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Abstract: Fires are a growing problem even in temperate climate areas, such as those in Central
Italy, due to climate change leading to longer and longer periods of drought. Thus, knowing the fire
susceptibility of an area is crucial for good planning and taking appropriate countermeasures. In this
context, it was decided to use only causal factors of a geomorphological and environmental nature in
order to obtain a fire susceptibility analysis that can also be applied to climatically under-sampled
areas. Vector data of fires in Central Italy from 2005 to 2023 were collected, and the correct areal extent
was calculated for each. At the same time, six factors were selected that could have an influence on
fire development, such as ecological units, topographic wetness index (TWI), geology, slope, exposure,
and altitude. The model was obtained by means of the weight of evidence statistical method, which
takes into account past data by reinterpreting them in a future-oriented way on the basis of the
identified factors and classes. The model was validated with a test sample and shows an area under
the curve (AUC) value of 0.72 with a reliability that can be described as good considering the total
absence of climatic factors that are known to play a major role in fire development. Furthermore,
the identified causal factors were divided into classes, and these were carefully weighted in order to
define their relative influence in the study area. Particularly Ecological Units with characteristic and
well-defined contrast (C) values, which could lead to a more complete definition of forests that tend
to increase fire susceptibility and those that tend to decrease it, allowing the latter to be exploited as a
hazard mitigation agent.

Keywords: GIS; wildfire; WoE; AUC; TWI; susceptibility; Central Italy; ecological units

1. Introduction
1.1. Worldwide Wildfire Situation and Trends

Wildfires are a growing problem for nations affected by them, with a spike in number
of extreme fires in recent years making the media headlines due to the great damage they
cause and the disruption to the ecosystem they affect [1]. Numerous studies show that
in various areas of the globe, fires are larger and more destructive precisely because of
the nature of the areas themselves, which exacerbate certain characteristics such as the
direction and speed of the wind that can lead to a more rapid and intense spread of the
fire [2]. However, it appears to be quite common for much of the world to see an increase
in extreme wildfires, especially in recent years, as observed in South America, Australia,
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Canada, the USA, Portugal, and Greece [3,4]. The trend of fires, such as extreme fires, is
clearly on the rise, as evidenced by numerous studies in various parts of the world. In the
USA, the trend is strongly increasing. For example, from 2000 to 2019, there was an increase
in the area affected by fires of about 1000 acres on average [5]. Likewise, in Serbia, there is
an increasing trend in terms of fires, with the exception of West Siberia, where the trend
is negative [6]. This rather generalised worldwide growth in fires contributes to further
problems, such as carbon emissions, accelerated erosion, and other geomorphological
environmental hazards [7,8].

