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Abstract: The paper aims to investigate the basin of attraction map of a complex Vehicle Routing
Problem with random walk analysis. The Vehicle Routing Problem (VRP) is a common discrete
optimization problem in field of logistics. In the case of the base VRP, the positions of one single depot
and many customers (which have product demands) are given. The vehicles and their capacity limits
are also fixed in the system and the objective function is the minimization of the length of the route. In
the literature, many approaches have appeared to simulate the transportation demands. Most of the
approaches are using some kind of metaheuristics. Solving the problems with metaheuristics requires
exploring the fitness landscape of the optimization problem. The fitness landscape analysis consists
of the investigation of the following elements: the set of the possible states, the fitness function
and the neighborhood relationship. We use also metaheuristics are used to perform neighborhood
discovery depending on the neighborhood interpretation. In this article, the following neighborhood
operators are used for the basin of attraction map: 2-opt, Order Crossover (OX), Partially Matched
Crossover (PMX), Cycle Crossover (CX). Based on our test results, the 2-opt and Partially Matched
Crossover operators are more efficient than the Order Crossover and Cycle Crossovers.

Keywords: vehicle routing problem; fitness landscape; basin of attraction; random walk

1. Introduction

One of the most important tasks of logistics is the cost-effective delivery of the right
goods, to the right place in the right time considering any other constraints. These problem
domains belong to the area of the Vehicle Routing Problem (VRP), which has developed
in several versions since its first version [1] in 1959. The basic VRP (which is the easiest
version of the VRP) is characterized by the fact that the position of a single depot and
many customers are known in advance. The demands of the customers are also fixed in
advance and, in the system, there is only a single product. The number of vehicles and
their capacity constraints is also given in advance. The vehicles start their routes form the
depot, they visit some customers, and then return to the depot. The objective function
is the minimization of the length of the route. In the following, the main variants of the
VRP are detailed that contributed to the development of our own VRP model. Vehicle
Routing Problem with Single Depot [2] is a VRP where the system contains a single depot.
In case of Vehicle Routing Problem with Multiple Depots [3,4] multiple depots are in the
system, and the vehicles start their route from one of the depots, and after visiting the
customers, they return to the depot from which they started their route. In the case of the
Two-Echelon Vehicle Routing Problem [5], there are not only depots and customers but also
satellites. The products are transported from the depot to intermediate locations (satellites)
and then from the satellites to the customers. In most of the cases, there are several types
of (capacity-constrained) vehicles in the system. If there is only one type of vehicle in the
system, it can be said that the system has a homogeneous fleet (Homogeneous Fleet Vehicle
Routing Problem [6]). If the system contains several types of vehicles, then the system has
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a heterogeneous fleet (Heterogeneous Fleet Vehicle Routing Problem [7]). If vehicles have a
capacity limit for the goods to be transported, then the system is called Capacitated Vehicle
Routing Problem [4,8,9]. Customers to visit can also have a time window, this is called the
Vehicle Routing Problem with Time Windows [4].

One of the latest VRP trends is the Fuel-Efficient Green Vehicle Routing Problem [10];
this case prioritizes not the minimization of the length of the route, but the minimization of
the fuel consumption of the vehicles as the objective function. In the case of Cumulative
Vehicle Routing Problem [11], the minimization of the waiting times for the customers is the
objective function. In case of Fuzzy VRP, some factors are given with fuzzy numbers [12].
Milk-run VRP [13] is also a common problem, where the products, materials, etc., are
transported between the warehouse and the production line. Another new trend is the
application of electric vehicles [14].

Separate algorithms are usually implemented for each VRP model and we also find ex-
amples of general heuristics [4]. The investigated system is designed to solve the following
VRP model: time windows, capacitated vehicles, multi-depot, and open VRP.

In logistics, beside VRP, we can also find examples of other transportation
tasks [15,16], too.

The fitness landscape analysis [17] is a method to investigate the optimization space,
it consists of the following elements: the set of possible solution states, neighborhood
definition and the fitness function. Although encoding does not belong directly to the
concept of the fitness landscape, it plays a big role in the analysis of space. The neighbors
of the actual state can be created in several ways (for example, in the case of permutation
representation, the 2-opt operator is a common way). To prove that a metaheuristic is
suitable for a given optimization task, fitness landscape analysis can be a good alternative.
In this case, we compare the main fitness landscape analysis methods with metaheuristics
operators. One way of fitness landscape analysis is the trajectory-based sampling approach.
In trajectory-based sampling, samples are taken from the search space. We start from a
possible state point, then create the state of one or more possible neighbors, then select one
of them, which is called the current state. In the literature, the following trajectory-based
sampling techniques are investigated [18]: random walk, adaptive walk, reverse adaptive
walk, neutral walk, reverse neutral walk, uphill-downhill walk. During a random walk,
the next state is the randomly selected neighbor of the current state. In case of an adaptive
walk, only a better state is selected from the neighbors of the current state. The reverse
adaptive walk is the inverse of the adaptive walk, in which case a state that is worse than
the current state is selected from the neighbors of the current state. During a neutral walk,
we select a neighbor that shows a fitness value that is close to the current state point. The
reverse neutral walk is the opposite of neutral walk, then we select a neighbor where the
difference in fitness value is as large as possible. During the uphill downhill walk, we first
perform an adaptive step and then a reverse adaptive walk is performed.

This paper focuses on the analysis of the random walk in a complex Vehicle Routing
Problem The remainder of the paper is organized as follows: in Section 2, the related works
are detailed. In Section 3, the Multi-Echelon Vehicle Routing Problem is presented; in
Section 4, the basin of attraction map with random walk is analyzed; in Section 5, the
results and discussion is detailed, and after that the summary Section follows.

2. Related Works

In this section, we present some proposals in connection with fitness landscape analy-
sis. Examination of the optimization space is a useful component in analyzing the general
behavior of the problem domain. The structure of the optimization space influences the
efficiency of convergence, such as the quality of the obtained global or local optimum. Ex-
amining the fitness space can be useful for selecting the appropriate optimization methods
(which operators are worth using for heuristic algorithms). One benefit of the presented
methods is that it can be used as the foundation for further formal theoretical analyzes,
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there is no need to perform expensive experiments (such as when comparing the results of
metaheuristic algorithms with test results).

