 15. Structures of anthocyanins: (A)—cyanidin-3-glucosylrutinsoid (Cy-3-GR) and (B)—cya-
nidin-3-rutinoside (Cy-3-R), characteristic of cherry fruits. 

Figure 14. UV–vis absorption spectra (A) of the drink before extraction (1) and 30 (2), 45 (3), and 120
min (4) after the start of extraction. (B)—UV–vis absorption spectrum of anthocyanin.

The characteristic absorption band (Figure 14B) corresponding to the natural antho-
cyanin of the cherry, represented by the two compounds cyanidin-3-glucosylrutinsoid
(Cy-3-GR) and cyanidin-3-rutinoside (Cy-3-R) (Figure 15), was not detected. Figure 16
shows the dynamics of SPE of MB with an absorption maximum at 664 nm.
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Figure 15. Structures of anthocyanins: (A)—cyanidin-3-glucosylrutinsoid (Cy-3-GR) and
(B)—cyanidin-3-rutinoside (Cy-3-R), characteristic of cherry fruits.
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3.4. Solid-Phase Extraction of Dyes in Artificial Seawater

Today, the marine environment is becoming more and more polluted due to the release
of dangerous dyes into it. Therefore, we studied the adsorption characteristics of the
sorbent in artificial seawater. The method of making artificial seawater belongs to the Khan
scheme [44]. The Lyman and Fleming formula (Table 4) was used to prepare an artificial
seawater solution by dissolving analytical-grade reagents in bi-distilled water.

Table 4. Chemical composition of artificial seawater.

Salt Content [g/kg]

NaCl 23.476
KCl 0.664

CaCl2 1.102
MgCl2 4.981

Na2SO4 3.917
NaHCO3 0.192

KBr 0.096
SrCl2 0.025
NaF 0.003

H3BO3 0.027
Salinity was 34.481%; pH was adjusted to 7.5, 8, 8.2, and 8.5 with sodium hydroxide (NaOH) or hydrochloric
acid (HCl).

The method for studying the adsorption in artificial seawater is similar to the method
described above for studying in ideal water. The adsorption characteristics of the sorbent in
artificial seawater deteriorate somewhat (Figure 17). The presence of various inorganic salts
in artificial seawater has less effect on the adsorption of a low-concentration dye solution
compared to a high-concentration dye solution. The decrease in the adsorption capacity of
the sorbent in artificial seawater compared to an ideal aqueous solution is only 3–6%. A
decrease in the adsorption capacity is associated with a deterioration in the solubility of
dyes after the addition of various inorganic salts to the solution [45] and the competition of
SO4

2−, Cl−, F−, etc., ions with dye molecules for unsaturated sites on adsorbents [46,47].



Appl. Sci. 2022, 12, 12219 12 of 15
Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 15 
 

 
Figure 17. Removal efficiency of CR and MB from distilled water and artificial seawater at 293 K at 
a concentration of 20 mg L−1 (A,C) and 40 mg L−1 (B,D). 

3.5. Sorbent as a Filler for Column Chromatography for Dye Separation 
Based on the excellent adsorption characteristics of dyes on the sorbent and consid-

ering the previously obtained results [48,49], we used it as the stationary phase of the 
chromatographic column. The chromatographic column consists of a glass tube that has 
been filled with a sorbent as a stationary phase. A mixed solution of MB, MG, and CR was 
injected into the chromatographic column at the same concentration, respectively. As 
shown in Figure 18, CR was adsorbed to the stationary phase for a long time along with 
the eluent flow, while MB and MG passed through the column. In the upper part of the 
photo, there is a concentrated mixture of MG and MB, while the CR adsorbed on the 
sorbent is in the lower part. The results obtained indicate the possibility of the separation 
of dyes by passing through a chromatographic column, which can be easily seen with the 
naked eye. These experiments highlight the potential of the sorbent as a filler for column 
chromatography to separate dyes. 

Figure 17. Removal efficiency of CR and MB from distilled water and artificial seawater at 293 K at a
concentration of 20 mg L−1 (A,C) and 40 mg L−1 (B,D).

3.5. Sorbent as a Filler for Column Chromatography for Dye Separation

Based on the excellent adsorption characteristics of dyes on the sorbent and consid-
ering the previously obtained results [48,49], we used it as the stationary phase of the
chromatographic column. The chromatographic column consists of a glass tube that has
been filled with a sorbent as a stationary phase. A mixed solution of MB, MG, and CR
was injected into the chromatographic column at the same concentration, respectively.
As shown in Figure 18, CR was adsorbed to the stationary phase for a long time along
with the eluent flow, while MB and MG passed through the column. In the upper part of
the photo, there is a concentrated mixture of MG and MB, while the CR adsorbed on the
sorbent is in the lower part. The results obtained indicate the possibility of the separation
of dyes by passing through a chromatographic column, which can be easily seen with the
naked eye. These experiments highlight the potential of the sorbent as a filler for column
chromatography to separate dyes.
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Figure 18. Selective separation of a mixture of dyes (methylene blue, malachite green, and Congo
red) on a column filled with the studied sorbent.

4. Conclusions

In summary, a ligand-mixed Zr(IV)-MOF based on terephthalic acid and 1,10-phenanth
roline is a promising sorption material for the solid-phase extraction of organic pollutants
(synthetic dyes), demonstrating a high efficiency of removing the target pollutant. The
adsorption behavior has been investigated in terms of several important parameters, includ-
ing adsorption kinetics, isotherms, and initial pH. The results showed that the maximum
adsorption capacity of MOF reached 40 mg/g. Moreover, it has been used in practice in
food samples and has shown high performance. The excellent performance of this sorbent
in artificial seawater makes it a promising material for seawater treatment. Potentially, it
can serve as a filler for column chromatography to separate dye molecules. The sorbent
studied favorably differs from the sorbents described earlier in the literature by its versa-
tility, since it shows good adsorption qualities with respect to both cationic and anionic
dyes. The complex can also be used to extract neutral dyes using solid-phase extraction.
The extraction of dyes occurs in a wide pH range of the medium and under conditions
of solutions with high ionic strength (seawater). Selecting the conditions for elution, one
can achieve the selective separation of dyes, which favorably distinguishes this compound
from the sorbents described earlier in the literature.
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