1.2. State of the Art Concerning Causal Factors and Fire Modelling

Wildfires are caused by many factors, such as climate, types of ecological units, and the
geological-geomorphological situation of the area. Climatic factors such as precipitation,
temperatures, soil moisture, evapotranspiration, solar radiation, wind intensity, and direc-
tion all have a direct influence on fire generation. Certainly, drought is the most responsible
factor in fire generation and is highly correlated to the duration of the drought event, so
inevitably, climatic factors are linked to this concept. For example, temperature is an accel-
erating factor in evapotranspiration, while precipitation produces an increase in humidity
both in the air and on the ground. Soil moisture is crucial in wildfires and also depends
on the type of soil in the area and solar radiation, which in numerous studies has shown a
significant correlation with fire generation [9]. Even wind from the literature shows some
influence in fire generation; in fact, its intensity increases the chances of ignition, while the
direction is influential because air masses arriving over a given region, depending on where
they come from, pass over different areas, gaining or losing moisture [10]. In the same way
as climatic causal factors, ecological units are very influential in fire generation, as there
are areas of trees, shrubs, grasses, arable land, or other man-made areas that determine a
greater or lesser susceptibility to the development of wildfires [11]. In addition to the afore-
mentioned factors, the topography of the terrain is of great importance in the development
of fires, which may favour preferential directions for fire or natural barrages. In particu-
lar, altitude, slope, and exposure can play a decisive role in increasing or decreasing the
possibility of a fire occurring. In fact, certain topographical characteristics may favour an
increase in wind intensity, a greater reduction in humidity in certain areas, or even greater
possibilities of development of certain plants that are more or less predisposed to fire risk
than others. In some cases, there may be indices that tend to highlight characteristics that
topographical features are not expressed, such as the topographic roughness index (TRI),
or that makes it possible to evaluate how topography responds to climate, as in the case of
the topographic wetness index (TWI). Finally, another non-negligible parameter is the soil
and substrate, which in turn can influence other factors such as the development of certain
plant species or increased moisture retention in the soil, which acts as a mitigating factor in
fire risk. These factors are very often used in the literature to create models to help predict
the areas most exposed to wildfire hazards [12]. Therefore, statistical models attempt to
assess fire susceptibility and can be of two types: deterministic and stochastic [13]. Basically,
deterministic methods must be based on a deep a priori knowledge of the phenomenon to
be reliable, whereas stochastic methods require less knowledge to be reliable. Very often, it
is not possible to know the exact weight that the various factors may have in a phenomenon.
Indeed, research arises precisely from the need to understand how influential the factors
analysed actually are, so it follows that stochastic methods seem to give the best results.
There are many stochastic methods that can be used to define susceptibility to some hazards,
such as extreme machine learning [14], random forestry, the weight of evidence [15], Monte
Carlo simulation, etc. Statistical methods need to identify the causal factors related to the
increased probability of a fire developing in a given area in order to define the susceptibility.
Some of these include topographic ones, such as slope, exposure, altitude, topographic
wetness index (TWI), and topographic roughness index (TRI); others may take vegetation
into account through monitoring aimed at defining ecological units or through satellite
indices such as NDVI, SAVI, etc. [16,17]. There are two more recently introduced indices
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such as the TWI, which simulates water concentration taking into account topography
alone and consequently determines a greater or lesser possibility of burning vegetation;
instead, the TRI measures the topographical variability of the landscape, which may or may
not favour forest fires [18,19]. Other factors are aimed at considering land use, others, soil
properties, and geology of the study area [20]. However, most research uses climatic factors,
which, as we know, have a determining effect on fire generation and propagation [21]. In
fact, models based on climatic factors such as temperature, precipitation, air and soil hu-
midity, solar radiation, or wind are usually more accurate in defining susceptible areas [22].
However, any type of statistical model aimed at areal wildfire susceptibility analyses must
be supported by GIS software (ArcGis 10.8) in order to combine the weight of the factors
and allow them to be mapped on the territory [23]. This research aims to assess the different
weights that environmental and geological-geomorphological criteria may have in fire
generation and to hypothesise the physical reasons for these differences. In particular, it
was decided not to deal with the climatic part in order to be able to propose this model
as possibly valid even in climatically poorly sampled areas, evaluating the performance
of a model based only on geological-geomorphological and environmental factors. The
goal was to obtain a fire susceptibility map, with a fire database covering 18 years, from
2005 to 2023, and 890 mapped events equal to an area of 71.94 km2 burnt. Crucial was
the use of a stochastic method such as the weight of evidence (WoE), chosen for the good
results observed in defining susceptibility to calamitous events in many different areas
and the ability to handle multiple information; it represents a robust model for the study
of natural hazards [24]. The WoE was primarily used by the biomedical sciences, but the
potential of summarising and interpreting scientific needs in relation to risk has allowed
for successful adaptation to environmental science issues [25]. In particular, the scientific
literature on the subject has shown how the WoE applied to forest fire risk has even higher
AUC values and provides better results than other geostatistical methods [26,27]. The WoE
was developed and subsequently applied to the study area using GIS software in order to
obtain a spatialisation of fire susceptibility. The innovativeness of the research lies mainly
in the choice of the geological-geomorphological and environmental factors used, with
particular reference to the careful analysis of the ecological units for the entire study area
and in the aggregation of geological formations into lithological types. The discrimination
of the plant species that constitute the flora of this area is fundamental for understanding
their possible natural propensity to generate fires. Usually, wildfire susceptibility analyses
include a climatic part that is very well correlated with fire generation [28]. Hence, it is
crucial to understand the contributions that other types of factors can make before assess-
ing the triggers. In the future, it would be interesting to assess how much the model’s
performance can be improved by introducing some climate variables or indices, including
satellite ones.