Our analyzes include Vehicle Routing Problem [19,20], Traveling Salesman Prob-
lem [21–23], Job Scheduling Problem [21], Test Function [24], Quadratic Assignment
Problem [25]. The authors of [19] perform a fitness landscape analysis of the Vehicle
Routing Problem. Information is analyzed from a theoretical perspective, and the operators
of the Genetic Algorithm (Swap, Inversion, Insertion, Displacement, Partially Matched
Crossover—PMX, Uniform Order Crossover—UOX, Cycle Crossover—CX) were chosen
as the subject of their analysis. The concepts of information content, partial information
content, and density-basin information are reported. The authors of [20] also perform a
fitness landscape analysis of the vehicle routing problem. After presenting the mathemati-
cal model, the authors review the concepts of search space (fitness landscape). Then, in
proportion to the fitness values, the averages of the distances taken from the solutions are
illustrated and the distances taken from the best solution are also plotted. The authors
of [22] focus on the analysis of the Memetic Algorithm in solving the Traveling Salesman
Problem. After discussing each concept of fitness landscape, the authors also plot each
solution in a coordinate system according to fitness values. The subject of the analysis is
the distance from the optimum and the differences in fitness. Analyses are performed on
benchmark data sets. The Traveling Salesman Problem and the No-Wait Job Scheduling
are discussed by the authors in [21]. Fitness landscape analysis is performed as autocor-
relation, time to local optimum, number of local optimums, its increase as the problem
increases, distances from the optimum, the probability that we will reach the optimum.
An example of the analysis of benchmark continuous functions can also be found in the
literature, for example, in [24] the Differential Evolution Algorithm fitness landscape analy-
sis is presented. Presentations of the most important concepts of fitness landscape: fitness
distance correlation, correlation length, epistasis, evolvability and neutrality. The authors
focused on a continuous optimization task. Benchmark functions were solved such as
Sphere function, Rosenbrock function, Step function, Schwefel function, Rastrigin function,
Griewangk function, Ackley function, Easom function, Schwefel’s Ridge function. Schwefel
function, the Easom function, the Schwefel’s Ridge function had a small fitness distance
correlation, which means, that a Hill Climbing algorithm can easily solve these problems.
The analysis of the Traveling Salesman Problem with benchmark data sets is also presented
in [23], by comparing the Iterated Local Search and Hill Climbing Algorithm. In this article,
experiments were executed on benchmark data sets. They applied 3 TSP-lib instances for
the simulations. The distance and running time compared to the best result known so far
are compared. An example of the analysis of the Quadratic Assignment Problem (QAP)
fitness landscape can also be found in [25]. In addition to presenting the task, operators
are also presented as pairwise exchange or swap. In addition, the basin of attraction, the
local optima network, the random walk autocorrelation function, and the autocorrelation
length are also detailed. The Genetic Algorithm (GA) and Simulated Annealing (SA) were
used as algorithms, Partially Matched Crossover (PMX) and Pairwise Exchange Mutation
as operators. Correlation analysis is also performed, comparing the two algorithms. The
number of local optima and shortest path to the optimum results are also produced. It
was concluded that the GA was the stronger algorithm to solve all the studied classes of
QAP instances.

3. The Multi-Echelon Vehicle Routing Problem

In this Section our Vehicle Routing Problem model is detailed. Our VRP model and
test instance is based on our previous work [26]. Figure 1 illustrates the topology of
our problem.
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Figure 1. Multi-Echelon Vehicle Routing Problem model.

Figure 1 illustrates an example of a VRP sketch on which our own VRP example is
based. Figure 1 indicates that our VRP consists of not only customers, indicated with
CU = {cu1, cu2, . . . , cunc} and a depot, indicated with D = {d1}, but also satellites.
However, the satellites are also different, in levels. The product is shipped from a central
depot to the first level satellite SL1 =

{
sl1,1, sl1,2, . . . , sl1,nsl1

}
, than to the second level

satellite SL2 =
{

sl2,1, sl2,2, . . . , sl2,nsl2
}

, etc., and then to the customers. The system
contains a single type of product, indicated with PR = {pr1}. We can also define the
set of locations, with the union of the depot, satellites and customers: LO = D ∪ SL1 ∪
SL2 . . . ∪ CU = {lo1, . . . , lonlo}. The system also contains several vehicles, indicated with
VE = {ve1, . . . , venve}. Our system contains several components, which can be categorized
in the following way: node components, vehicle components, time components, product
components, cost components, and metrics (objective function components). To formalize
the components, the following notations are introduced: i, j is the node index, k is the
vehicle index. The product has not got any special index, because the system contains
one type of product. In the following, we use a function-oriented description of the costs
associated with the main components of the VRP system in order to provide a more general
formalism. The arguments of the functions are equal to the main cost parameters of
the VRP.

The objective is the minimization of the length of the route (minzlr), fuel consumption
(minz f c), vehicle rental fee (minzr f ), route time (minzrt), unvisited customers (minzuc),
loading time (minzlt), unloading time (minzut), loading cost (minzlc), unloading cost
(minzuc), administration cost (minzac), quality control cost (minzqcc) and the maximiza-
tion of the route status (minzrs). For the objective function, it is necessary to normalize
the individual components of the objective function. The objective function is a combina-
tion of these components, which can be written in the following way: Z = {(wlr × znorm

lr )2

+(w f c × znorm
f c )2 +

(
wr f × znorm

r f

)2
+ (wrt × znorm

rt )2 + (wuc × znorm
uc )2 +

(
wlt × znorm

lt
)2
+

(wut × znorm
ut )2 +

(
wlc × znorm

lc
)2

+(wuc × znorm
uc )2 +(wac × znorm

ac )2 +
(

wqcc × znorm
qcc

)2
+

(wrs × znorm
rs )2}1/2, where znorm means the normalization of an objective function compo-

nent, and w means the weights of each components.
To the node component belongs the travel time between the nodes, which can be

written with the following function: TravelTime
(
loi, loj, vek

)
, so the travel time varies by

locations and vehicle types. The travel distance between the nodes can be written in the
following way: TravelDistance

(
loi, loj, vek

)
, so the travel distance varies also by locations

and vehicle types. Route status between the nodes is also defined: RouteStatus
(
loi, loj, vek

)
,

it also varies by locations and vehicles. By route condition we mean the technical con-
dition of the route (e.g., potholes) and the security of the route (e.g., robberies). The
aim is to maximize the average state value of the generated path. To the vehicle com-
ponent belongs the capacity constraint of the vehicle, fuel consumption and rental fee.
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The vehicles have a capacity limit to the product, it can be written in the following way:
CapacityLimit(vek), it depends on vehicles and product (but there is only one product
in the system). The vehicles have fuel consumption, which varies by vehicles; it can be
written in the following way: FuelConsumption(vek). In the system, there are own fleet
of vehicles and also rented vehicles. The rented vehicles have rental fees, indicated with
RentalFee(vek). The time component indicates components in the system in connection
with time, which are the followings: LoadingTime(loi, vek), it indicates, that the loading
time depends on locations, and vehicles. In our system there is also unloading time, which
can be written in the following way: UnloadingTime(loi, vek). The loading and unload-
ing time depend on location and vehicle. In the locations, administration time can also
arise in connection with the product; the following function indicates this component:
AdministrationTime(loi, vek). In connection with product, there is only one component in
our system, the product demand of each location, it can be written in the following way:
ProductDemand(loi). The product demand depends on location and product (but there is
a single product in our system). Our system consists of the following cost components:
loading cost, unloading cost, administrative cost, quality control cost. The loading cost
can be written in the following way: LoadingCost(loi, vek) and unloading cost can be for-
mulated in the same way: UnloadingCost(loi, vek). The administration cost is written with
AdministrationCost(loi, vek) and quality control cost with QualityControlCost(loi, vek). All
of the cost components depend on locations and vehicles.

