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Abstract: Several attempts have been made for estimating the vital swelling index parameter con-
ducted by the expensive and time-consuming Oedometer test. However, they have only focused on
the neuron network neglecting other advanced methods that could have increased the predictive
capability of models. In order to overcome this limitation, the current study aims to elaborate an
alternative model for estimating the swelling index from geotechnical physical parameters. The
reliability of the approach is tested through several advanced machine learning methods like Ex-
treme Learning Machine, Deep Neural Network, Support Vector Regression, Random Forest, LASSO
regression, Partial Least Square Regression, Ridge Regression, Kernel Ridge, Stepwise Regression,
Least Square Regression, and genetic Programing. These methods have been applied for modeling
samples consisting of 875 Oedometer tests. Firstly, principal component analysis, Gamma test,
and forward selection are utilized to reduce the input variable numbers. Afterward, the advanced
techniques have been applied for modeling the proposed optimal inputs, and their accuracy models
were evaluated through six statistical indicators and using K-fold cross validation approach. The
comparative study shows the efficiency of FS-RF model. This elaborated model provided the most
appropriate prediction, closest to the experimental values compared with other models and formulae
proposed by the previous studies.

Keywords: swelling index; machine learning; oedometer tests; physical soil parameters; neural
network; Random Forest; k-fold cross validation approach; sensitivity analysis

1. Introduction

The geotechnical study is the first phase of any structural project. It addresses the
morphological, geological, local, and regional site conditions through a set of successive
steps, aimed mainly at providing efficiently the necessary and sufficient information on
the natural characteristics of a site. Moreover, it allows for determining all information
and parameters necessary for the computation of foundations, leading to the stability
of the structures under different risks, such as swelling [1,2]. The latter is considered a
notoriously problematic phenomenon for any infrastructure foundation because of the
considerable volume changes experienced by soils upon drying and wetting [3]. However,
the integrated components of the geotechnical process for detecting swelling risk are very
diverse. Moreover, these experimental processes are often time-consuming and, in many
cases, the computation costs are very high. On the other hand, the Oedometer test suf-
fers from several disadvantages, such as the requirement of sophisticated and expensive
equipment, being very time-consuming, and requiring highly qualified laboratory work-
ers [4,5]. A well-known example is the consolidated clay, which could take up to 30 days
when the Oedometer test is conducted [6]. However, the mechanical soil properties are
sometimes inexistent or insufficient, in circumstances where the engineer must provide a
quick and important decision to rapidly handle the critical situation. These disadvantages
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have been among the major obstacles for research, dissemination, and implementation of
soil mechanics in engineering practice [4]. Furthermore, classical constitutive modelling
based on the elasticity and plasticity theories has a limited ability to correctly simulate the
real behavior of soils. This is attributed to reasons associated with the complexity of soil
formation and its heterogeneity [7]. For these reasons, geotechnical researchers have tried
to develop new safe economical models using systems influenced by many factors, like the
technical, economic, environmental, and geometrical parameters. These systems are called,
all together, Artificial Intelligence (AI) or Machine Learning (ML).

Many papers have been published in order to derive a different relationship and
advanced models between the compression index (Cc) and the basic soil properties [6,8–11].
However, only a few widely accepted empirical equations have been proposed in the
literature to estimate the swelling index (Cs) from physical soil parameters, such as the
natural water content (W), the plasticity index (PI), the liquid limit (WL), the specific gravity,
and others. Table 1 summarizes some proposed formulae for estimating Cs. However,
major shortcomings have been observed. The large amount of correlations published with
respect to the same parameters point to an inherent variability of its usage. Therefore,
the application of correlation analysis in other conditions or sites could yield incorrect
results [12,13]. In addition, these approaches generally depend on simplified assumptions,
such as a linear behavior or production heuristics, which make regression analysis methods
less effective when they are used for simulating the complex heterogeneous behavior of
soil [14–17].

Table 1. Correlations proposed in the literature to estimate the swelling index Cs.

Variables Correlations Comments References

Cs(WL, Gs) Cs = 0.0463
(

WL
100

)
Gs (1) fine-grained soils [18]

Cs(IP) Cs = 0.00194(IP − 4.6) (2) fine-grained soils [19]
Cs(Wn) Cs = 0.0133e0.036Wn (3) fine-grained soils Isik 1 [20]
Cs(e0) Cs = 0.0121e1.3131e0 (4) fine-grained soils Isik 2 [20]
Cs(Yh) Cs = 0.1257Yh

−2.8826 (5) fine grained soils Isik 3 [20]

On the other hand, the use of the ANN method in geotechnical engineering has
witnessed a major development since the early nineties [21]. Several attempts using neural
networks have led to impressive results. Between the important research works dealing
with the swelling of soil, Işık has utilized one hidden layer of the ANN model by analyzing
a database consisting of 42 test data for fine-grained soil. The selected input parameters
included the initial void ratio (e0) and W. The (2-8-1) ANN model (meaning two inputs,
eight nodes in the hidden layer and one output) efficiently predicted Cs [20]. Das et al. have
predicted the swelling pressure using an ANN model with an input layer containing W, dry
density (Yd), WL, PI, and clay fraction [22]. Kumar and Rani have developed an ANN model
with one hidden layer to predict Cs and the Cc of clay by learning from 68 samples. They
used the FC, WL, PI, maximum dry density, and optimum moisture content as an input
layer. The suggested ANN model (5-8-1) provided better predictability in comparison with
the multiple regression analysis (MRA) model [23]. Kurnaz et al. have used ANN models
to estimate Cs and Cc from input layer including the W, e0, WL, and PI. The proposed
ANN model (4-6-2) has proven its efficiency in the prediction of Cc. Nevertheless, the
predicted Cs values were not satisfactorily compared to the compression index [24]. Table 2
recapitulates the aforementioned proposed ANN models in the literature to estimate the
swelling index Cs.
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Table 2. Proposed ANN models in the literature to estimate the swelling index Cs.