2. Materials and Methods
2.1. Study Area

The Marche region in Central Italy has a wide biodiversity dictated by the topo-
graphical variety, which is reflected in a rather marked climatic difference between the
various areas dictated by the Apennine chain, as well as by exposure during the winter
to winds from the East [29]. The Marche region is not particularly susceptible to fires,
although there are years when they are particularly relevant, especially in recent years;
also, due to climate change, critical situations are increasing in terms of area and number.
In this context, although not exposed to excessively high levels, for this average populated
region with valuable crops [30,31], fires represent a risk that should be anticipated and
possibly mitigated.

The study area is the Marche region, a territory bordered by the Adriatic Sea to the
east and the Umbro-Marchigiano Apennines to the west (Figure 1). The Marche region has
a surface area of more than 9000 km2, and around 1,500,000 people live there.
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Figure 1. Geography of the Marche region.

The fire risk for this region is not very high, also due to the fact that only part of the
region falls fully within the Mediterranean climate with hot, dry summers and sufficient
rainfall during the rest of the year. However, climate change, which is leading to increas-
ingly higher temperatures and lower rainfall concentrated in a shorter interval of days,
means that the risk of fires in this region is not very high [32]. The Marche region has a
high biodiversity in relation to the size of its territory as, due to the altimetric differences
ranging from the 2500 m of the highest mountain to the coastal area passing through a
wide hilly strip, it has developed many environments that inevitably influence the flora in
its adaptation [33].

2.2. Data

The study of fire susceptibility in the Marche region involved several stages. Firstly,
wildfire data from 2005 to 2023 were collected. The interval of 18 years was chosen because
it is the digitised and freely accessible data that the regional civil protection department
makes available. The fire data are polygonal vector files in shapefile format; they were
verified one by one by evaluating the dimensions noted in the attribute table and the
original paper drawing of the survey on the regional technical map. This validation
procedure made it possible to eliminate a number of errors in the attribute table with areas
that, in some cases, were larger than what was actually recorded, and in rare cases, the
georeferencing was also revised because it did not agree with the drawing on the regional
technical map.
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This resulted in 890 fires and a burnt area of 71.9 km2 over the 18 years analysed.
Subsequently, the ecological units layer, mapped by the Marche region, was overlaid, and
the data were extracted with GIS software to obtain a complete mapping of the ecological
units for each fire. The same procedure was adopted for each of the other factors used in
the calculation of fire susceptibility, starting with altitude, slope, exposure, topographic
wetness index, and the geology of the area. Data compiled by the Marche region were used
to obtain the geology, while a digital elevation model at 20 m resolution compiled by the
Italian Military Geographic Institute was used to extract all types of topographical and
geomorphological data.

2.3. Methods

Six factors were identified for the fire susceptibility analysis: ecological units, TWI,
geology, slope, exposure, and altitude. The factors with continuous values were merged to
form classes, while the ecological units were not changed because they were already con-
sistently subdivided (Table 1). The lithological formations were also grouped into classes,
as subdividing each formation, even those with very similar mineralogical composition,
would have led to a lack of significance in the analysis, so they were grouped on the basis
of the lithological macrotypes (Figure 2) already summarised in previous research on the
subject [34].

Table 1. Classes for each of the factors selected for analysis.

Ecological Units

Airport Deciduous
shrubland

Evergreen
shrubland Bare area Roads Mixed deciduous

woodland

Hornbeam
woodland

Coniferous
woodland

Riparian
woodland Badland Wood of chestnuts Quarry

Arboreal
cultivation

Continuous
built-up area

Scattered built-up
area Beechwood Herbaceous heter.

form. Shores and beaches

Arboreal formation Wasteland Lake Holm oak Poplar forest Prairie

Pre-forest Decidual oak Seedlet Aquatic vegetation Psammophilous
vegetation

Riparian
vegetation

Urban green

TWI

0–5 5–10 10–15 15–20

Geology

Clays and marly
clays. . . Deposits Limestones, flinty

limestones. . .

Marls, clay marls,
and marly
limestones

Sandstone, marly
clays. . .