Our Vehicle Routing Instance

In the tests, we use artificially generated data sets. The test system contains a single
depot where the position is generated in interval (0, 100). The satellites in the test system
can be divided into two levels. The satellites of the first level were generated with position
index in (200, 300), and the positions of the second level are from (400, 500). The number
of the satellite nodes is equal to 10 and the number of customers is set to 15. Each level
contains two vehicles. The capacity constraints of the vehicles are set to a value between
10,000 and 50,000, and the fuel consumptions are generated between 10 and 100. As
detailed above, the costs values in our system are generated from the interval (10, 50). The
temporal parameter values are generated in (30, 50). The travel distances between the
nodes are calculated with Euclidean distance, the travel time values are from (10, 100), and
the route status values are between 100 and 500.

4. Fitness Landscape Analysis: Neighborhood Operators and Random Walk Metrics

Fitness landscape [17] definition covers the set of possible states, the definition of the
neighborhood and the fitness function. Many neighborhood operators have appeared in the
literature, it depends on whether the problem is a discrete or continuous optimization prob-
lem. In the following, the different neighborhood operators of our discrete optimization
problem are detailed.

We can distinguish single operand and two-operand operators. In our Multi-Echelon
VRP system, the operands are permutations representing the processing order of nodes.
During the evaluation, each element of the permutation is lined up and assigned to a
vehicle until a solution (vehicle capacity) is encountered. When the constraint is not met,
we assign the nodes to a next vehicle.

2-opt [27] operator is widely used in the case of permutation representation of opti-
mization problems (Figure 2).

Figure 2. 2-opt operator.
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In the case of 2-opt, two edges are swapped. Swapping means the selection of a given
section of the permutation and the reversing of this selected section.

Within the frame of the fitness landscape analysis, we can analyze the performance of
the mutation operators. For neighborhood generation the following operators can be used:
cycle crossover, order crossover, partially matched crossover.

Figure 3 demonstrates a cycle crossover operator [28]. The cycle crossover locates the
cycles in the path. Both parents are permutation, so the cycle crossover takes advantage of
the fact that the elements are listed twice (exactly once in both parents). In the example,
the (1,9) pair are taken first. The first child collects the first element of the first parent, and
the second child receives the first element of the second parent. Then, the second child
collects the element denoted by 9. Therefore, we have to look for the item 9 in the first
parent, and the first child puts this in the right place. The second child receives the element
1. The first child has already got the element 1, so the circle is closed. The next steps can
be summarized in the followings: the first child gets the other elements from the second
parent, and the second child gets the other elements from the first parent.

Figure 3. Cycle crossover (CX) operator.

Figure 4 shows the order crossover operator [28]. This operator uses a random fitting
section. The position of the chosen fitting section must be the same for both parents. In
the second child, the elements of the fitting section of the first parent are substituted with
letter H (holes). Similarly, in the first child, the elements of the fitting section of the second
parent are substituted with letter H (holes). The holes will be pushed up in the fitting
section. After that step, the holes of the first child are substituted with the fitting section of
the second parent, and the holes of the second child are substituted with the fitting section
of the first parent.

Figure 5 demonstrates the partially matched crossover operator [28]. In the case of
this crossover, a random fitting section is chosen. The fitting section of both parents must
be in the same position. Pairs are formed from the elements of the fitting section of the two
parents. Here, in pairs, the exchange operation itself takes place independently of each
other. Pairs denote the elements to be exchanged, but once the elements to be exchanged
have been determined, the exchange in both genes and the other gene occurs independently
of each other. In our example, we can identify the following pairs: (2,8), (6,5), (7,3), (5,2).
We copy parents; these copies will be the new children of the parents. These pairs are
changed in the first and then the second child. In our example, we change the 2 with 8,
then the 6 with 5, then the 7 with 3 then the 5 with 2.
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Figure 4. Order crossover (OX) operator.

Figure 5. Partially Matched crossover (PMX) operator.

Within the frame of this operation, it is also important to measure the distance be-
tween the potential solutions. In this paper, three techniques are presented, which are the
followings: fitness distance, hamming distance, and basic swap sequence distance. Fitness
distance is the absolute value of the difference in fitness value between the two solutions.
The hamming distance [29] is the number of differences between the representations of the
two solutions. The basic swap sequence distance [30] is the number of swaps between the
representations of the two solutions.

Basin of attraction are solutions, which convergence to a certain optimum [18]. The
goal is to get out of this as easily as possible, because when an algorithm gets to a local
optimum, if it has a hard time getting out of it, it has less chance of exploring space,
thus reaching the global optimum. Our fitness landscape analysis uses trajectory-based
sampling, in which a sample is taken from the search space. In this technique first, a
possible state is selected, it will be first the actual state. With the neighborhood operator,
we form one or more (in our case one) neighbor states, one of which will be the new current
state. In the case of a random walk [18] sampling technique, the random neighbor state
of the actual sate will be the actual sate. The neighbor can be better or worse than the
actual state. We also prepare an information theory analysis of the fitness landscape, which
quantifies the frequency of relative sequences between neighbors. The following important
metrics can be evaluated [18]:

• Partial Information Content: The fitness value of each of the next neighbors is sub-
tracted. It can be a positive number (ascending) that means 1, a negative number
(descending), it means−1, or zero (not changing), it means 0. Therefore, the values−1,
0, 1 are indicator values. They show whether the fitness of the neighbor is increasing,
decreasing, or remaining of the same. The sequence of the indicator values is given
with soriginal . This procedure removes zero (non-variable) values from the sequence
and then leaves only the variable slopes (i.e., descending values after ascending, as-
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cending values after descending), indicated with snonzero. The value thus obtained is
divided by the length of the original sequence.

M(ε) =
snonzero

soriginal
(1)

A value of 1 is rugged while a value of 0 is flat.
• Expected Partial Information Content: this measure requires the partial information

content value. The expected partial information content can be calculated with the
following way:

E[M(ε)] =
n × M(ε)

2
(2)

In the formula, n is the length of the soriginal , M(ε) is the partial information con-
tent. Expected partial content is not a probability variable, it shows the shape of the
fitness landscape.

• Information Stability: the fitness values of each of the next neighbors are subtracted
from each other. The greatest value obtained will be information stability.