Authors Inputs Targets Architecture
(Inputs–Nodes–Outputs) Database References

Işık (2009) e0 and W Cs 2-8-1 42 [20]
Das et al. (2010) W, Yd, WL, PI, and FC Cs 5-3-1 230 [22]
Kumar and Rani

(2011) FC, WL, PI, Yopt, and Wopt Cs and Cc 5-8-2 68 [23]
Kurnaz et al. (2016) W, e0, WL, and PI Cs and Cc 4-6-2 246 [24]

The quality, learning ability, and effectiveness have made the use of the ANN method
very useful. According to the author’s knowledge, the previous studies have used only the
ANN method for estimating Cs, although recent studies have showed that other techniques
could have yielded more effective and accurate results than the ANN method in geotechni-
cal applications [25–27]. Furthermore, the aforementioned studies have modeled Cs using
a few input parameters and, therefore, ignored the different soil parameters that could
increase the learning capacity of the network. Consequently, the complicated mechanism of
the swelling phenomena has been oversimplified. Moreover, few samples have been used,
meaning that the proposed models have a limited capacity to generalize new data not used
in the few training data. Furthermore, they evaluated the predictive capacity of proposed
models based on only one split to validate data learning. Therefore, the capacity of their
model to overcome the over-fitting and under-fitting problems cannot be confirmed.

In view of the aforementioned shortcoming, this research sheds the light on the capa-
bility of the advanced machine learning methods to generate a reliable model, contributing
to easily and effectively predict Cs, filling a gap in the literature where there is a lack in the
use of the advanced machine learning methods in modeling swelling phenomenal. Conse-
quently, the elaborated model offers plenty of benefits such as its reliability, and lowering
the budget used to predict Cs from the easily obtained soil parameters and without the
need to operate the odometer test.

2. Materials and Methods
2.1. Overview of the Methodology

Several-advanced machine learning techniques like Extreme Learning Machine (ELM),
Deep Neural Network (DNN), Support Vector Regression (SVR), Random Forest (RF),
LASSO regression (LASSO), Partial Least Square Regression (PLS), Ridge Regression (Ridge)
Kernel Ridge (KRidge), Stepwise Regression (Stepwise), Least Square Regression (LS), and
Genetic Programming (GP) have been applied for modeling 875 samples. Multiple input
parameters, including the wet density (Yh), the dry density (Yd), the degree of saturation
(Sr), the plasticity index (PI), the water content (w), the void ratio (e0), the liquid limit (WL),
sample depth (Z), and the fine contents (FC) have been used. Firstly, from an effective
viewpoint, the suitable input variables and nonlinear components are of considerable
importance for efficient prediction. Thus, the Principal Component Analysis (PSA), Gamma
Test (GT) and Forward selection (FS) methods have been used to select the optimal set of
input variables. Afterward, the advanced machine learning techniques have been applied
for modeling optimal inputs, and their accuracy models were evaluated through numerous
statistical indicators. To assess the predictive capability of the best model, the k-fold cross-
validation approach based on 10 splits has been utilized. Finally, to answer the question
“Which input variables have the most or less influence on Cs through the proposed model?”,
a sensitivity analysis has been carried out using the step-by-step selection method.

2.2. Oedometer Test

The compressibility of soils is one of the most important phenomena in civil engineer-
ing. The Oedometer test is used to determine the compressibility properties of soil, which
are usually described using Cc, Cs, and the coefficient of consolidation (Cv) [20,24]. The
compressibility properties are used to predict how the settlement and the swelling will be
held. A number of parameters influencing the swelling behavior have been reported in the
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past, such as W, e, WL, PI, the type and amount of clay (FC), and others [8]. Cs is usually
determined using the graphical analysis of compression and recompression curves in void
ratio effective stress (e = f(log(σ))) plots [20,28] (see Figure 1), and used typically to estimate
the consolidation settlement for soil layers using these formulae:

Sc =
Cc H

1 + e0
log
(

σ′v0 + ∆σv

σ′v0

)
in normally consolidated soil if σ′v0 = σ′c (6)

Sc =
CsH

1 + e0
log
(

σ′v0 + ∆σv

σ′v0

)
in over-consolidated soil if σ′v0 + ∆σv ≤ σ′c (7)

Sc =
CsH

1 + e0
log
(

σ′c
σ′v0

)
+

CcH
1 + e0

log
(

σ′v0 + ∆σv

σ′c

)
if σ′v0 + ∆σv > σ′c (8)

where e0: initial void ratio, ∆σv: load increment, σ’c: pre-consolidation pressure, σ’v0: initial
vertical effective stress, Cc: compression index, and Cs: swelling index.
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2.3. Case Study

In the current study, a database of 875 Oedometer and other geotechnical tests has
been collected from 570 boreholes. The reason for choosing the Northeast Algerian area is
attributed to the widespread clay and marl geological formations, which generally suffered
from shrinkage-swelling phenomena, resulting into a database including a wide range of
data, sufficient for a reliable study. The sample depth (Z) ranges between 0.5 to 45 m with
an average of 6.66 m. Figure 2 illustrates the distribution of the collected boreholes in the
study area. The soil parameters used in this study were measured in the lab depending on
the international or European standards.
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2.4. Optimal Input Selections
2.4.1. Overview of Principal Component Analysis (PCA)

PCA is an exploratory statistics approach [29] considered between the multivariate
statistical methods, which is generally utilized to decrease the complexity of the input
variables. PCA is used in the practical case when we have a great number of information,
and, in many fields, sometimes in conjunction with other methods [30]. Furthermore, this
method reduces the input variables into a better interpretation of independent principal
components (PCs) [31,32]. Instead of the direct use of input variables, we reduce them
into PCs in order to use them as lower-dimensional inputs. Details for mastering the art of
applying the PCA are published by other studies [33–36].

2.4.2. Overview of Gamma Test (GT)

The Gamma Test (GT) is an advanced approach for evaluating the variance of the
noise, or the mean square error (MSE), which could be fulfilled without over-fitting. This
method is very advantageous for assessing the nonlinear relationship between two random
variables (input and target). Koncar (1997) [37] and Agalbjörn et al. (1997) [38] were
the first reporting gamma test method and later many investigators have developed and
detailed [35,36,39]. Only summarized information about GT is discussed here. Details
for mastering the art of GT are presented in the aforementioned articles for the interested
readers. By using necessary conditions detailed in the above-mentioned papers, the
variance of the noise is specified by the bias of the regression between γ(k) and δ(k), where
1 ≤ k ≤ p. This variance is dubbed Γ. γ(k) and δ(k) are presented in Equations (9) and (10):

δ(k) =
1
M ∑M

i=1

∣∣∣xN[i,K] − xi

∣∣∣2 (9)

γ(k) =
1

2M ∑M
i=1

∣∣∣yN[i,K] − yi

∣∣∣2 (10)

xN[i,K] is the kth nearest neighbor of xi, and yN[i,K] is the corresponding target. In
order to calculate Γ, a least squares fit line should be carried out for the p points (δ(k), γ(k)).
Afterward, the bias of the regression line will be easily estimated, which represents the
gamma statistics parameter Γ. It is worth mentioning that Γ provides useful findings for
building an accurate model. The smaller the value of Γ, the more appropriate is the input
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set. In addition, Vratio presents an important indication to assess the predictability of the
selected target depending on utilized inputs, and illustrated as:

Vratio =
Γ

σ2(y)
(11)

where σ2(y) is the output variance. Overall, in the current paper, by using the least value
of Γ and Vratio, the best-input combinations were chosen.

