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Abstract: In recent years, CO2 flooding has emerged as an efficient method for improving oil recovery.
It also has the advantage of storing CO2 underground. As one of the promising types of CO2 enhanced
oil recovery (CO2-EOR), CO2 water-alternating-gas injection (CO2-WAG) can suppress CO2 fingering
and early breakthrough problems that occur during oil recovery by CO2 flooding. However, the
evaluation of CO2-WAG is strongly dependent on the injection parameters, which in turn renders
numerical simulations computationally expensive. So, in this work, machine learning is used to help
predict how well CO2-WAG will work when different injection parameters are used. A total of 216
models were built by using CMG numerical simulation software to represent CO2-WAG development
scenarios of various injection parameters where 70% of them were used as training sets and 30% as
testing sets. A random forest regression algorithm was used to predict CO2-WAG performance in
terms of oil production, CO2 storage amount, and CO2 storage efficiency. The CO2-WAG period,
CO2 injection rate, and water–gas ratio were chosen as the three main characteristics of injection
parameters. The prediction results showed that the predicted value of the test set was very close to
the true value. The average absolute prediction deviations of cumulative oil production, CO2 storage
amount, and CO2 storage efficiency were 1.10%, 3.04%, and 2.24%, respectively. Furthermore, it only
takes about 10 s to predict the results of all 216 scenarios by using machine learning methods, while the
CMG simulation method spends about 108 min. It demonstrated that the proposed machine-learning
method can rapidly predict CO2-WAG performance with high accuracy and high computational
efficiency under conditions of various injection parameters. This work gives more insights into the
optimization of the injection parameters for CO2-EOR.

Keywords: CO2-WAG; machine learning; injection parameters; random forest regression; CCUS

1. Introduction

With the continuous improvement of oil and gas exploration and development, the pro-
portion of heterogeneous and low-permeability reservoirs in exploration and development
is gradually increasing. Using conventional water injection to develop low-permeability
reservoirs results in a low recovery factor [1]. Compared to water, CO2 is less viscous
and can enter into small pores more easily, which can reduce the viscosity of crude oil,
expand the volume of crude oil, improve the mobility ratio, and thus increase the oil
recovery factor [2,3]. Therefore, CO2-enhanced oil recovery (CO2-EOR) has great potential
for developing low-permeability reservoirs. In addition to this, CO2-EOR can sequestrate
CO2 underground, which can help in achieving carbon neutrality [4]. However, in the CO2
flooding method, during gas injection, the low viscosity of CO2 may lead to a phenomenon
referred to as viscous fingering. This results in an unfavorable mobility ratio, which seri-
ously affects the improvement of swept volume [5]. Moreover, due to its low density, CO2
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can easily escape to the upper part of the reservoir, forming a fugitive flow channel [6]. This
also constitutes a drawback for CO2 flooding as it leads to a reduction of the swept volume.

In response to the problems of waterflooding and CO2 flooding, researchers proposed
CO2-WAG methods [7]. This technology was first used by Mobil in 1957 in a sandstone
reservoir in Alberta, Canada. It combines the characteristics of water flooding and CO2
flooding, which increases the macroscopic sweep efficiency and thus improves the overall
oil displacement efficiency. In addition, CO2-WAG can mitigate the issue of rapid CO2 flow
and increase the gas phase’s flow resistance. It can also lower the resistance to the flow of
the water phase and increase the mobility ratio. As a result of this, recovery efficiency can
be greatly improved [7]. It has been reported that 80% of oilfield projects in the US using
WAG technology have achieved good results [8]. Skauge et al. [9] studied 59 WAG fields
and found that the average recovery of crude oil was improved by 10% for all WAG cases.

Recently, WAG has also been used in the Brazilian subsalt oilfield complex [10]. Subsalt
oil and gas production was 2739 million barrels of oil equivalent per day (2.739 Mboe/day)
by 2020, representing 70.3% of Brazil’s total oil equivalent. The Lula field, which conducted
the WAG pilot test in April 2011, has a cumulative oil production of 2000 Mboe by 2020 and
is the largest extracted/producing field in Brazil, with an average oil and gas production of
988,000 barrels/day and 43.2 Mm3/day, respectively [11].