• Entropy: the fitness values of each of the next neighbors are subtracted. It can be a
positive number (ascending) that means 1, a negative number (descending), it means
−1, or zero (not changing), it means 0. This gives a sequence. Then, the entropy
(entropy) is calculated with the following formula, where Pi is the relative frequency
of the symbols:

−∑
i

PilnPi (3)

• Information Content: the fitness values of each neighbor solutions are subtracted
each other. It can be a positive number (ascending) that means 1, a negative number
(descending), it means −1, or zero (not changing), it means 0. This gives a sequence.
Then, the information content can be calculated with the following formula, where P[pq]
denotes the relative frequency of the consecutive symbols, where p, q ∈ { 1, 0 ,−1}:

H(ε)− ∑
p 6= q

P[pq] × log6P[pq] (4)

• Density Basin Information: the same as information content, but the basis of the
logarithm is different. The Equation of the density basin information is the following:

h(ε)− ∑
p 6= q

P[pq] × log3P[pq] (5)

• Regularity: the fitness values of each of the next neighbors are subtracted. These
values represent regularity.

• Evolvability portrait: the fitness value of all neighbors of the current solution are
divided by the number of neighbors

5. Results and Discussion

In this section, first, the search space is filtered, to find out what solutions space
consists of, how they relate to each other, how far apart they are. This step is based on
random sampling.

Then, the random walk, which is a trajectory-based sampling, is performed. Results
of the random walk are compared with each other, then the result is also analyzed from the
point of view of information theory. Operators are good if they give varied results, because
then they explore the space well, the basin of attraction is small, so they can easily get out
of a local optimum.

The analyzes were performed in Java with our own implementation. The test was
running on a personal computer.
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5.1. Scattered Filtering of the Search Space

This step means that the search space is sampled. Therefore, we randomly generate
solutions and then analyze them. In the tests, we created 100 solutions at random. We
chose a relatively low value, even though the task is complicated one, but the number of
nodes to be visited is not very large. The following analysis methods were considered:
distance of solutions, the distance of the best solution, the distance of the best solution
and solutions, cost density. The following distances were analyzed: fitness, hamming,
basic swap sequence. For average distances for the search space points were calculated by
calculating the average distance to all other search space points. Therefore, each solution is
assigned to a point-level average distance.

Figure 6a shows fitness values and average fitness distances. Fitness values range
from ≈120,000 to ≈160,000 (fitness unit), while average fitness distances range from ≈5000
to ≈19,000 (fitness unit). These values also show a parabolic function because small and
large fitness values are paired with a large average distance, while medium fitness values
are associated with a medium average distance. Figure 6b shows fitness values and average
hamming distances. The average hamming distances in each case range from about 35
to 36 (hamming distance unit). Figure 7 shows fitness values and average basic swap
sequence distances. The average basic swap sequence distances in each case range from
about 28 to 29 (basic swap sequence distance unit). The fitness values and fitness distances
from the best solution (the best of the generated solutions) show a linear function, the
higher the fitness value of the solution, the greater the distance from the best solution (the
best of the generated solutions). According to Figure 6b, the average hamming distances
are around 35 (hamming distance unit), while according to Figure 7, the average basic
swap sequence distances are around 29 (basic swap sequence distance unit). Fitness values
range from ≈120,000 to ≈160,000 (fitness unit), and fitness distances range from ≈4,000
to ≈36,000 (fitness unit). In case of fitness values and hamming distance from the best
solution (the best of the generated solutions), the Hamming distances range from 30 to
40 (hamming distance unit). The basic swap sequence distance from the best solution
(the best of the generated solutions) range from 24 to 35 (basic swap sequence distance
unit). The fitness distance from the best solution (the best of the generated solutions) and
the average of the fitness distances from the other solutions are described by a parabolic
function, thus, low and high distances mean high average distances from the best (best of
generated solutions) solution, while medium distances mean low average distances from
the best (best of generated solutions) solution. The cost density value shows that almost
every solution has a different fitness value.

Table 1 presents the meaning of evaluation and Table 2 illustrates the test results.

Figure 6. The fitness distance (a) and the hamming distance (b) of solutions.
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Figure 7. The basic swap sequence distance of solutions.

Table 1. Analysis of the scattered filtered search space: meaning of evaluation.

Analysis of Filtered Search Space

Type Optimal Value

Fitness values Small value difference is optimal. Large value difference between lower
and upper bound in case of high mountains and valleysAverage of fitness distances

Average of hamming distances Small lower and upper bound are optimal. At high average distances, it is
more difficult for the optimization algorithm to navigate through the field

because the task is complicatedAverage of basic swap sequence distances

Fitness distances of the best solution A small difference in value is optimal. At great distances, we are far from
the optimum

Hamming distances of the best solution Small lower and upper bound are optimal. At large distances, it is more
difficult for the optimization algorithm to get to the optimumBasic swap sequence distances of the best solution

Cost density Small lower and upper bound are optimal. For high values, the solutions
are varied

Table 2. Analysis of the scattered filtered search space: results.

Analysis of Filtered Search Space

Type Distance Lower Bound Upper Bound

Fitness values Fitness (fitness unit) 120,000 160,000

Average of fitness distances Fitness (fitness unit) 5000 19,000

Average of hamming distances Hamming (hamming distance unit) 35 36

Average of basic swap sequence distances Basic swap sequence (basic swap sequence
distance unit) 28 29

Fitness distances of the best solution Fitness (fitness unit) 4000 36,000

Hamming distances of the best solution Hamming (hamming distance unit) 30 40

Basic swap sequence distances of the best
solution

Basic swap sequence (basic swap sequence
distance unit) 24 35

Cost density - 1 3
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5.2. Radom Walk Analysis: The Comparison of the Results to Each Other

The average fitness distances (where distances are calculated from the elements of
the solution set) during the random walk and 2-opt operator describe a parabolic function
based on Figure 8a Fitness values range from 120,000 to 140,000 (fitness unit), while average
fitness distances range from 2500 to 9000 (fitness unit). If a solution has a low or high fitness
value, the average fitness distance from the other solutions is high, while if it has a medium
fitness value, the average distance is low. According to Figure 8b, average hamming
distances are not affected by fitness value. Average hamming distances range from 28 to
34 (hamming distance unit). The average basic swap sequence distances (Figure 9) are not
affected by fitness value. The average basic swap sequence distances are between 20–26
(basic swap sequence unit).

Figure 8. The fitness values and their average fitness distances (a) and the average hamming distances
(b) from each other in case of 2-opt operator.

Figure 9. The average basic swap sequence distances from each other in case of 2-opt operator.