Shales and marls
encompassing

calcareous

Slope

0–5 5–15 15–25 >25

Exposure

Flat North East South West

Altitude

0–500 500–1000 1000–2500

TWI, slope, exposure, and altitude, on the other hand, were classified on the basis of
the reference literature on the subject [20,35]. Subsequently, these factors were processed
using the chosen statistical method, WoE, while the main fire data were divided into
two groups necessary to assess the reliability of the model created. The division between
the two groups was performed by the SPSS 26 software (version 26) in a random manner
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for each year, respecting the relative percentages chosen. The first group was called the
training group, as it helped form the model and corresponds to about 80% of the data,
while there are two other groups that are needed to assess the reliability of the model: the
first is the test group and corresponds to about 20% of the fire data (Figure 3); the second is
another test group consisting of 20% of areas carefully selected so as not to intersect with
any fires, areas shifted from the first test group, in order to test the model’s ability to assign
low susceptibility values to these areas as well, essentially to assess the model’s ability to
predict true negatives and false negatives (Figure 3).
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In order to predict the frequency of occurrence of an event in the territory, the WoE
is based on the definition of weights calculated for each class of each variable on the
training group, both positive weights, i.e., those that tend to increase the fire risk in this
case, and negative weights, i.e., those that tend to decrease the fire risk for each class, are
calculated [34].

W+ = ln
(

Wild f ire area in class/Total wild f ire area
Fire − f ree area in class/Total f ire − f ree area

)
(1)

W− = ln
(

Total wild f ire area outside class/Total wild f ire area
Fire − f ree area outside class/Total f ire − f ree area

)
(2)

The difference between W+ and W− makes it possible to calculate the contrast C
and consequently to understand whether the factor considered has a positive weight that,
therefore, increases the fire risk in that area or a negative weight that reduces it [34].

C = W+ − W− (3)

where (C) = contrast.
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The result of this statistical process was the wildfire susceptibility index (WSI), which
is calculated as a summation of the contrasts of all factors considered, i.e., ecological units,
TWI, geology, slope, exposure, and altitude in whatever order one wishes to consider
(C1st f ac, ecc.) .

WSIC = C1st f ac + C2nd f ac + C3rd f ac + C4th f ac + C5th f ac + C6th f ac (4)

Finally, the model was validated, using about 20 per cent of the chosen sample as a
test for the model, by analysing it with the ROC (receiver operating characteristic curve).
In addition, to also test the model’s ability to provide low susceptibility values for areas
without fires, the same number and area of fires were selected for testing by moving
the shapefile. ROC points represent pairs of false-positive (specificity) and true-positive
(sensitivity) values, essentially studying the relationships between true alarms, in our case,
areas that the model identifies as possible fire locations and actually are, and between false
alarms, areas that the model identifies as fire-prone and actually are not.
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In relation to the occurrence of wildfires, sensitivity and specificity are calculated
as follows:

y − axis, sensitivity = (TP/(TP + FN)) (5)

TP = true positive

FN = false negative

whereas specificity is described by the following formula:

x − axis, speci f icity = (FP/(FP + TN)) (6)

FP = false positive

TN = true negative

To give an unambiguous interpretation of the ROC curve obviously requires an invari-
ant measurement with respect to scale, classification, and thresholds, which is the ‘area
under the curve’ AUC method, a method that allows the measurement of the quality of the
predictions of the model created. The AUC value is between 0 and 1, i.e., a model whose
predictions are 100% wrong has an AUC of 0.0, and a model whose predictions are 100%
correct has an AUC of 1.0. The AUC is, in fact, equivalent to the probability that the model
result applied to an event randomly drawn from the fires is higher than that obtained by
applying it to an event randomly drawn from the group of fire-free areas.

In order to interpret the AUC values, we referred to classifications already accepted in
the scientific literature on the subject [34,36,37]:

• AUC = 0.5 the test is not informative;
• 0.5 < AUC ≤ 0.7 the test is inaccurate;
• 0.7 < AUC ≤ 0.9 the test is highly accurate;
• 0.9 < AUC < 1.0, the test is considered outstanding;
• AUC = 1 perfect test.

A logic diagram was drawn up to better understand the development of the study
and its different phases (Figure 4).
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Figure 4. Model and validation diagram.

3. Results
3.1. WoE Factors

The six causal factors identified to develop the WoE model showed good results in
discriminating between high and low fire risk areas, with contrast C values being quite
revealing (Table 2).
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Table 2. Contrast (C) and relative values for Formulas (1) and (2) for the classes considered within the
individual factors. TF—total wildfire area; TNF—total fire-free area; TFoc—total wildfire area outside
the class; TNFoc—total fire-free area outside the class; Fc—wildfire area in class; NFc—fire-free area
in class.