Currently, the optimization of WAG extraction schemes is the focus of many oil
fields and related researchers [12–20]. Rodrigues et al. [21] used CMG reservoir numerical
simulation software to optimize the application of WAG in a sub-salt offshore field in Brazil
and proposed a design method for CO2-WAG operations in carbonate reservoirs, focusing
on the economics, the CO2 cycle efficiency, and project risk. It is worth mentioning that
the application of intelligent algorithms such as machine learning, which has developed
rapidly in recent years, has been used in petroleum exploration and development [22,23],
especially in optimization problems. For instance, Bilgesu et al. [24] proposed a method for
bit optimization with the help of neural networks. Leite Cristofaro and Longhin et al. [25]
optimized the mud loss problem in Brazilian deepwater subsalt fields with the help of
KNN, MLP, and NB algorithms. Wang et al. [26] proposed a joint optimization method for
well location and injection and extraction parameters using the random forest as well as a
radial basis neural network. In general, memory-based learning algorithms perform better
than any other family of algorithms. These methods assume that a given set of terms and
class labels can be used as a mapping to identify unlabeled term classes [25].

Random forest is a decision tree-based machine learning algorithm proposed by
Breiman and Cutler in 2001 [27]. The random forest regression model is built by com-
bining the results obtained from several well-established decision tree models, and the
final prediction result is obtained by averaging the prediction results of all decision tree
models [28]. A large number of studies [29–32] have shown that random forest models
have the advantages of strong generalization ability, insensitivity to input data deviations,
and the ability to analyze the importance of input features. In this study, by combining the
random regression forest algorithm with the numerical simulations, a method for rapidly
forecasting the cumulative oil production, CO2 storage amount, and CO2 storage efficiency
of CO2-WAG development schemes has been developed. This method can significantly
increase the effectiveness of scheme optimization in oilfields.

2. Methods
2.1. CMG Base Model

The simulations are carried out by using a simulator known as the Computer Mod-
eling Group Ltd. (CMG). The submodule GEM of the CMG simulator is a compositional
simulator and it is widely employed for simulating the displacement behavior of CO2-EOR
in reservoir formations. Thus, this work employed the submodule GEM of CMG to conduct
the simulation of CO2-WAG.
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2.1.1. Parameter Settings of the Base Model

A five-spot well pattern is established using CMG software, as shown in Figure 1. The
model has a well in the middle where water and CO2 can be injected alternatively. There
are 23 grids both in the X and Y directions, with a grid size of 30 × 30 × 3 m in the X, Y,
and Z directions, respectively. The model is divided into 8 layers in the Z direction, and
thus the total number of grids is 23 × 23 × 8 = 4232.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 19 
 

EOR in reservoir formations. Thus, this work employed the submodule GEM of CMG to 

conduct the simulation of CO2-WAG. 

2.1.1. Parameter Settings of the Base Model 

A five-spot well pattern is established using CMG software, as shown in Figure 1. 

The model has a well in the middle where water and CO2 can be injected alternatively. 

There are 23 grids both in the X and Y directions, with a grid size of 30 × 30 × 3 m in the X, 

Y, and Z directions, respectively. The model is divided into 8 layers in the Z direction, and 

thus the total number of grids is 23 × 23 × 8 = 4232. 

 
Figure 1. Three-deminsional diagram of the Water Alternating Gas model. 

The key reservoir parameters used in this work are selected based on the geological 

information of the Tuo 28 block in Shengli Oilfield [33,34], as shown in Table 1. The oil 

reservoir depth is 1800 m, and the reservoir pressure is 18 MPa due to the normal for-

mation pressure coefficient of 1.0. The reservoir temperature is 85 °C. The porosity is 0.24, 

the initial oil saturation is 0.7934, the crude oil viscosity is 15.4495 cp, and the crude oil 

density is 760.9 kg/m3. 

Table 1. Key parameters of the model. 