In the following, the results of order crossover operator is presented, where distances
are calculated from the elements of the solution set. The average fitness distances during
the random walk and order crossover operators describe a parabolic function. Fitness
values range from 120,000 to 140,000 (fitness unit), while average fitness distances range
from 2000 to 10,000 (fitness unit). If a solution has a low or high fitness value, the average
fitness distance from the other solutions is high, while if it has a medium fitness value, the
average distance is low. The average hamming distances are not affected by fitness value.
Average hamming distances range from 30 to 34 (hamming distance unit). The average
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basic swap sequence distances are also not affected by fitness value. The average basic
swap sequence distances are between 23–28 (basic swap sequence unit).

In the following, the results of the cycle crossover operator, where the distances are
calculated from the elements of the solution set is presented. The distances describe a
parabolic function. Fitness values range from 120,000 to 140,000 (fitness unit), while average
fitness distances range from 1800 to 5000 (fitness unit). If a solution has a low or high
fitness value, the average fitness distance from the other solutions is high, while if it has a
medium fitness value, the average distance is low. The average hamming distances are not
affected by fitness value. Average hamming distances range from 25 (hamming distance
unit) to 30 (hamming distance unit). The average basic swap sequence distances are also
not affected by fitness value. The average basic swap sequence distances are between 20–24
(basic swap sequence unit).

In the following, the results of the partially matched crossover operator, where dis-
tances are calculated from the elements of the solution set is detailed. The average fitness
distances during partially matched crossover operator describes a parabolic function. Fit-
ness values range from 120,000 to 140,000 (fitness unit), while average fitness distances
range from 2000 to 7500 (fitness unit). If a solution has a low or high fitness value, the
average fitness distance from the other solutions is high, while if it has a medium fitness
value, the average distance is low. The average hamming distances are not affected by
fitness value. Average hamming distances range from 30 (hamming distance unit) to 34
(hamming distance unit). The average basic swap sequence distances are also not affected
by fitness value. The average basic swap sequence distances are between 23–27 (basic swap
sequence distance unit).

In the following, the results of the 2-opt operator is presented, where the distances are
calculated from the best element of the solution set. Figure 10a shows the fitness values
and the fitness distance from the best solution for random walk and 2-opt. The higher the
fitness value of a solution, obviously the farther away from the best solution. According to
Figure 10b the hamming distances range from 2 to 38 (hamming distance unit). The greater
the fitness value of a solution, the greater the hamming distance from the best solution.
According to Figure 11, the basic swap sequence distances are between 1–32 (basic swap
sequence distance unit). The higher the fitness value of a solution, the greater the distance
of the basic swap from the best solution.

Figure 10. The fitness values and their fitness distances (a) and hamming distances (b) from the best
of the solutions in case of 2-opt operator.



Appl. Sci. 2021, 11, 2100 13 of 23

Figure 11. The basic swap sequence distances from the best of the solutions in case of 2-opt operator.

In the following, the results of the order crossover operator are detailed, where
distances are calculated from the best element in the solution set. The higher the fitness
value of a solution, obviously the farther away from the best solution. The hamming
distances range from 2 to 40 (hamming distance unit). The greater the fitness value of a
solution, the greater the hamming distance from the best solution. The basic swap sequence
distances are between 2–34 (basic swap sequence distance unit). The higher the fitness
value of a solution, the greater the distance of the basic swap from the best solution.

The results of the cycle crossover operator and a partially matched crossover are
detailed, where distances are calculated from the best element of the solution set. These
analyzes also show that the higher the fitness value of a solution, the greater the distance
of the fitness from the best solution, and the hamming and basic swap sequence distances
also increase as a function of the fitness value. For a cycle crossover, the hamming distance
is 0–38 (hamming distance unit), while the basic swap sequence distance is 0–29 (basic
swap sequence distance unit), and for a partially matched crossover, the hamming distance
is 2–40 (hamming distance unit) and the basic swap sequence distance is 1–34 (basic swap
sequence distance unit).

In the following, the distance from the best solution and the average of the distances
from the other solutions are presented. According to Figure 12a, this is a parabolic function
for 2-opt operator, so for large and small distances the average distances are large, while
for medium distances the average distances are small for random walk and 2-opt. This
shows that the extreme case is not in the middle of the distribution, it is located close to
the elements in the center. According to Figure 12b the distance from the best solution
during hamming distances does not affect the average distance here. Figure 13 shows the
results for the basic swap sequence, here too the average basic swap sequence distance
is not affected by the distance from the best solution to the given result. In the case of
order crossover, we also get a parabolic function for fitness distances. The results for cycle
crossover and partially matched crossover are similar to those for 2-opt and cycle crossover.

Figures 14 and 15 show the cost of density results, i.e., how many solutions with the
same fitness value are present between each solution. Based on the results, in the case of
2-opt, almost every solution has a unique fitness value. In the case of order crossover and
cycle crossover, some solutions have the same fitness value, while in the case of partially
matched crossover, each solution also has a unique fitness value. Table 3. illustrates the
evaluation methods of the results of random walk analysis, and Table 4. presents the
summary of the results of the random walk where the solutions are compared to each other.
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Figure 12. The distance from the best solution and the average of the fitness distances (a) and the
hamming distances (b) from the other solutions in case of 2-opt operator.

Figure 13. The basic swap sequence distances from the other solutions in case of 2-opt operator.

Figure 14. The cost of density in case of 2-opt (a) and order crossover operator (b).



Appl. Sci. 2021, 11, 2100 15 of 23

Figure 15. The cost of density in case of cycle crossover (a) and partially matched crossover operator (b).

Table 3. The evaluation methods of the results of random walk analysis.

Random Walk Analysis: The Comparison of Results to Each Other

Type Optimal Value

Fitness values
If the value difference between the lower and upper bound is large, the
algorithm detects the space well. The lower bound value, on the other

hand, must be small
Average of fitness distances

It explores space well over long distancesAverage of hamming distances
Average of basic swap sequence distances

Fitness distances of best solution Large upper bound and small lower bound. Then, it explores the space
well (large upper bound) but also found a very good solution due to the

small upper bound.
Hamming distances of best solution

Basic swap sequence distances of best solution
Cost of density At high values, it explores space well

Fitness distance of filtered global optima Large upper bound and small lower bound. Then, it explores the space
well (large upper bound) but also found a very good solution due to the

small upper bound.
Hamming distance of filtered global optima

Basic swap sequence distance of
filtered global optima

Table 4. The summary of the results of the random walk where the solutions are compared to each other.

Type Distance Lower Bound Upper Bound

2-opt

Fitness values Fitness (fitness unit) 120,000 140,000
Average of fitness distances Fitness (fitness unit) 2500 9000

Average of hamming distances Hamming (hamming distance unit) 28 34

Average of basic swap sequence distances Basic swap sequence (basic swap
sequence distance unit) 20 26

Fitness distances of best solution Fitness (fitness unit) 1000 17,000
Hamming distances of best solution Hamming (hamming distance unit) 2 38

Basic swap sequence distances of best solution Basic swap sequence (basic swap
sequence distance unit) 1 32

Cost of density — 1 2
Fitness distance of filtered global optima Fitness (fitness unit) 1000 18,000

Hamming distance of filtered global optima Hamming (hamming distance unit) 30 40
Basic swap sequence distance of filtered global

optima
Basic swap sequence (basic swap

sequence distance unit) 22 34
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Table 4. Cont.