Causal Factor TF TNF Classes C TFoc TNFoc Fc NFc

Ecological
unit 12.9 9351.1

Airport / 12.90 9351.04 0 0.06
Deciduous shrubland 1.683 11.70 9172.92 1.204 178.18
Evergreen shrubland 2.395 12.13 9297.21 0.770 53.89

Bare area −1.253 12.90 9346.78 0.002 4.32
Roads / 12.90 9350.56 0 0.54

Mixed deciduous woodland 0.386 12.78 9292.62 0.118 58.48
Hornbeam woodland 1.038 9.85 8326.80 3.054 1024.30
Coniferous woodland 2.030 11.33 9181.68 1.569 169.42

Riparian woodland −0.620 12.75 9147.31 0.150 203.79
Badland / 12.90 9345.68 0 5.42

Wood of chestnuts −1.931 12.89 9303.16 0.010 47.94
Quarry / 12.90 9351.03 0 0.07

Arboreal cultivation −1.070 12.78 9096.07 0.120 255.03
Continuous built-up area / 12.90 8862.13 0 488.97

Scattered built-up area / 12.90 9220.84 0 130.26
Beechwood −1.791 12.85 9140.22 0.049 210.88

Herbaceous heter. form. / 12.90 9346.47 0 4.63
Shores and beaches / 12.90 9332.71 0 18.39
Arboreal formation / 12.90 9351.04 0 0.06

Wasteland 2.924 12.89 9350.79 0.008 0.31
Lake / 12.90 9339.17 0 11.93

Holm oak −3.712 12.90 9308.26 0.001 42.84
Poplar forest / 12.90 9351.00 0 0.10

Prairie −0.310 12.35 8786.59 0.549 564.51
Pre-forest 0.866 12.82 9325.64 0.083 25.46

Decidual oak 0.981 10.34 8484.20 2.564 866.90
Seedlet −0.721 10.26 4409.03 2.644 4942.07

Aquatic vegetation / 12.90 9350.78 0 0.32
Psammophilous vegetation / 12.90 9351.01 0 0.09

Riparian vegetation / 12.90 9350.92 0 0.18
Urban green 0.524 12.90 9349.79 0.003 1.31

TWI 12.9 9351.1

0–5 0.577 8.08 7009.21 4.82 2341.89
5–10 −5.340 5.47 3035.85 7.43 6315.25

10–15 −3.900 12.29 8694.35 0.61 656.75
15–20 −3.498 12.86 9326.79 0.04 24.31

Geology 12.9 9351.1

Clays and marly clays. . . −0.365 8.72 5005.24 4.18 4345.86
Deposits −0.764 12.81 9293.78 0.09 57.32

Limestones, flinty limestones. . . 0.901 10.92 7574.97 1.98 1776.13
Marls, clay marls, and marly limestones −0.287 11.00 8169.25 1.90 1181.85

Sandstone, marly clays. . . 0.074 12.15 8695.95 0.75 655.15
Shales and marls encompassing calcareous 0.067 8.90 8029.23 4.00 1321.87

Slope 12.9 9351.1

0–5 −0.601 11.12 7240.03 1.78 2111.07
5–15 −0.595 8.23 4612.18 4.67 4738.92
15–25 0.702 8.99 7696.20 3.91 1654.90
>25 0.916 10.36 8517.84 2.54 833.26

Exposure 12.9 9351.1

Flat / 12.90 9346.64 0.00 4.46
North −0.245 10.00 6823.36 2.90 2527.74
East −0.403 10.22 6718.84 2.68 2632.26

South 0.680 8.09 7189.43 4.81 2161.67
West −0.131 10.40 7339.07 2.50 2012.03

Altitude 12.9 9351.1
0–500 −0.644 4.58 2685.93 8.32 6665.17

500–1000 0.501 8.53 7317.15 4.37 2033.95
1000–2500 −1.587 12.69 8712.13 0.21 638.97