2.4.3. Overview of Forward Selection (FS)

The forward selection method is based on regression modelling. Firstly, input variables
are considered in ascending order according to their correlation with the target variable
(from the best to the weak correlated variable). Then, the best correlated variable with
the target is chosen as the first one. The other variables are afterward added one by
one as the second input, and we assess the predictive capability of the set according
to their correlation development. Generally, the most significant variable increases the
determination coefficient (R2) is selected and added to the input set. In other words, if
the R2 is increased more than 5%, the new variable is accepted and added to the optimal
input set. This step is repeated N − 1 times for assessing the impact of each parameter
on modelling the target. Finally, among N tested inputs, the ones with optimum R2 are
accepted as the model input subset.

2.5. Machine Learning Methods

In the current study, several machine-learning methods have been used in order to
conduct a reliable study and to propose a high performance model. Only the methods
actually used are cited, followed by relevant references, which can be examined by the
interested readers to better understand each one. The used methods are: Extreme Learning
Machine (ELM) [40], Deep Neural Network (DNN) [6,41], Support Vector Regression
(SVR) [42], Random Forest (RF) [43], LASSO regression (LASSO) [44], Partial Least Square
Regression (PLS) [45], Ridge Regression (Ridge) [46], Kernel Ridge Regression (KRidge) [47],
Stepwise Regression (Stepwise) [48], and Genetic Programing (GP) [6]. Matlab software
has been used for programming the algorithms corresponding to each method, except GP
when the HeuristicLab Interface has been utilized [49]. The controlling parameters of the
ELM, DNN, SVR, RF, LASSO, PLS, Ridge, KRidge, Stepwise, and PG algorithms used in this
study are listed in Table 3.

Table 3. Initial parameter settings for the algorithms.

Algorithms Algorithm Parameters Value

ELM

Hidden layers H = 1
hidden neurons N = 12

activation function ‘linear’
regulation parameter C = 0.02

DNN

Hidden layers H = 2
hidden neurons in the first layer N1 = (1–20)

hidden neurons in the second layer N2 = (1–20)
activation function in the first layer ‘Tansg’

activation function in the second layer ‘Tansg’

SVR
regulation parameter C Series of C

regulation parameter lambda Series of lambda
kernel function ‘rbf’



Appl. Sci. 2021, 11, 536 7 of 30

Table 3. Cont.

Algorithms Algorithm Parameters Value

RF
nTrees nTrees = 100
mTrees mTrees = 26

LASSO lambda series of lambda

PLS PLS components NumComp = 3 for PSO
NumComp = 4 for GT and FS

Ridge regularization parameter lambda lambda = 1

KRidge
regularization parameter lambda lambda = 1

kernel function ‘linear’
parameter for kernel sigma = 2 × 10−7

PG

Function set +, −, ×, ÷, power, ln, sqrt, sin, cos, tan
Population size 100 up to 500

Number of generations 1000
Genetic operators Reproduction, crossover, mutation

2.6. Statistical Performance Indicators

The prediction accuracy of the proposed models was evaluated through various statis-
tical performance indicators and using graphical presentation. The statistical performance
indicators are Mean absolute error (MAE), Root mean square error (RMSE), Index of scat-
tering (IOS), Nash–Sutcliffe efficiency (NSE), Pearson correlation coefficient (R), and Index
of agreement (IOA). They are expressed as follows [50]:

1. Mean absolute error (MAE):

MEA =
1
N ∑N

i=1|Ytar,i −Yout,i| (0 < MAE < ∞) (12)

2. Root mean square error (RMSE):

RMSE =

√
1
N ∑N

i=1(Ytar,i −Yout,i)
2 (0 < RMSE < ∞) (13)

3. Index of scattering (IOS):

IOS =

√
1
N ∑N

i=1(Ytar,i −Yout,i)
2

Ytar
(0 < RMSE < ∞) (14)

4. Nash–Sutcliffe efficiency (NSE):

NSE = 1− ∑N
i=1(Ytar,i −Yout,i)

2

∑N
i=1
(
Ytar,i −Ytar

)2 (−∞ < NSE < 1) (15)

5. Pearson correlation coefficient (R):

R =
∑N

i=1(
(
Ytar,i −Ytar

)(
Yout,i −Yout

)
)√

∑N
i=1(

(
Ytar,i −Ytar

)2(Yout,i −Yout
)2
)
(−1 < R < 1) (16)

6. Index of agreement (IOA):

IOA = 1− ∑N
i=1(Ytar,i −Yout,i)

2

∑N
i=1

(
∑N

i=1
∣∣Yout,i −Ytar

∣∣+ ∑N
i=1
∣∣Ytar,i −Ytar

∣∣)2 (0 < IOA < 1) (17)
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where Ytar,i, Yout,i, Ytar, and Yout present the target, output, mean of target, and mean
of output swelling index values for N data samples, respectively. Furthermore, the
proposed machine learning model having the lowest value of RMSE, IOS, and MAE
and the highest value of IOA, NSE, and R presents the better one and the closest to
the experimental data.

Subsequently, after selecting the best model using statistical performance indicators,
its predictive capacity is assessed using the K-fold cross-validation approach. This shows
more accuracy and robustness for evaluating the capability of performance predictive of
the best model by testing the existence of over-fitting and under-fitting problem in data
learning [51,52]. The method consists of separating the data set into k equal sizes splits.
Hence, for each one, K−1-folds are used for training and the last one for validation. This
operation is repeated successively until the use of all split for the validation step [53]. The
main advantage of this method is that all collected data are utilized in both the training
and validation steps [52]. Breiman and Spector (1992) have demonstrated that K = 10 or
K = 5-fold cross validation is the best choice for model evaluation [51]. In this work, we
chose K-fold cross-validation with K = 10 for comparing the predictive capacity of each
model.