Type Distance Lower Bound Upper Bound

Order crossover

Fitness values Fitness (fitness unit) 120,000 140,000
Average of fitness distances Fitness (fitness unit) 2000 10,000

Average of hamming distances Hamming (hamming distance unit) 30 34

Average of basic swap sequence distances Basic swap sequence (basic swap
sequence distance unit) 23 28

Fitness distances of best solution Fitness (fitness unit) 1000 16,000
Hamming distances of best solution Hamming (hamming distance unit) 2 40

Basic swap sequence distances of best solution Basic swap sequence (basic swap
sequence distance unit) 2 34

Cost of density — 1 3
Fitness distance of filtered global optima Fitness (fitness unit) 0 11,000

Hamming distance of filtered global optima Hamming (hamming distance unit) 28 38
Basic swap sequence distance of filtered global

optima
Basic swap sequence (basic swap

sequence distance unit) 22 32

Cycle crossover

Fitness values Fitness (fitness unit) 120,000 140,000
Average of fitness distances Fitness (fitness unit) 1800 5000

Average of hamming distances Hamming (hamming distance unit) 25 30

Average of basic swap sequence distances Basic swap sequence (basic swap
sequence distance unit) 20 24

Fitness distances of best solution Fitness (fitness unit) 0 9500
Hamming distances of best solution Hamming (hamming distance unit) 0 38

Basic swap sequence distances of best solution Basic swap sequence (basic swap
sequence distance unit) 0 29

Cost of density — 1 3
Fitness distance of filtered global optima Fitness (fitness unit) 1500 10,500

Hamming distance of filtered global optima Hamming (hamming distance unit) 30 38
Basic swap sequence distance of filtered global

optima
Basic swap sequence (basic swap

sequence distance unit) 28 30

Partially Matched Crossover

Fitness values Fitness (fitness unit) 120,000 140,000
Average of fitness distances Fitness (fitness unit) 2000 7500

Average of hamming distances Hamming (hamming distance unit) 30 34

Average of basic swap sequence distances Basic swap sequence (basic swap
sequence distance unit) 23 27

Fitness distances of best solution Fitness (fitness unit) 0 13,000
Hamming distances of best solution Hamming (hamming distance unit) 2 40

Basic swap sequence distances of best solution Basic swap sequence (basic swap
sequence distance unit) 1 34

Cost of density — 1 2
Fitness distance of filtered global optima Fitness (fitness unit) 3500 17,000

Hamming distance of filtered global optima Hamming (hamming distance unit) 30 40
Basic swap sequence distance of filtered global

optima
Basic swap sequence (basic swap

sequence distance unit) 22 34

5.3. Random Walk Analysis: Information Content Analysis

In this subsection, the information theory analysis of the random walk technique is
evaluated. The following techniques were used: partial information content, expected
partial information content, information stability, entropy, information content, density
basin information, regularity, and evolvability portrait. Table 5. presents the information
content analysis evaluation methods.
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Table 5. Information content analysis evaluation methods

Information Content Analysis

Method Optimal Value

Partial Information Content
The bigger the betterExpected Partial Information Content

Information Stability
Entropy

The smaller the betterInformation Content
Density Basin Information
Regularity High values
Evolvability portrait

The partial information content is 0.55 (partial information content unit) for 2-opt,
0.56 (partial information content unit) for order crossover, 0.47 (partial information content
unit) for cycle crossover and 0.63 (partial information content unit) for partially matched
crossover. Since the partial information content shows a rugged landscape for 1 and a
flat landscape for 0, so in our case we get neither a flat nor a rugged landscape for all
neighborhood techniques. The flattest is in the case of a partially matched crossover, so
this operator may be the most efficient, while in the case of a cycle crossover it may be the
most rugged, so this operator may be the worst.

The expected partial information content values are 27 (expected partial information
content unit) for 2-opt, 28 (expected partial information content unit) for OX, 23 (expected
partial information content unit) for CX and 31 (expected partial information content unit)
for PMX.

The information stability, which shows the largest change in fitness of the neighbors,
was given the following values: 7111.15 (information stability unit) for 2-opt, 5809.92
(information stability unit) for OX, 2728.38 (information stability unit) for CX and 5696.12
(information stability unit) for PMX. According to this, the largest change was for 2-opt
and the smallest change was for CX.

The lower the entropy, information content, density basin information values, the
better, because this means that the search is moving in the same direction (increasing or
decreasing the fitness value of the neighbor of the current solutions).

The entropy values are the followings: for 2-opt 1.5809 (entropy unit) for OX 2.5792
(entropy unit) for CX 2.9458 (entropy unit) and for PMX 2.1070 (entropy unit). According
to this, the 2-opt has the smallest entropy and the CX has the largest.

The information content values are 0.4101 (information content unit) for 2-opt, 0.8252
(information content unit) for OX, 0.8831 (information content unit) for CX, and 0.6380
(information content unit) for PMX. According to this, the highest value was given by CX
and the lowest by 2-opt.

The density basin information values are 0.3285 (density basin information unit) for
2-opt, 0.2814 (density basin information unit) for OX, 0.4183 (density basin information
unit) for CX, and 0.2888 (density basin information unit) for PMX.

The diagram of regularity values for each operator (2-opt, OX, CX, PMX) is shown in
Figures 16 and 17 which shows ruggedness.

A graph of evolvability portrait values for each operator is shown in Figures 18 and 19,
in which we also get a rugged function along the iterations. However, if we plot the values
along fitness values, which are shown in Figures 20 and 21. We get a level result (function)
that is independent of the fitness value. The higher the value of evolvability, the better the
solution, because the more neighbors of the current solution are better than the current
solution, so it is more likely to improve during the iteration. In fact, evolvability measures
the probability of improvement.
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Figure 16. The regularity in case of 2-opt (a) and order crossover operator (b).

Figure 17. The regularity in case of cycle crossover (a) and partially matched crossover operator (b).

Figure 18. The evolvability along the iterations in case of 2-opt (a) and order crossover operator (b).



Appl. Sci. 2021, 11, 2100 19 of 23

Figure 19. The evolvability along the iterations in case of cycle crossover (a) and partially matched
crossover operator (b).

Figure 20. The evolvability in case of 2-opt (a) and order crossover operator (b).

Figure 21. The evolvability in case of cycle crossover (a) and 2-opt operator (b).