Serial No. Input Parameters Unit Value 

1 Average permeability in the X and Y directions ×10−3 μm3 50 

2 Average permeability in the Z direction ×10−3 μm3 5 

3 Oil layer thickness m 27 

4 Top depth m 1800 

5 Porosity 1 0.24 

6 Initial oil saturation 1 0.7934 

7 Crude oil viscosity cp 15.4495 

8 Crude oil density kg/m3 760.9 

9 Reservoir temperature °C 85 

10 Initial reservoir pressure MPa 18 

The permeability in the horizontal directions, for each layer from top to bottom, is 10 

× 10−3 μm3, 20 × 10−3 μm3, 30 × 10−3 μm3, 40 × 10−3 μm3, 60 × 10−3 μm3, 70 × 10−3 μm3 and 90 × 

10−3 μm3, as shown in Table 2, and the average permeability in horizontal directions is 50 

Figure 1. Three-deminsional diagram of the Water Alternating Gas model.

The key reservoir parameters used in this work are selected based on the geological
information of the Tuo 28 block in Shengli Oilfield [33,34], as shown in Table 1. The oil
reservoir depth is 1800 m, and the reservoir pressure is 18 MPa due to the normal formation
pressure coefficient of 1.0. The reservoir temperature is 85 ◦C. The porosity is 0.24, the
initial oil saturation is 0.7934, the crude oil viscosity is 15.4495 cp, and the crude oil density
is 760.9 kg/m3.

Table 1. Key parameters of the model.

Serial No. Input Parameters Unit Value

1 Average permeability in the X and Y directions ×10−3 µm3 50
2 Average permeability in the Z direction ×10−3 µm3 5
3 Oil layer thickness m 27
4 Top depth m 1800
5 Porosity 1 0.24
6 Initial oil saturation 1 0.7934
7 Crude oil viscosity cp 15.4495
8 Crude oil density kg/m3 760.9
9 Reservoir temperature ◦C 85
10 Initial reservoir pressure MPa 18

The permeability in the horizontal directions, for each layer from top to bottom,
is 10 × 10−3 µm3, 20 × 10−3 µm3, 30 × 10−3 µm3, 40 × 10−3 µm3, 60 × 10−3 µm3,
70 × 10−3 µm3 and 90 × 10−3 µm3, as shown in Table 2, and the average permeability
in horizontal directions is 50 × 10−3 µm3. The permeability in the vertical direction is
0.1 times the horizontal permeability (Kv/Kh = 0.1) and the average permeability in the
vertical direction is 5 × 10−3 µm3, which is a typical non-homogeneous low permeability
reservoir with a positive rhythm. The thickness of the whole reservoir is 27 m, with each
layer measuring 3 m.
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Table 2. Permeability in horizontal and vertical directions.

Layer
Permeability (×10−3 µm3)

Horizontal Direction Vertical Direction

1 10 1
2 20 2
3 30 3
4 40 4
5 60 6
6 70 7
7 80 8
8 90 9

2.1.2. Injection and Production Settings

The model simulates a total of forty years, with depletion development occurring
during the first eight years and CO2-WAG production commencing in the ninth. Thus,
the actual CO2-WAG development length is 32 years. In this case, to compare the produc-
tion effects of each CO2-WAG scenario, it is necessary to carry out a period of depletion
development first to exclude the natural energy disturbance. As shown in Figure 2, the
pressure difference between the injection and production wells is less than 0.5 MPa after
the first 8 years of depletion development. In addition, the production efficiency is low and
no longer productive. Therefore, it is necessary to add energy, such as through CO2-WAG
development. In the base model, CO2 injection starts in January of the ninth year and water
injection starts in July, so the cycle is set to 12 months, including 6 months of gas injection
and 6 months of water injection. The water–gas ratio is set to 1:1, which implies that the
CO2 injection rate is equal to the water injection rate under reservoir conditions. The water
injection rate is set at 90 m3/day and the CO2 injection rate is set at 20,000 m3/day. The
bottom hole pressure of the four production wells is set to 7 MPa. As shown in Figure 3,
the water cut in the produced fluid is more than 80% by the fortieth year of production.
Thus, this work assumes that production is stopped after 40 years of production.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 19 
 

× 10−3 μm3. The permeability in the vertical direction is 0.1 times the horizontal permeabil-

ity (Kv/Kh = 0.1) and the average permeability in the vertical direction is 5 × 10−3 μm3, which 

is a typical non-homogeneous low permeability reservoir with a positive rhythm. The 

thickness of the whole reservoir is 27 m, with each layer measuring 3 m. 

Table 2. Permeability in horizontal and vertical directions. 