2.7. Methodology

In order to find the most appropriate model to predict Cs of soil using previously
mentioned geotechnical parameters as an input, the methodology consisted of the follow-
ing steps:

1. Creation of a geotechnical database of Algerian soil, collected from different laborato-
ries around the geotechnical constructions projects in progress or completed before.

2. Selecting the optimal input variables using Principal component analysis (OSA),
Gamma Test (GT), and Forward selection (FS) has been used.

3. Analyzing selected optimal inputs using several machine learning methods. The ELM,
DNN, SVR, RF, LASSO, PLS, Ridge, KRidge, Stepwise, and PG methods have been used
in this step for proposing 30 models.

4. Determine the most appropriate model for predicting the Cs value between the thirty
proposed models using important statistical performance indicators as MAE, RMSE,
IOS, NSE, R, and IOA.

5. Assessing the predictive capacity of the best model to overcome under-fitting and
over-fitting problem by using the K-fold cross validation approach with K = 10.

6. Doing a sensitivity analysis by utilizing the step-by-step method to know the most or
less influenced input on Cs through the proposed model.

The research methodological for determining the most appropriate model to estimate
Cs is systematically described in Figure 3.
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3. Results
3.1. Database Compilation

In the current study, a database of 875 Oedometer and other geotechnical tests has
been collected resulting into a database including a wide range of data, sufficient for a
reliable study. Table 4 displays the descriptive statistics of collected samples, determined
using SPSS such as the mean, median, mode, standard deviation, variance, skewness, error
of skewness, kurtosis, kurtosis error, range, minimum, and maximum. The skewness
values indicate that all variables are evenly distributed. Moreover, the results point out that
the database includes a wide range of data. Therefore, the collected dataset can be used to
enhance novel empirical models and assess the predictive capacity of existing formulae.
North East Algerian soil can be characterized as a dense soil with an average wet density
of 1.67 according to the European norms [54]. Moreover, the soil appears to be plastic
with an average plastic index of 26.09 according to SONGLIRAT’s classification [55]. In
the classification based on swelling, according to the European norms, the soils could be
classified as a swelling soil, with an average Cs equal to 0.044 [55].
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Table 4. Descriptive statistics of collected samples.

Sr Yh Yd W e0 FC WL PI Cs

N
Valid 875 875 875 875 875 875 875 875 875

Missing 0 0 0 0 0 0 0 0 0

Mean 89.45 2.01 1.67 20.61 0.63 86.55 50.11 26.09 0.0443
Std. Error of Mean 0.397 0.003 0.004 0.164 0.005 0.572 0.338 0.233 0.00072
Median 94.00 2.01 1.67 20.00 0.62 94.00 50.00 26.00 0.0399
Mode 100.00 2.04 1.69 20.00 0.61 98.00 58.00 29.00 0.04
Std. Deviation 11.77 0.09 0.13 4.86 0.13 16.92 10.00 6.89 0.01910
Variance 138.54 0.01 0.02 23.64 0.02 286.23 100.09 47.43 0.000
Skewness −1.32 0.10 0.29 0.36 0.21 −1.75 −0.08 −0.12 0.686
Std. Error of Skewness 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.092
Kurtosis 1.09 −0.20 −0.09 −0.08 −0.29 2.41 −0.28 −0.43 0.073
Std. Error of Kurtosis 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.183
Range 64.45 0.57 0.73 26.00 0.79 78.00 64.31 38.00 0.10
Minimum 41.00 1.70 1.34 8.00 0.23 22.00 19.00 7.00 0.01
Maximum 100.00 2.27 2.07 34.00 1.02 100.00 83.31 45.00 0.11

Percentiles
25 84 1.95 1.58 17.10 0.53 81.82 42.81 21.50 0.03
50 94 2.01 1.67 20.00 0.62 94.00 50.00 26.00 0.041
75 99 2.075 1.75 23.85 0.71 98.00 58.00 31.38 0.057

3.2. Correlation between Cs and Geotechnical Parameters

To statistically predict the correlation between Cs and soil properties, the SPSS software
has used. The cross-correlation between Cs and soil parameters is presented in Figure 4,
which could provide a descriptive overview of the data distribution. The results indicate
a positive relationship between Cs and others parameters, except for Yd and Yh, which
seem to have a negative relationship (see Figure 4); this indicates that an increase in these
parameters tends to proportionally increase Cs. The Spearman correlation coefficient
R and its significance between Cs and other geotechnical parameters are presented in
Table 5. The results show that the significance is less than 0.05 except Z, meaning that the
majority of correlations are statistically significant. On the other hand, according to Smith’
classification (1986), the Cs is moderately correlated to the aforementioned soil parameters,
except Sr and Z which are poorly correlated. The results indicate that these parameters
could have a complex nonlinear correlation with Cs. Moreover, in order to mathematically
simulate the complex swellings phenomena, new advanced machine learning methods
should be applied.

Table 5. Matrix of correlation between the geotechnical parameters (* Correlation significant at α = 0.05; ** Correlation
significant at α = 0.01).

Sr Z Yh Yd W e0 FC WL PI Cs

Sr
R 1 0.199 ** 0.170 ** −0.197 ** 0.582 ** −0.06 0.194 ** 0.082 * −0.01 0.138 **

Sig.
(2-tailed) 0 0 0 0 0.06 0 0.02 0.78 0

Z
R 0.199 ** 1 0.281 ** 0.164 ** 0.03 0.02 0.127 ** 0 −0.06 0.02

Sig.
(2-tailed) 0 0 0 0.33 0.54 0 1 0.07 0.58

Yh

R 0.170 ** 0.281 ** 1 0.877 ** −0.481 ** −0.579 ** −0.317 ** −0.275 ** −0.267 ** −0.230 **
Sig.

(2-tailed) 0 0 0 0 0 0 0 0 0

Yd

R −0.197 ** 0.164 ** 0.877 ** 1 −0.803 ** −0.659 ** −0.384 ** −0.348 ** −0.292 ** −0.324 **
Sig.

(2-tailed) 0 0 0 0 0 0 0 0 0

W
R 0.582 ** 0.03 −0.481 ** −0.803 ** 1 0.633 ** 0.385 ** 0.372 ** 0.264 ** 0.349 **

Sig.
(2-tailed) 0 0.33 0 0 0 0 0 0 0
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Table 5. Cont.