5.4. Analysis of the Test Results

In the case of random walk, the average difference in fitness values of the solutions
received by the operators is almost the same, the hamming and basic swap sequence
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distances are very similar, in the case of order crossover and partially matched crossover
the distances are slightly larger than in 2-opt and cycle crossover. Cost of density values
also range from 1 to 2, so fitness values are also unique. In the case of a cycle crossover, the
cost of density diagram shows that several solutions have the same fitness value, although
the number of solutions with the same fitness value is only between 1 and 3. The distances
from the best solution also move in large intervals, which also means that the space is well
mapped by these operators.

Table 6 analyzes the efficiency of the operators (2-opt, order crossover, cycle crossover,
partially matched crossover). The table shows that 2-opt and partially matched crossover
(PMX) are more effective than cycle crossover (CX) and order crossover (OX).

Table 6. Summary results: basin of attraction map with random walk analysis.

Summary Results

Analysis Method Efficient Operator Weak Operator

The comparison of results to each other
2-opt
OX

PMX

Partial Information Content PMX CX
Expected Partial Information Content PMX CX

Information Stability 2-opt CX
Entropy 2-opt CX

Information Content 2-opt CX
Density Basin Information OX CX

Regularity 2-opt CX

Evolvability portrait 2-opt
PMX

CX
OX

The partial information content value was the highest for the partially matched
crossover, which means a flat landscape, so this technique proved to be the best during the
measurement. In the case of the cycle crossover, the partial information content value is
the lowest, so this technique proved to be the worst during the measurement.

The expected partial information content value is also the highest for the partially
matched crossover, so this technique proved to be the best.

The information stability value is highest for 2-opt and lowest for cycle crossover. The
value shows the largest change in fitness of the neighbors, which means that the higher the
value for an operator, the more worthwhile it is to use. In the case of order crossover and
partially matched crossover, the value between 2-opt and cycle crossover was obtained,
which is almost the same for the two operators.

The lower the entropy, information content, density basin information values, the
better the landscape, because this means that the search is moving in the same direction
(increasing or decreasing the fitness value of the neighbor of the current solutions).

2-opt has the lowest entropy and CX has the largest. The order crossover and partially
matched crossover values are nearly the same, between 2-opt and order crossover.

The 2-opt has the lowest information content value and the cycle crossover has the
largest. The order crossover and partially matched crossover values are nearly the same,
between 2-opt and order crossover operators.

Of the density basin information values, CX gave the highest value and OX the lowest.
According to the regularity diagram, the difference between the solutions of the cycle

crossover is the largest, here we find the largest jumps. In the case of 2-opt, the jumps are
the smallest.

Evolvability values are much higher on average for 2-opt and partially matched
crossover than for cycle crossover and order crossover, so it is better to use 2-opt and
partially matched crossover operators. The higher the value of evolvability, the better the
solution, because the more neighbors of the current solution are better than the current
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solution, so it is more likely to improve during the iteration. In fact, evolvability measures
the probability of improvement.

5.5. Verifying our Results with Real Optimization Run

In this subsection, the results of our fitness landscape analysis technique are verified by
optimization test runs. The tested operators can also be used in the Genetic Algorithm (GA),
so this algorithm was selected for testing. The Genetic Algorithm maintains a population
of solutions. Starting from an initial population, it continuously improves elements of the
population with crossover and mutation techniques.

Table 7 presents the parameters and results of our test run. The test run was set up
with OX in Test 1, PMX in Test 2, CX in Test 3, and 2-opt in Test 4. In Test 5, all three
crossing operators were given equal emphasis.

Table 7. Real optimization run with Genetic Algorithm.

Test 1 Test 2 Test 3 Test 4 Test 5

Run time (sec, average) 90.4907 80.77 81.64 85.36 74.61
Population size 60 60 60 60 60

OX rate 90% 0% 0% 10% 30%
PMX rate 0% 90% 0% 10% 30%
CX rate 0% 0% 90% 10% 30%

2-opt rate (mutation) 10% 10% 10% 50% 10%
Fitness value (average) 119,579 119,715 124,504 117,856 128,832

Since the objective is to minimize the fitness value, it can be read from Table 7 that
Test 4 was the best, in addition, Tests 1 and 2 also provided high-quality results. The most
efficient operator was 2-opt, but the PMX and OX operators also proved to be effective.
Using the CX operator and setting equal sharing of each crossover has not been shown to
be effective.

6. Conclusions

In this paper, we performed a random walk analysis of the basin of attraction map
(which is one of the fitness landscape analyzation methods) for the Multi-Echelon Vehicle
Routing Problem. Vehicle Routing Problems is a common optimization task in the field of
logistics. The fitness landscape analysis investigates the following components: the set of
possible states, the fitness function and the neighborhood. The set of possible states depends
on the problem instance and the used operators. The paper presents detailed analysis of the
following operators: 2-opt, order crossover, cycle crossover, partially matched crossover.
Two investigation methods were used in the random walk analysis. In the first approach,
we used the direct solution comparison. Here, we examined the average distances between
the solutions, the distances taken from the best solution, and how many solutions have
the same fitness value. The following distances were used: fitness distance, hamming
distance, basic swap sequence distance. Another approach is the formal information
analysis. The following methods were used in the information analysis approach: partial
information content, expected partial information content, information stability, entropy,
information content, density basin information, regularity, evolvability portrait. Based on
the performed tests, the presented fitness landscape analysis method, the basin of attraction
map, is suitable for the analysis of the efficiency of some optimization operators. Based on
the measurements, the 2-opt and partially matched operators proved to be effective, and
the order crossover and cycle crossover proved to be weak.

We can summarize the strengthens of our approach in the followings. It provides an
overview of the theoretical foundations and an abstract level analysis of the optimization
task. It can be used to explore the search space for the transport task and to select the
most efficient operators. The proposed methods can be used also for development and
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implementation of new heuristic algorithms. Our further research direction is the extension
of the analyzes to other heuristic operators.
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11. Kara, İ.; Kara, B.Y.; Yetiş, M.K. Cumulative vehicle routing problems. Veh. Routing Probl. 2008, 1, 85–98. [CrossRef]
12. Bocewicz, G.; Banaszak, Z.; Rudnik, K.; Witczak, M.; Smutnicki, C.; Wikarek, J. Milk-run Routing and Scheduling Subject to Fuzzy

Pickup and Delivery Time Constraints: An Ordered Fuzzy Numbers Approach. In Proceedings of the 2020 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE), Glasgow, UK, 19–24 July 2020. [CrossRef]

13. Grzegorz, B.; Izabela, N.; Arkadiusz, G.; Zbigniew, B. Reference model of milk-run traffic systems prototyping. Int. J. Prod. Res.
2020, 1–18. [CrossRef]