Layer 
Permeability (×10−3 μm3) 

Horizontal Direction Vertical Direction 

1 10 1 

2 20 2 

3 30 3 

4 40 4 

5 60 6 

6 70 7 

7 80 8 

8 90 9 

2.1.2. Injection and Production Settings 

The model simulates a total of forty years, with depletion development occurring 

during the first eight years and CO2-WAG production commencing in the ninth. Thus, the 

actual CO2-WAG development length is 32 years. In this case, to compare the production 

effects of each CO2-WAG scenario, it is necessary to carry out a period of depletion devel-

opment first to exclude the natural energy disturbance. As shown in Figure 2, the pressure 

difference between the injection and production wells is less than 0.5 MPa after the first 8 

years of depletion development. In addition, the production efficiency is low and no 

longer productive. Therefore, it is necessary to add energy, such as through CO2-WAG 

development. In the base model, CO2 injection starts in January of the ninth year and wa-

ter injection starts in July, so the cycle is set to 12 months, including 6 months of gas injec-

tion and 6 months of water injection. The water–gas ratio is set to 1:1, which implies that 

the CO2 injection rate is equal to the water injection rate under reservoir conditions. The 

water injection rate is set at 90 m3/day and the CO2 injection rate is set at 20,000 m3/day. 

The bottom hole pressure of the four production wells is set to 7 MPa. As shown in Figure 

3, the water cut in the produced fluid is more than 80% by the fortieth year of production. 

Thus, this work assumes that production is stopped after 40 years of production. 

 

Figure 2. Bottom-hole pressure in injection and production wells. Figure 2. Bottom-hole pressure in injection and production wells.



Appl. Sci. 2022, 12, 10958 5 of 18Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 19 
 

 

Figure 3. Oil cut and water cut of the produced fluid in the standard condition. 

2.2. Machine Learning for CO2-WAG Prediction 

2.2.1. Principle of the Random Forest Regression Algorithm 

Multiple regression decision trees constitute the random forest regression algorithm. 

Based on the idea of integrated learning, the mean value of each regression decision tree 

is taken as the prediction result [35]. 

( ) 
1

1
( ) ,

T

t

t

f x f x
T


=

=   (1) 

where: ( )f x  is the model prediction result, ( ), tf x   is the output based on x  and 

t , x  is the independent variable, t  is the independent identically distributed ran-

dom vector, and T  is the number of regression decision trees. 

As a machine learning algorithm based on statistical theory, the random forest re-

gression algorithm introduces the bagging method and the random subspace method [36] 

to avoid the problem of single decision tree models, which tend to be overfitted and not 

accurate. 

(1) The bagging method [37], also known as bootstrap aggregating, is a bootstrap-

based statistical method. Based on repeatable random sampling, multiple predictors are 

formed by the bootstrap repetitive sampling method. Assuming that there are N samples 

in the original sample, N samples are repeatedly sampled to form new training samples. 

When N approaches infinity, the probability of not being sampled again for each sample 

is 36.8%. Nearly 36.8% of the original samples will not appear in the training samples of 

the same tree, and the samples that are not drawn are called out-of-bag data (OOB) [27]. 

The generation of locally optimal solutions for regression decision trees can be avoided 

by the bagging method. 

(2) Stochastic subspace method. Random features need to be selected when construct-

ing the regression decision tree. Selecting random features means picking x feature attrib-

utes at random from the whole set of attributes. Node splitting selects the optimal features 

based on the principle of minimum mean squared deviation so that each tree is not pruned 

to achieve maximum growth. A random sampling of training samples and a random se-

lection of feature attributes can make sure that the regression decision trees have as much 

variety as possible [38]. 

Figure 3. Oil cut and water cut of the produced fluid in the standard condition.

2.2. Machine Learning for CO2-WAG Prediction
2.2.1. Principle of the Random Forest Regression Algorithm

Multiple regression decision trees constitute the random forest regression algorithm.
Based on the idea of integrated learning, the mean value of each regression decision tree is
taken as the prediction result [35].

f (x) =
1
T

T

∑
t=1
{ f (x, θt)} (1)

where: f (x) is the model prediction result, f (x, θt) is the output based on x and θt, x is the
independent variable, θt is the independent identically distributed random vector, and T is
the number of regression decision trees.

As a machine learning algorithm based on statistical theory, the random forest re-
gression algorithm introduces the bagging method and the random subspace method [36]
to avoid the problem of single decision tree models, which tend to be overfitted and
not accurate.