Sr Z Yh Yd W e0 FC WL PI Cs

e0
R −0.06 0.02 −0.579 ** −0.659 ** 0.633 ** 1 0.227 ** 0.321 ** 0.260 ** 0.216 **

Sig.
(2-tailed) 0.06 0.54 0 0 0 0 0 0 0

FC
R 0.194 ** 0.127 ** −0.317 ** −0.384 ** 0.385 ** 0.227 ** 1 0.429 ** 0.412 ** 0.387 **

Sig.
(2-tailed) 0 0 0 0 0 0 0 0 0

WL
R 0.082 * 0 −0.275 ** −0.348 ** 0.372 ** 0.321 ** 0.429 ** 1 0.914 ** 0.553 **

Sig.
(2-tailed) 0.02 1 0 0 0 0 0 0 0

PI
R −0.01 −0.06 −0.267 ** −0.292 ** 0.264 ** 0.260 ** 0.412 ** 0.914 ** 1 0.512 **

Sig.
(2-tailed) 0.78 0.07 0 0 0 0 0 0 0

Cs

R 0.138 ** 0.02 −0.230 ** −0.324 ** 0.349 ** 0.216 ** 0.387 ** 0.553 ** 0.552 ** 1
Sig.

(2-tailed) 0 0.58 0 0 0 0 0 0 0
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3.3. Optimal Input Selection
3.3.1. Optimal Input Selection Using Principal Component Analysis

According to our knowledge, several methods were utilized in the literature to charac-
terize the proper factors that affect the modeling precision. Therefore, the current study
used the approach of selecting eigenvalues equal to or greater than 1, as illustrated in Table
6. Holland (2008) stated according to [56] that the eigenvalues are applied to condense
the variance where the highest eigenvalues (1 and above) are deemed for any analysis
by eigenvectors ranking in any correlation matrix. Figure 5 presents eigenvalues of each
factor, which show that nine input variables correspond to nine eigenvalues. Likewise,
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Table 6 displays the Eigenvalue and percentage of data in each factor. It is obvious from the
table that the main first three variables explain more than 75% of the factors. Similarly, the
results showed that five factors have a significant percentage contribution of more than 94.
The findings indicate that the best model includes three PCs as input variables according to
principal component analysis.

Table 6. Eigenvalue and percentage of data explained by each factor.

Number Eigenvalue % Variance % Cumulative Variance

1 3.81 42.34 42.34
2 1.61 17.85 60.19
3 1.48 16.44 76.63
4 0.92 10.21 86.84
5 0.65 7.23 94.07
6 0.42 4.64 98.71
7 0.08 0.91 99.62
8 0.03 0.29 99.91
9 0.01 0.09 100.00
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3.3.2. Optimal Input Selection Using the Gamma Test

In this part, the influence of the separated inputs was evaluated by building the ten
various combinations (Table 7) through diverse input parameters (Sr, Z, Yh, Yd, W, e0, FC,
WL and PI). It was noticed from Table 7 that the first combination contains all nine inputs
(dubbed an initial set). Similarly, the second one included eight input parameters (All-Sr),
which means omitted Sr from the initial set; the fourth combination comprises all inputs
except Yh, and so on for rest of the combinations as presented in Table 7. The results of GT
analysis shown in Table 7 prove that the parameters W, FC, WL, and PI have an important
effect on the target (Cs). The four input parameters are chosen according to the maximum
value of gamma statistics (Γ), and Vratio. Based on this finding, four new combinations
were tested in Table 8 for the sake of determining the optimal input set. In this case, the
best set was designated based on the minimum of Γ and Vratio. The outcomes of GT on
four diverse combinations are illustrated in Table 8. The findings indicate that the WL, PI,
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FC, and W set had the lowest value of gamma statistics (Γ = 1.3524 × 10−4, Vratio = 0.3714,
and Mask = 1111), and used as input variables for modelling Cs according to the Gamma
Test method.

Table 7. Optimal input variable nomination using GT.

Input Parameters
Gamma Test Statistics

Γ Vratio Mask

All 0.00014759 0.4054 111111111
All-Sr 0.00014653 0.4025 011111111
All-Z 0.00015130 0.4156 101111111
All-Yh 0.00014672 0.4030 110111111
All-Yd 0.00014689 0.4034 111011111
All-W 0.00017471 0.4798 111101111
All-e0 0.00014712 0.4041 111110111
All-FC 0.00019292 0.5299 111111011
All-WL 0.00017584 0.4829 111111101
All-PI 0.00016223 0.4456 111111110

Table 8. GT statistics of different input models.

Input Parameters
Gamma Test Statistics

Γ Vratio Mask

WL 0.00020688 0.5944 1000
WL, PI 0.00018845 0.5176 1100

WL, PI, FC 0.00017979 0.4938 1110
WL, PI, FC, W 0.00013524 0.3714 1111

3.3.3. Optimal Input Selection Using Forward Selection

In this part, the FS technique is utilized as a nonlinear input selection approach in
order to choose the optimal input set between nine parameters. The ANN method with one
layer is used to implement the nonlinear analysis of each set according to the empirical rule
proposed by Kanellopoulos and Wilkinson (1997). The authors have demonstrated that the
optimal node number in a simple network is twice the number of input parameters [57].
Firstly, correlation between target and other geotechnical parameters is estimated. Secondly,
the parameter having the highest correlation coefficient, (i.e., WL with R = 0.55) is chosen
as the first and the most significant parameter. Then, the other inputs are added into the
model one by one and launch a new ANN modelling. The one providing the best modeling
result (high determination coefficient (R2)) is selected as a new input and gathered into the
formerly selected parameters. This work is repeated several times until that appending
other parameter to the input set does not improve the modeling performance. Hence,
if the determination coefficient increases more than 5%, the novel parameter is selected.
Finally, input parameters having the most heavy influence on the target are selected and
others ones are rejected. Table 9 shows the results of the forward selection procedure of
different input models. The findings indicate that WL, Yd, W, and PI are selected as inputs
for modeling Cs according to the forward selection procedure, and the other parameters
are eliminated.
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Table 9. Results of forward selection procedure of different input models.