The first causal factor in Table 2 relates to ecological units, and here, broad discrimi-
nating factors are found between one unit and another; in particular, the evidence in the
scientific literature on the subject is confirmed, with obviously different weights. High
contrast values stand out for deciduous shrubland, evergreen shrubland, hornbeam wood-
land, coniferous woodland, wasteland, pre-forest, and deciduous oak, while the negative
values, which therefore determine a lower propensity of the ecological unit to fire risk,
are bare land, chestnut forest, arboreal cultivation, beechwood, and holm oak [38]. The
TWI, which constitutes the second causal factor, shows substantial differences between
the different values. In fact, as one might have assumed, positive contrast values are
found for the class from 0 to 5, while it is very important for the exclusion of certain areas.
In particular, contrast values greater than 5 for TWI are strongly negative, meaning that
there is little likelihood that these areas will ignite a fire or at least not favour it. As far
as geology is concerned, two classes are particularly important, one relating to deposits
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that have a negative weight, probably also due to their ability to absorb water, and the
other relating to limestones that are rather predisposed to developing fires. It is likely
that this predisposition of limestones to develop fires may be favoured by the forests that
predominantly proliferate on this type of soil, such as hornbeam woodland and oak forests,
which have a positive C [39]. The slope of the land is also evocative of a class-dependent
differentiation; from 0 to 15% slope, the C-value is negative and thus tends to decrease
the occurrence of fires, while above 15%, the C-value becomes positive and increases at
higher slopes. Exposure also shows clear differences in fire ignition, showing that fire is
much more likely to develop in south-facing areas while it is less likely to develop in east
or north-facing areas. Finally, altitude is probably the least predictable causal factor, as
the differentiated classes show negative C values in the 0–500 m and 1000–2500 m classes,
while the positive values are in the 500–1000 m range. In this case, it is not easy to find
the physical causes that lead to these results. However, it could be assumed that there are
more forests in the 500–1000 m class than in the others, although it is certainly not the driest
altitude class.

3.2. Wildfire Susceptibility and Model Validation

The classes of causal factors, which divided the study area into hundreds of thousands
of polygons, were summed up on the basis of C. The result led to normalised values from 0
to 100 to obtain a wildfire susceptibility index based on the WoE statistical method. The
wildfire susceptibility index (WSI) shows heterogeneous values, with the highest values
concentrated mainly in the mountainous and hilly areas, which predominantly coincide
with forested areas (Figure 5a). However, it is not possible, without adequate validation
using the ROC (receiver operating characteristic) curve, to consider which areas are at a
greater risk of fire outbreak and which are not. The analysis showed that values above
70 have a high level of fire susceptibility; therefore, according to the model, a fire is more
likely to occur in those areas than in others with lower WSI values, which led to the need
for an additional explanatory figure (Figure 5b).

In Figure 5b, only two values were used because the AUC procedure of the model
validation highlights only 2 levels, one below WSI 80, where susceptibility is low, and the
other above 80, where susceptibility is high. Therefore, we avoided creating other classes
based on other values or averaging over intermediate values as we would have inserted a
component of discretion into the analysis, making it statistically non-rigorous.

The validation carried out using the ROC curve led to fairly good results considering
the absence of the purely climatic variables that usually, for all models, provide an added
value to the reliability of the model. The AUC was obtained by testing the isolated sample,
purposely studied, corresponding to about 20% of the fires that occurred; in addition,
another 20% or so of areas corresponding to areas not subject to fire during the study
period were selected by randomly moving the test file. This procedure allowed an accurate
assessment of the model’s reliability, which was 0.72 (AUC), and showed that some classes
of WSI values were not present in the areas identified (Figure 6).

The AUC calculation using the ROC Curve was statistically significant, with a 95%
confidence interval (alpha 0.05). A bar graph is also shown highlighting true positives, i.e.,
areas where the model indicates a high fire hazard and where fire has actually occurred.
True negatives are the areas with no fires where the model attributes a low fire susceptibility,
false positives are where the model indicates a high fire susceptibility and where the fire did
not actually occur, and false negatives are where the model indicates a low fire susceptibility
and where the fire actually occurred (Figure 7).