(1) The bagging method [37], also known as bootstrap aggregating, is a bootstrap-
based statistical method. Based on repeatable random sampling, multiple predictors are
formed by the bootstrap repetitive sampling method. Assuming that there are N samples
in the original sample, N samples are repeatedly sampled to form new training samples.
When N approaches infinity, the probability of not being sampled again for each sample is
36.8%. Nearly 36.8% of the original samples will not appear in the training samples of the
same tree, and the samples that are not drawn are called out-of-bag data (OOB) [27]. The
generation of locally optimal solutions for regression decision trees can be avoided by the
bagging method.

(2) Stochastic subspace method. Random features need to be selected when con-
structing the regression decision tree. Selecting random features means picking x feature
attributes at random from the whole set of attributes. Node splitting selects the optimal
features based on the principle of minimum mean squared deviation so that each tree is
not pruned to achieve maximum growth. A random sampling of training samples and a
random selection of feature attributes can make sure that the regression decision trees have
as much variety as possible [38].
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2.2.2. Randomized Regression Forest Algorithm Flow

The main flow of the randomized regression forest algorithm is presented in Figure 4
and described as follows:

(1) Sampling: K sets of datasets are sampled from the training dataset S by using the
bagging method. Each set of datasets is divided into 2 types: sampled data and un-sampled
data (out-of-bag data), and they are trained to produce a decision tree.

(2) Growing: Each decision tree is trained by training data. In each branching node,
M features are randomly selected from M feature attributes, and the best features are
chosen based on the Gini index for full branching growth until no more growth is possible
without pruning.

(3) Forming a forest: Repeat steps 1 and 2 to build multiple regression decision trees
and maximize the growth of each tree to form a forest.

(4) Predicting: Using the chosen model, predictions are made about the new data set,
and the final output is the average of all the predictions made by the decision trees.
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This work first builds a series of numerical simulation models by adjusting the injection
parameters and runs them to obtain simulation results for forming a test database. The
train_test_split function from sklearn.model_selection is called to randomly divide the
test database into two parts, one as a training set to train the regression prediction model
and the other as a test set to compare with the results predicted by machine learning to
verify the accuracy of the method. To make the results clearer and more intuitive, this
work trains and predicts each of the three label variables separately with the random forest
regression algorithm.

The CO2-WAG period, fluid injection rate, and water–gas ratio are important pa-
rameters for CO2-WAG optimization. Therefore, this work uses CO2-WAG period, CO2
injection rate and water–gas ratio as three features and cumulative oil production, CO2
storage amount, and CO2 storage efficiency as labels for regression prediction to realize
fast prediction of program effects with the help of a random forest regression algorithm in
machine learning.

3. Results and Discussion
3.1. Base Case Analysis

The cumulative oil production, CO2 storage amount, and CO2 storage efficiency of the
base model as a function of time are shown in Figures 5 and 6. The values of cumulative oil
production, CO2 storage amount, and CO2 storage efficiency are derived as the three labels
for machine learning. The CO2 storage amount is obtained by subtracting the cumulative
CO2 production from the cumulative CO2 injection. The CO2 storage efficiency is expressed
as the ratio of the CO2 storage amount to the CO2 injection.
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As shown in Figure 5, at first, the oil production rate goes up quickly because there
is enough energy in the reservoir. As the reservoir energy gradually depletes, the oil
production curve begins to level off gradually in the fifth year. Then, the reservoir energy
is replenished by the nineth year after the CO2-WAG started, and the oil production rate
begins to increase rapidly. The oil production rate begins to decrease slowly from the
twentieth year to the end of production.

At the beginning of the CO2 injection, the CO2 storage amount is almost equal to the
CO2 injection amount from the nineth year to the fifteenth year with little CO2 produced
(Figure 6a). CO2 production begins in the fifteenth year and has a relatively stable rate.
From the sixteenth year, the growth rate of CO2 storage starts to be lower than that of CO2
injection. With the increase in CO2 production, the CO2 storage amount nearly stopped
increasing by the thirty-sixth year. Consequently, the CO2 storage efficiency is almost equal
to 1 at the beginning and then gradually decreases, as shown in Figure 6b.