Input Subset ANN Architecture R2 Decision

WL 1-2-1 0.327 WL selected
WL, Sr 2-4-1 0.332 Sr rejected
WL, Z 2-4-1 0.328 Z rejected
WL, Yd 2-4-1 0.38 Yd selected

WL, Yd, Yh 3-6-1 0.41 Yh rejected
WL, Yd, W 3-6-1 0.444 W selected

WL, Yd, W, e0 4-8-1 0.47 e0 rejected
WL, Yd, W, FC 4-8-1 0.46 FC rejected
WL, Yd, W, PI 4-8-1 0.498 PI selected.

3.4. Swelling Index Prediction through AI Models

The controlling parameters of the ELM, DNN, SVR, RF, LASSO, PLS, Ridge, KRidge,
Stepwise, and GP algorithms used in this study are listed in Table 3. The performance of each
models for selected optimal inputs (PSO, GT and FS) during training and validation phases
is presented in Table 10. Six statistical performance indicators have been used to compare
between proposed models in order to select the best one. We mention the Mean Absolute
Error (MAE), Root Mean Square Error (RMSE), Index of Scattering (IOS), Nash–Sutcliffe
Efficiency (NSE), Pearson correlation coefficient (R), and Index of Agreement (IOA). The
data were divided into two parts, i.e., 80% for training and 20% for validation (700 samples
for training and 175 for validation). It was indicated from Table 10 that the Cs modeled
with several machine learning methods produced MAE (5.6 × 10−3 to 12.4 × 10−3), RMSE
(0.007 to 0.0154), IOS (0.165 to 0.355), NSE (−0.88 to 0.75), R (0.59 to 0.94), and IOA (0.69 to
0.95) in the training phase. Similarly, in the validation phase, we obtain MAE (10.6 × 10−3

to 13.6 × 10−3), RMSE (0.013 to 0.017), IOS (0.298 to 0.363), NSE (−1.68 to 0.13), R (0.53
to 0.71), and IOA (0.69 to 0.82). Furthermore, the finding clearly indicates that the FS-RF
(the optimal inputs of FS method trained by RF method) presents the most appropriate
model that gives the highest accuracy in terms of MAE (5.6 × 10−3/10.6 × 10−3), RMSE
(0.007/0.013), IOS (0.165/0.298), NSE (0.75/0.13), R (0.94/0.71), and IOA (0.95/0.82) during
the training/validation phase. In addition, the most appropriate FS-RF model clearly
follows the criteria of minimum values of error metrics (MEA, RMSE and IOS) and higher
values of NSE, R, and IOA for the phase of training and validation. Furthermore, this
model is closely followed by the FS-DNN model, which gives an acceptable accuracy and
ranked second. Moreover, the results reveal the poor performance of the PSO-Step model in
predicting the swelling index. With respect to the performance of machine learning models,
during the training phase, the hierarchy follows the order of FS-RF, GT-RF, PRO-RF,
FS-DNN, GT-DNN, PSO-DNN, PSO-SVR, FS-GP, GT-GP, PSO-GP, GT-SVR, GT-Step, FS-
SVR, GT-Lasso, GT-PLS, FS-PLS, GT-Kridge, FS-Kridge, PSO-LS, GT-LS, PSO-ELM, FS-ELM,
PSO-Lasso, PSO-Kridge, PSO-Ridge, GT-Ridge, FS-Ridge, FS-LS, FS-Step, FS-Lasso, PSO-PLS,
GT-ELM, and PSO-Step. Finally, the scatter plots between target and output swelling index
values of each model are presented in Appendix A.

3.5. Evaluating the Best Fitted Model Using the K-fold Cross Validation Approach

The 10-fold cross validation approach was efficiently used to assess the predictive
capacity of the proposed model. We must stress out the fact that previous studies interested
in estimating Cs [20,22–24] have evaluated the predictive capacity of their proposed models
depending on a single split. Subsequently, the capacity of their models in overcoming
the over-fitting and under-fitting problems could not be ascertained. Figure 6 shows the
performance measures of the best FS-RF models using 10-fold cross validation depending
on training and validation data for each split. The findings prove the performance of
the proposed model. The fact that R ranges between 0.92 and 0.94 for training data, and
between 0.62 and 0.75 for validation data in the 10 splits, indicates the predictive capacity
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of the most appropriate FS-RF model for learning data, generating new validation data,
and overcoming the over-fitting or under-fitting problems.

Table 10. Performance indicator values of AI models for predicting the Swelling index.

PSO GT FS

MAE
× 10−3 RMSE IOS NSE R IOA MAE

× 10−3 RMSE IOS NSE R IOA MAE
× 10−3 RMSE IOS NSE R IOA

Training

DNN 9.5 0.013 0.283 0.56 0.75 0.85 8.3 0.0113 0.251 0.64 0.80 0.88 8.4 0.011 0.245 0.67 0.82 0.89
ELM 12 0.015 0.355 −0.67 0.61 0.72 12 0.0153 0.340 −1.33 0.61 0.69 12,2 0.015 0.34 −0.88 0.61 0.72
Lasso 12.2 0.0154 0.344 −0.76 0.60 0.72 12.1 0.0151 0.335 −0.65 0.61 0.73 12.1 0.015 0.34 −0.84 0.59 0.71
PLS 11.9 0.015 0.338 −0.81 0.6 0.71 12.1 0.0152 0.339 −0.66 0.61 0.73 12 0.015 0.34 −0.69 0.61 0.73
RF 5.8 0.0075 0.168 0.72 0.94 0.95 5.7 0.0075 0.167 0.72 0.94 0.95 5.6 0.007 0.165 0.75 0.94 0.95

Kridge 12 0.015 0.342 −0.73 0.61 0.72 12 0.015 0.343 −0.71 0.61 0.73 12 0.015 0.334 −0.67 0.61 0.73
Ridge 12.2 0.015 0.341 −0.77 0.60 0.72 11.9 0.015 0.337 −0.71 0.61 0.72 11.9 0.015 0.343 −0.74 0.60 0.72

LS 12 0.0152 0.343 −0.63 0.62 0.73 12.1 0.015 0.34 −0.64 0.61 0.73 12 0.015 0.341 −0.74 0.60 0.72
Step 12.1 0.0153 0.346 −0.86 0.59 0.71 11.9 0.015 0.33 −0.61 0.62 0.74 12.4 0.015 0.343 −0.76 0.60 0.72
SVR 10.3 0.014 0.32 0.12 0.7 0.8 11.8 0.015 0.33 −0.57 0.64 0.75 11.8 0.015 0.331 −0.63 0.63 0.74
GP 11.3 0.014 0.305 −0.22 0.67 0.78 11.1 0.014 0.302 0.46 0.68 0.79 11 0.014 0.299 0.47 0.69 0.8