The model shows that the 6 identified geological, topographical and environmental
causal factors can predict with 72% accuracy the areas that have a high possibility of
developing a fire.
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4. Discussion

Fire susceptibility is an extremely important tool for spatial planning because it allows
appropriate countermeasures to be taken in susceptible areas in order to limit possible igni-
tion. In this research, fire susceptibility was assessed by choosing geological-topographical-
environmental causal factors, with the intention of not taking into consideration the major
activator of these processes, i.e., climate. This choice was made in order to assess the relia-
bility of a fire susceptibility model not based on climatic causal factors and also because it
could be useful to develop this model to define susceptibility in climatically under-sampled
areas. The results were numerous, starting with the contrast that was observed for the
individual causal factors, which showed how classes of values within the individual factors
are more or less predisposed to the development of wildfires. The ecological units revealed
highly differentiated contrast (C) values between the different classes, for example, the high
C of coniferous forests, which are widely known in the literature to be very fire-prone [40].
The contrast was also high in the case of wastelands and shrublands, which, even in the
most recent scientific research, are among the most fire-sensitive ecological units [41]. The
research also highlighted ecological units that have the ability to reduce wildfire suscep-
tibility, such as holm oak, which shows a highly negative C, in clear agreement with the
scientific literature that even finds its fire-stopping properties [42]. The TWI, in turn, shows
that areas where less moisture accumulates topographically are the most susceptible to fires,
in this case in class 0 to 5, while the others having a negative C represent areas where fire
development is less likely. The TWI has very variable values depending on the area where
it is calculated, but even the scientific literature on the subject, regardless of the classes
identified, agrees that a lower TWI corresponds to a greater fire hazard [43]. Geology, on
the other hand, is rarely used in scientific research on fire susceptibility, and there are no
unambiguous values, probably also due to the lack of lithological aggregation of individual
geological formations, which was conducted in this study [44]. In any case, it was evident
to consider that deposits, which retain more moisture than other geological formations,
show a negative C, while limestones give rise to a positive C, probably also due to some
tree species susceptible to fire, that are more predisposed to live in limestone soils. For
slope and exposure, the results were in agreement with the latest research on the subject; in
fact, there is the greatest susceptibility to fire when the area’s exposure is to the south and
the slope is over 15% [20]. Finally, with regard to altitude, the result showed a high C in
the 500–1000 range, although it could be assumed that this is because it is the range with
the greatest forest cover. However, the physical significance of this causal factor cannot be
certain. As far as the result obtained with WoE is concerned, it is interesting because it was
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obtained without the climatic causal factors, which, on the other hand, are widely used in
all research on this topic and are crucial for improving the analysis. The AUC obtained
of 0.72 is certainly a good result considering not only the absence of climatic factors but
also the heterogeneity and vastness of the area analysed. WoE is used extensively in the
literature and often yields good results even in comparison with other statistical models for
fire susceptibility assessment [45]. In relation to the causal factors used to build the model,
there are no examples in the literature of fire susceptibility models where climatic factors
have not been used, providing an innovative character to the present study [31].

5. Conclusions

The spatial analysis using GIS of the fires and the subdivision of the causal factors
into classes made it possible to identify for each class the relative contrast value, which
makes it possible to assess the positive or negative influence of the class considered in
the development of fires. Among the classes of causal factors chosen, those that produce
the most fires were identified as a southern exposure, slopes above 25%, the presence of
limestone in the lithologies, and certain ecological units such as shrubland, coniferous
woodland, wasteland, etc. The differentiation of the contrasts for the factors considered
is in itself an increase in knowledge on the subject in the area. However, the subsequent
merging into the model through the WoE method makes it a spatial planning tool, making it
a reference point for analysis in climatically under-sampled areas. The future developments
of this research can be very broad; in fact, they can be divided into two main strands,
namely those related to improved detection of identified causal factors and those related
to a broadening of causal factors. As far as the identified causal factors are concerned,
surveys could certainly be carried out on an ever larger scale, e.g., in order to differentiate
the ecological units even more accurately, but the same also applies to the geology of the
area. On the other hand, with regard to the topographical variables, it would be interesting
to reduce the cell size of the DEM used, introducing additional precision. With regard to
the expansion of causal factors, it would be appropriate to supplement the model with
additional factors, such as climatic factors at the level of indices that can assess the dryness
of an area or through satellite surveys to obtain information on soil moisture. Average
values or climate extremes could also be included, possibly selecting the periods when fires
are most frequent in the study area. Finally, other statistical models could, of course, be
tested to assess possible differences, comparing possible improvements in fire susceptibility
predictions and in relation to the area under investigation.
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