As shown in Figure 7, the overall effects of oil production on both CO2 flooding and
CO2-WAG are higher than those of water flooding. CO2 flooding has higher oil production
in the early stages of development before the thirty-sixth year because CO2 is more mobile
than water. CO2 flooding produces oil at a higher rate than both water flooding and
CO2-WAG at this stage. Due to the heterogeneity of the reservoir, the CO2 injected into the
formation tends to form a dominant channel. So, the CO2 flooding method starts to produce
more oil in a slow way around the twenty-second year of its late stage of development. The
CO2-WAG method effectively combines the advantages of water flooding and CO2 flooding
and maintains a high oil production rate, especially after the thirty-sixth year, although
the oil production rate is relatively lower than that of CO2 flooding before the thirty-sixth
year. The overall oil production of CO2-WAG is better than that of water flooding and
CO2 flooding.
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For further analysis of the difference between the CO2-WAG method and the CO2
flooding method, this work compares the gas–oil ratio of the produced flow. As shown in
Figure 8, the gas production rate starts to increase from the twelfth year (4 years after CO2
injection) in the CO2 flooding method and rises sharply from the nineteenth year onwards.
This can be explained by the fact that the injected CO2 forms a dominant channel, and thus
the injected CO2 returns to the surface directly from the dominant channel as an output gas.
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In the CO2-WAG method, the gas production rate is basically unchanged in the early
stage of production and increases at a low rate in the late stage of production. Thus, the gas
production volume is much smaller than that of CO2 flooding. It can be speculated that the
injected water in the CO2-WAG method effectively hinders the breakthrough of CO2 and
the formation of a CO2-dominant channel. Therefore, CO2-WAG can effectively slow down
the rate of CO2 gas extraction compared to CO2 flooding.

Currently, the treatment and separation of output gas to recover methane and rein-
jected carbon dioxide are priorities for many oilfields. Gas treatment stations in oilfields
have a certain upper limit of gas that can be processed per day. In the CO2 flooding method,
the gas output rate may be too high, especially in the final stages of development. It may
lead to a risk that a large amount of methane gas and carbon dioxide cannot be captured
and recovered in time, causing a great loss of economic benefits and more emissions of
greenhouse gases. In contrast, according to the preceding analysis, the CO2-WAG method
can solve the aforementioned issues by efficiently extracting crude oil and reducing the gas
production rate, thereby allowing the gas treatment station sufficient time to capture and
recover methane gas and reinject carbon dioxide.

3.2. Analysis of Influence Factors on CO2-WAG

To analyze the principal influence factors of CO2-WAG, this work designs a series
of scenarios of the CO2-WAG development method by modifying the CO2-WAG period,
fluid injection rate, and water–gas ratio based on the above base model. Among them, six
schemes of the period adjustment are set as 4 months, 6 months, 12 months, 24 months,
48 months, and 96 months, respectively. Six schemes of the fluid injection rate adjustment
are set as: (1) water injection rate of 65 m3/day and CO2 injection rate of 12,000 m3/day;
(2) water injection rate of 79 m3/day and CO2 injection rate of 16,000 m3/day; (3) water
injection rate of 90 m3/day and CO2 injection rate of 20,000 m3/day; (4) water injection
rate of 100 m3/day and CO2 injection rate of 23,000 m3/day; (5) water injection rate of
110 m3/day and CO2 injection rate of 27,000 m3/day; (6) water injection rate 120 m3/day
and CO2 injection rate of 31,000 m3/day. 6 schemes of the water–gas ratio adjustment
are set as 0.33, 0.5, 1, 1.5, 2, and 3, respectively. Therefore, this work constructs a total of
6 × 6 × 6 = 216 scenarios. As the water injection rate varies simultaneously with the CO2
injection rate, this work selects the CO2 injection rate as one feature, and the period and
water–gas ratio as the other two features.
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The cumulative oil production, CO2 storage amount, and CO2 storage efficiency of
the 216 scenarios are simulated by CMG, and the results are detailed in Supporting Infor-
mation. To elucidate more clearly the influence of CO2-WAG parameters on production,
the cumulative oil production, CO2 storage amount, and CO2 storage efficiency of differ-
ent cycle schemes (#85, #97, #103), different fluid injection rate schemes (#49, #121, #193),
and different water–gas ratio schemes (#85, #87, #89) are compared by the single variable
method, and the results are shown in Figures 9–11.