Validation

DNN 10.8 0.0135 0.304 0.47 0.69 0.82 11.2 0.0149 0.347 0.41 0.66 0.80 10,3 0.014 0.312 0.47 0.70 0.82
ELM 11.4 0.014 0.346 −0.53 0.6 0.73 12.5 0.015 0.35 −1.68 0.64 0.69 11.7 0.015 0.331 −0.93 0.62 0.72
Lasso 11.5 0.014 0.318 −0.65 0.64 0.74 12 0.015 0.325 −0.55 0.64 0.75 11.6 0.015 0.346 −0.85 0.67 0.74
PLS 12.3 0.016 0.354 −0.66 0.65 0.74 11.7 0.0146 0.312 −0.59 0.64 0.74 12.2 0.015 0.339 −0.59 0.61 0.73
RF 11 0.0138 0.308 −0.29 0.70 0.79 11.1 0.0143 0.32 −0.17 0.70 0.8 10.6 0.013 0.298 0.13 0.71 0.82

Kridge 12 0.0156 0.335 −1.14 0.61 0.7 11.7 0.015 0.316 −0.86 0.65 0.73 12.4 0.015 0.34 −0.93 0.60 0.71
Ridge 11.8 0.0144 0.322 −0.37 0.63 0.753 12 0.015 0.34 −0.75 0.66 0.74 12.1 0.014 0.333 −0.79 0.63 0.73

LS 12 0.015 0.334 −0.49 0.57 0.72 12 0.015 0.33 −0.49 0.62 0.75 12.2 0.015 0.33 −0.55 0.63 0.75
Step 11.8 0.0145 0.315 −0.47 0.67 0.76 12.3 0.015 0.34 −0.67 0.61 0.73 11 0.014 0.31 −0.54 0.64 0.75
SVR 12.1 0.016 0.34 −0.76 0.53 0.69 12.6 0.015 0.34 −0.51 0.59 0.71 12.6 0.015 0.344 −0.49 0.58 0.71
GP 12.8 0.016 0.36 −0.95 0.53 0.62 13.6 0.0162 0.357 −1.14 0.55 0.60 13.5 0.017 0.363 −0.72 0.55 0.62
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3.6. Comparison between the Proposed Models and Empirical Formulae

In order to test the effectiveness of the most appropriate FS-RF model, a comparative
study was performed with some empirical formulae suggested by the previous studies
for predicting Cs. These formulae were presented in Table 1. Table 11 illustrates the sta-
tistical results of Cs,estimated/Cs,measured for aforementioned empirical equations in compar-
ison with the proposed FS-RF and FS-DNN models. The mean and standard deviation
of the ratio Cs,estimated/Cs,measured could be useful evidence for evaluating the predictive ca-
pacity. The closer the mean value to one and the standard deviation to zero, the better is
the model. The results show that the most appropriate FS-RF model is the one with the
minimum standard deviation σFS-RF = 0.25, in addition to being the closer mean value to 1
average(FS-RF) = 1.07. The other equations indicate a poor predictive capacity, yielding a
mean value in the range of 0.45–1.7, and standard deviation value between 0.26–0.99. Equally,
the box plot of Cs,estimated/Cs,measured of aforementioned formulae is displayed in Figure 7.
This graphical representation provides an overview of the dispersion and skewness of every
model. The scattering of the most appropriate FS-RF model appears only to be slightly regular
and close to one, and is described by a shorter box than the others. The large box distant
from 1, increasing to five in certain models, shows little variation in predicting Cs. Data
characterized by circles and stars in the figure denote the extreme and extra-extreme value.

Table 11. Statistical results of the ratio Cs,estimated/Cs,measured for some proposed empirical formulae.

Equations No. Study Average Standard Deviation

FS-RF (in the current study) 1.07 0.25
FS-DNN (in the current study) 1.08 0.34

(2) Cozzolino 1961 1.096 0.761
(1) Nagaraj and Srinivasa 1986 1.695 0.989
(3) Işık1 2009 0.81 0.497
(4) Işık2 2009 0.766 0.461
(5) Işık3 2009 0.446 0.259
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3.7. Sensitivity Analysis

To answer the question “Which input variables have the most or less influence on Cs
in the proposed model?”, a sensitivity analysis has been carried out using the step-by-step
method [58]. In this approach, the normalized input neurons vary at a constant rate, one at
a time, while the other variables are held constant. Different constant rates (0.3, 0.6 and 0.9)
are selected in the current study. For every input, the percentage of change in the output,
as a result of the change in the input, is recorded. The sensitivity of each input is computed
based on Equation (18):

Sensitivity level of Xj(%) =
1
K ∑K

i=1

(
% change in output
% change in input

)
i

(18)

where K is the number of data sets used in the study (K = 875). The results of the sensitivity
analysis of proposed FS-RF model are shown in Figure 8. It can be noticed that Cs is
significantly influenced by WL, and its sensibility ratio is between 32–38%. This parameter
is closely followed by the PI, which gives a moderate sensitivity and is ranked second. In
addition, W and Yd have little effect on Cs.
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4. Discussion
4.1. Significance of the Findings and Cross-Validation of the Results