14. Zambrano-Martinez, J.L.; Calafate, C.T.; Soler, D.; Lemus-Zúñiga, L.G.; Cano, J.C.; Manzoni, P.; Gayraud, T. Centralized
route-management solution for autonomous vehicles in urban areas. Electronics 2019, 8, 722. [CrossRef]

15. Burduk, A.; Musiał, K. Optimization of Chosen Transport Task by Using Generic Algorithms. Lect. Notes Comput. Sci. 2016, 9842,
197–205. [CrossRef]

16. Kłosowski, G.; Gola, A.; Amila, T. Computational Intelligence in Control of AGV Multimodal Systems. Ifac-Pap. 2018, 51,
1421–1427. [CrossRef]

17. Pitzer, E. Applied Fitness Landscape Analysis. Ph.D. Dissertation, Johannes Kepler UniversitäT Linz, Technisch-
Naturwissenschaftliche Fakultät, Linz, Austria, 2013.

http://doi.org/10.1287/mnsc.6.1.80
http://doi.org/10.1109/IIS.1997.645214
http://doi.org/10.1016/j.ejor.2002.11.003
http://doi.org/10.1016/j.cor.2005.09.012
http://doi.org/10.1016/j.sbspro.2010.04.009
http://doi.org/10.1016/S0167-739X(98)00034-X
http://doi.org/10.1007/s10479-015-1792-x
http://doi.org/10.1007/s10107-002-0323-0
http://doi.org/10.1016/j.neucom.2020.02.126
http://doi.org/10.1016/j.eswa.2018.01.052
http://doi.org/10.5772/5812
http://doi.org/10.1109/fuzz48607.2020.9177733
http://doi.org/10.1080/00207543.2020.1766717
http://doi.org/10.3390/electronics8070722
http://doi.org/10.1007/978-3-319-45378-1_18
http://doi.org/10.1016/j.ifacol.2018.08.315


Appl. Sci. 2021, 11, 2100 23 of 23

18. Pitzer, E.; Affenzeller, M. A comprehensive survey on fitness landscape analysis. In Recent Advances in Intelligent Engineering
Systems; Studies in Computational Intelligence; Fodor, J., Klempous, R., Suárez Araujo, C.P., Eds.; Springer: Berlin, Heidelberg,
Germany, 2012; p. 378. [CrossRef]

19. Ventresca, M.; Ombuki-Berman, B.; Runka, A. Predicting genetic algorithm performance on the vehicle routing problem using
information theoretic landscape measures. Lect. Notes Comput. Sci. 2013, 7832, 214–225. [CrossRef]

20. Czech, Z.J. Statistical measures of a fitness landscape for the vehicle routing problem. In Proceedings of the 2008 IEEE International
Symposium on Parallel and Distributed Processing, Miami, FL, USA, 14—18 April 2008; pp. 1–8. [CrossRef]

21. Tayarani-N, M.H.; Prügel-Bennett, A. An analysis of the fitness landscape of travelling salesman problem. Evol. Comput. 2016, 24,
347–384. [CrossRef] [PubMed]

22. Fitness Landscapes and Graphs: Multimodularity, Ruggedness and Neutrality. Available online: http://www-lisic.univ-littoral.
fr/~{}verel/talks/2tut16-verel.pdf (accessed on 12 December 2020).

23. Fitness Landscapes of Combinatorial Problems and the Performance of Search Algorithms. Available online: https://philippe-
preux.github.io/papiers/lil-97-13.pdf (accessed on 12 December 2020).

24. Uludağ, G.; Uyar, A.Ş. Fitness landscape analysis of differential evolution algorithms. In Proceedings of the 2009 Fifth International
Conference on Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control, Famagusta,
Cyprus, 2–4 September 2009; pp. 1–4. [CrossRef]

25. Chicano, F.; Daolio, F.; Ochoa, G.; Vérel, S.; Tomassini, M.; Alba, E. Local optima networks, landscape autocorrelation and
heuristic search performance. Lect. Notes Comput. Sci. 2012, 7492, 337–347. [CrossRef]

26. Kovács, L.; Agárdi, A.; Bányai, T. Fitness Landscape Analysis and Edge Weighting-Based Optimization of Vehicle Routing
Problems. Processes 2020, 8, 1363. [CrossRef]

27. Englert, M.; Röglin, H.; Vöcking, B. Worst case and probabilistic analysis of the 2-Opt algorithm for the TSP. Algorithmica 2014, 68,
190–264. [CrossRef]

28. Hussain, A.; Muhammad, Y.S.; Sajid, M.N.; Hussain, I.; Shoukry, A.M.; Gani, S. Genetic algorithm for traveling salesman problem
with modified cycle crossover operator. Comput. Intell. Neurosci. 2017, 7430125. [CrossRef] [PubMed]

29. Zhu, K.Q. A diversity-controlling adaptive genetic algorithm for the vehicle routing problem with time windows. In Proceedings
of the 15th IEEE International Conference on Tools with Artificial Intelligence, Sacramento, CA, USA, 3–5 November 2003;
pp. 176–183. [CrossRef]

30. Wang, K.P.; Huang, L.; Zhou, C.G.; Pang, W. Particle swarm optimization for traveling salesman problem. In Proceedings of the
2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.03EX693), Xi’an, China, 5 November 2003;
Volume 3, pp. 1583–1585. [CrossRef]

http://doi.org/10.1007/978-3-642-23229-9_8
http://doi.org/10.1007/978-3-642-37198-1_19
http://doi.org/10.1109/IPDPS.2008.4536369
http://doi.org/10.1162/EVCO_a_00154
http://www.ncbi.nlm.nih.gov/pubmed/26066806
http://www-lisic.univ-littoral.fr/~{}verel/talks/2tut16-verel.pdf
http://www-lisic.univ-littoral.fr/~{}verel/talks/2tut16-verel.pdf
https://philippe-preux.github.io/papiers/lil-97-13.pdf
https://philippe-preux.github.io/papiers/lil-97-13.pdf
http://doi.org/10.1109/ICSCCW.2009.5379477
http://doi.org/10.1007/978-3-642-32964-7_34
http://doi.org/10.3390/pr8111363
http://doi.org/10.1007/s00453-013-9801-4
http://doi.org/10.1155/2017/7430125
http://www.ncbi.nlm.nih.gov/pubmed/29209364
http://doi.org/10.1109/TAI.2003.1250187
http://doi.org/10.1109/ICMLC.2003.1259748

	Introduction 
	Related Works 
	The Multi-Echelon Vehicle Routing Problem 
	Fitness Landscape Analysis: Neighborhood Operators and Random Walk Metrics 
	Results and Discussion 
	Scattered Filtering of the Search Space 
	Radom Walk Analysis: The Comparison of the Results to Each Other 
	Random Walk Analysis: Information Content Analysis 
	Analysis of the Test Results 
	Verifying our Results with Real Optimization Run 

	Conclusions 
	References