As shown in Figure 9, the influence of the cycle on oil production is relatively small.
When the CO2-WAG cycle is relatively shorter, the cumulative oil production is higher.
When the cycle is 8 years, the cumulative oil production starts to decline significantly,
because in this case, the frequency of alternating water and carbon dioxide is low, similar
to a small period of water flooding and gas flooding. The influence of the cycle on CO2
storage is relatively large, both in terms of CO2 storage amount and CO2 storage efficiency.
Throughout the production process, CO2 storage amount and CO2 storage efficiency
fluctuate due to the alternate injection of water and CO2. At the end of the process, the CO2
storage amount and CO2 storage efficiency decrease with the cycle.

As shown in Figure 10, the injection rate has a greater impact on oil production. As
the injection rate increases, cumulative oil production also increases, but the CO2 storage
efficiency decreases. This is because more CO2 will return to the surface from production
wells as output gas when the CO2 injection rate increases. Therefore, when optimizing the
CO2-WAG extraction scheme in the oilfield, the injection rate cannot be increased arbitrarily.
The processing capacity of gas treatment stations in the oilfield needs to be considered.
When CO2 output is too fast, some CO2 will not be recovered and treated in time. CO2
will escape into the atmosphere, which may cause environmental issues and aggravate
the greenhouse effect. It also causes waste of CO2 gas resources and economic loss to the
oilfield. At the same time, an over-high injection rate will instantly increase the bottom
hole pressure of the injection well. When it exceeds the fracture pressure of the formation,
it will crush the formation, causing damage to the formation on the one hand. On the other
hand, it may cause CO2 to escape and pollute other formations.

The model in this study has a low reservoir pressure due to a period of depleted
extraction in the early stage. In addition, the fluid injection rate is low, which means it
cannot restore the reservoir pressure to the initial pressure. The simulated reservoir is a
low-pressure reservoir. For this type of reservoir, as shown in Figure 11, the higher the
water–gas ratio is, the better the oil production will be. In addition, when the injection rate
and the reservoir pressure are high, a lower water–gas ratio has a higher oil recovery. A
higher water–gas ratio results in less CO2 being buried because the proportion of injected
CO2 is smaller, but the storage efficiency is higher. A lower water–gas ratio allows more
CO2 to be buried because the proportion of CO2 in the injected fluid is larger. Moreover,
more CO2 will be produced from the production well, leading to lower storage efficiency.



Appl. Sci. 2022, 12, 10958 11 of 18Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 19 
 

 

 

 

Figure 9. Effect of WAG cycle on (a) cumulative oil production, (b) CO2 storage amount, and (c) CO2

storage efficiency.



Appl. Sci. 2022, 12, 10958 12 of 18

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 19 
 

Figure 9. Effect of WAG cycle on (a) cumulative oil production, (b) CO2 storage amount, and (c) CO2 

storage efficiency. 

 

 

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 19 
 

 

Figure 10. Effect of fluid injection rate on (a) cumulative oil production, (b) CO2 storage amount, 

and (c) CO2 storage efficiency. 

 

Figure 10. Effect of fluid injection rate on (a) cumulative oil production, (b) CO2 storage amount, and
(c) CO2 storage efficiency.



Appl. Sci. 2022, 12, 10958 13 of 18

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 19 
 

 

Figure 10. Effect of fluid injection rate on (a) cumulative oil production, (b) CO2 storage amount, 

and (c) CO2 storage efficiency. 

 

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 19 
 

 

 

Figure 11. Effect of water–gas ratio on (a) cumulative oil production, (b) CO2 storage amount, and 

(c) CO2 storage efficiency. 

3.3. Analysis of Machine Learning Results 

To compare the CMG numerical simulation results with the machine learning regres-

sion prediction results, this work builds a database of 216 CMG numerical simulation 

models, of which 70% are used as the training set and 30% as the test set. The numerical 

simulation results of the test set are employed as the true values for verifying the accuracy 

of the machine learning prediction. The result plots for the three labels of cumulative oil 

production, CO2 storage amount, and CO2 storage efficiency are shown in Figure 12. The 

predicted curve made by the random forest regression algorithm is very close to the true 

value curve in terms of cumulative oil production, CO2 storage amount, and CO2 storage 

efficiency. 