The main motivation of this study is to explore the capability of advanced machine
learning methods to generate a reliable model aimed at easily predicting Cs. Needless
to say, Cs is one of the most indispensable geotechnical parameters required to estimate
the settlement and the swelling degree in the every site. Firstly, in order to identify the
optimal input parameters, which have the ideal influence on Cs three advanced methods
have been used. PSO proposed three lower-dimensional parameters as an optimal input.
GT indicated that WL, PI, FC, and W could formalize the optimal input set. However, FS
showed that WL, Yd, W, and PI are the best ones. The reason behind the difference between
the three approaches lies in the philosophy of each one in handling the data. Based on
that, ten advanced machine learning methods (ELM, DNN, SVR, RF, LASSO, PLS, Ridge,
KRidge, Stepwise, and GP) have applied for modeling the three selected optimal input set
(PSO, GT, and FS). The findings clearly indicate that the optimal input is the one chosen
by FS and trained by the RF method (FS-RF). The latter presents the most appropriate
model, which gave the minimum values of error metrics (MEA, RMSE, and IOS) and
higher values of NSE, R, and IOA compared to other models. Furthermore, the emerging
model was evaluated by the K-fold cross validation approach and compared with other
proposed formulae. The conclusion is that the FS-RF model could generate new data
without over-fitting or under-fitting, and being more effective than the empirical formulae.
The other most interesting aspect is the optimal input set related to the best FS-RF model
(WL, Yd, W, PI). Interestingly, this also accords with several studies, which have showed
that physical parameters indirectly affected the swelling phenomena [59]. It is known that
the micro-scale features of swelling soils comprise the mineral composition of clay particles,
their reaction with the water chemistry, and the cations attracted to the clay particle by
electrical forces. These micro-scale factors influence macro-scale physical factors, such as
density, plasticity, and water content to control the engineering comportment of soil [59].
Additionally, the last part consists of the sensitivity analysis, which gives an overview
about the more influenced parameters on Cs according to the proposed model. The findings
indicate that WL and PI are respectively the most affected factors on Cs, meaning that
swelling phenomena are primarily influenced by plasticity parameters. In addition, water
content and dry density have little effect on Cs.

4.2. Scientific Importance of the Findings and Novelty of the Research

Our findings represent a crucial contribution to the geotechnical field. The elaborated
model building in our study represents a reliable tool for estimating Cs without doing an
Oedomter test. The performance of the estimation has been highly developed compared
with other models and formulae proposed in the literature, which are based just on simple
regression or neural networks. According to these data, we can infer that the Random
Forest method, which is applied in this study for the first time for modeling swelling
index, could yield more effective and accurate results than the DeepANN and ANN
method in modelling geotechnical phenomena. These results provide further support
for the hypothesis that macroscale physical factors, such as density, plasticity, and water
content, are the parameters that affected the swelling phenomena. Moreover, the sensitivity
analysis of the proposed model revealed the most influenced parameters between them for
better understanding the complex behavior of the swelling. This investigation enhances
our understanding that the plasticity of soil consisting of the WL and PI are the most
affected factors on swelling phenomena. In addition to these conceptual advantages,
for enhancing the training phase, a large number of samples (875 tests) and multiple
input parameters have been used in this study. The sophisticated k-fold cross-validation
approach was utilized to test the capability of the best model to overcome under-fitting
and over-fitting problems.
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4.3. Limitations of the Study and Future Research Directions

Despite the impressive multiple results presented in this study, a number of important
limitations need to be considered. The most important limitation lies in the fact that the
proposed machine learning models suffered from the hard fitting used in the future study.
Generally, to overcome this limitation, researchers have presented elaborated models in
the form of programed Interface or simple script by a known programming language
like Matlab and Python for generating the proposed model. Another limitation of using
this kind of data is due to its inability to generalize new conditions or circumstances
that are not used in training data. Investigators generally used big collected data by
transferring knowledge between them. This is an important issue for future research
to use more data gathered from multiple countries for better learning and more reliable
results. A further study using meta-heuristic algorithms on estimating Cs is therefore
suggested. We note, for example, Particle Swarm Optimization (PSO) and Gravitational
Search Algorithm (GSA), bee colony algorithm (ABC), Bio-geography-Based Optimization
(BBO), Whale Optimization Algorithm (WOA), Ant Colony Optimization (ACO), and
Grey Wolf Optimizer (GWO). These algorithms have proved high-performance results
combined with machine learning techniques leading to improving their learning and
rapidly converging to the best solution. The application of these meta-heuristic algorithms
combined with machine learning methods have shown very impressive results in the
abroad fields [60–62].

5. Conclusions

This study set out to optimize the swelling index parameter conducted by the expen-
sive and time-consuming Oedometer test, contributing to elaborating on a new accurate
model for predicting the swelling index (Cs) from easily obtained geotechnical physical
parameters. To achieve our aim, several advanced machine learning methods were used
for a practical analysis aimed at modeling the physical parameters including the wet
density (Yh), the dry density (Yd), the degree of saturation (Sr), the plasticity index (PI),
the water content (w), the void ratio (e), the liquid limit (WL), sample depth (Z), and the
fine contents (FC). Firstly, principal component analysis (PCA), Gamma test (GT), and the
forward selection (FS) approach are utilized to reduce the input variable numbers and
choose the optimal ones. The results indicate the reduction of nine input variables to four
(using FS and GT) and three (using PCA techniques). Afterward, the advanced machine
learning techniques have applied for modeling the proposed optimal inputs and their
accuracy models were evaluated through six statistical indicators (MAE, RMSE, IOS, NSE,
R, and IOA). The comparison of results assessment between different proposed models
revealed the superiority of the FS-RF model, which gives the highest accuracy in terms of
MAE (5.6 × 10−3/10.6 × 10−3), RMSE (0.007/0.013), IOS (0.165/0.298), NSE (0.75/0.13), R
(0.94/0.71), and IOA (0.95/0.82) during the training/validation phase. For assessing the
predictive capacity of the proposed FS-RF model, the K-fold cross validation approach
with K = 10 has been carried out. The results show that this model has a high correlation
coefficient, ranging between 0.92 and 0.94 for training data, and 0.62 to 0.75 for validation
data in the 10 splits, meaning that any over-fitting or under-fitting have been found. Three
criteria were used to compare the performances of the most appropriate FS-RF model
with the proposed formulas in the literature: the mean, the standard deviation, and the
Box plot of the ratio Cs,estimated/Cs,measured. The findings indicate that the aforementioned
FS-RF model is more effective than the empirical formulae. Finally, a sensitivity analysis
was carried out in order to assess the impacts of the soil parameter inputs on the model
performance. The results proved that WL has the most important effect on the prediction
of Cs. PI has a moderate influence and ranked second. In addition, W and Yd have little
effect on Cs.

In the future studies, it is recommended that meta-heuristic algorithms be under-
taken, like Particle Swarm Optimization (PSO) and Gravitational Search Algorithm (GSA),
Biogeography-Based Optimization (BBO), Whale Optimization Algorithm (WOA), Ant
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Colony Optimization (ACO), and Grey Wolf Optimizer (GWO). These algorithms have
proved high performance results combined with the machine learning techniques leading
to improving their learning and rapidly converging to the best solution.
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