The relative deviation of cumulative oil production, CO2 storage amount, and CO2 

storage efficiency for each scheme are calculated and shown in Figure 13 for further dis-

cussion. The relative deviation of cumulative oil production between prediction and true 

values ranges from −4.76% to 2.51%, the maximum relative deviation is −4.76%, and the 

Figure 11. Effect of water–gas ratio on (a) cumulative oil production, (b) CO2 storage amount, and
(c) CO2 storage efficiency.



Appl. Sci. 2022, 12, 10958 14 of 18

3.3. Analysis of Machine Learning Results

To compare the CMG numerical simulation results with the machine learning regres-
sion prediction results, this work builds a database of 216 CMG numerical simulation
models, of which 70% are used as the training set and 30% as the test set. The numerical
simulation results of the test set are employed as the true values for verifying the accuracy
of the machine learning prediction. The result plots for the three labels of cumulative
oil production, CO2 storage amount, and CO2 storage efficiency are shown in Figure 12.
The predicted curve made by the random forest regression algorithm is very close to the
true value curve in terms of cumulative oil production, CO2 storage amount, and CO2
storage efficiency.
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The relative deviation of cumulative oil production, CO2 storage amount, and CO2
storage efficiency for each scheme are calculated and shown in Figure 13 for further
discussion. The relative deviation of cumulative oil production between prediction and
true values ranges from −4.76% to 2.51%, the maximum relative deviation is −4.76%, and
the average absolute relative deviation is 1.10%. The maximum relative deviation of CO2
storage amount between prediction and true values is −15.15%. Except for this, the relative
deviation for all other scenarios ranges from −10.67% to 5.23%. The average absolute
relative deviation for predicting CO2 storage amount is 3.04%. For the prediction of CO2
storage efficiency, except for three scenarios with large relative deviations of −13.35%,
−11.93%, and 8.72%, respectively, the relative deviation for all other scenarios ranges
from −6.31% to 4.55%. The average absolute relative deviation for predicting CO2 storage
efficiency is 2.24%.
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According to the curve between the predicted value and the true value, and their
relative deviation, the random forest regression algorithm can accurately predict the CO2-
WAG production. Therefore, the cumulative oil production, CO2 storage amount, and
CO2 storage efficiency can be accurately estimated by this method for the cases of various
periods, fluid injection rates, and water–gas ratios.

Moreover, compared to the simulation method, the machine learning-assisted predic-
tion method can save the time of adjusting the CMG model and running data files. It takes
about 30 s to run a case of the CMG model and 108 min for all of the 216 cases in this study.
The machine learning method employed in this work only spends 10 s predicting all of the
scenarios, which shows a big advantage in computational efficiency compared to the CMG
simulation method. If the grid of the CMG model is refined, the timesaving advantage of
the machine learning method will be much huger. Therefore, the machine learning-assisted
method can greatly improve the prediction efficiency of CO2-WAG and will be suitable for
injection parameter optimization.
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4. Conclusions

For the application of CO2-WAG used in non-homogeneous, low-permeability reser-
voirs and the machine learning-assisted prediction method of CO2-WAG, some conclusions
can be drawn from this work as follows:

(1) Compared to water flooding and continuous CO2 flooding, CO2-WAG can effec-
tively improve oil recovery. In addition, compared to CO2 flooding, CO2-WAG can reduce
the CO2 production rate, which is conducive to the storage of CO2 for the reduction of
greenhouse gas emissions.

(2) The CO2-WAG cycle time has a slight influence on oil production. Both CO2
storage amount and CO2 storage efficiency decrease with the cycle. On the premise that the
reservoir formation is not fractured, the oil production increases but CO2 storage efficiency
decreases with the fluid injection rate. For low-pressure reservoirs, the oil production
increases with the water–gas ratio, but CO2 storage efficiency decreases with the water–
gas ratio.

(3) The random forest regression algorithm in machine learning has better fitting
accuracy in predicting the results of CO2-WAG development. Therefore, it can be used
to predict the oil production and CO2 storage results under different combinations of
injection parameters.

(4) Compared to numerical simulations, using machine learning algorithms to predict
results avoids the need to build models and run data files, which will save a lot of time for
subsequent parameter optimization.
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