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Simple Summary: This study focused on the DNA polymerase β (POLB) gene, which belongs to
the DNA polymerase X family involved in DNA replication, repair, recombination, and cell cycle
regulation. POLB was identified as a muscle development-related gene through gene screening
and gene expression analysis methods. Further validation in bovine primary myocytes showed
that overexpression of POLB promoted apoptosis, while gene knockdown had no significant effect.
Analysis of related genes revealed that POLB overexpression affected the expression of the CASP9
gene, which is involved in the apoptotic pathway.

Abstract: DNA polymerase β (DNA polymerase beta (POLB)) belongs to a member of the DNA
polymerase X family, mainly involved in various biological metabolic processes, such as eukaryotic
DNA replication, DNA damage repair, gene recombination, and cell cycle regulation. In this study, the
muscle development-related gene POLB was screened by selection signature and RNA-seq analysis
and then validated for the proliferation and apoptosis of bovine primary myocytes. It was also found
that overexpression of the POLB gene had a pro-apoptosis effect, but interfering with the expression
of the gene had no significant effect on cells. Then, the analysis of related apoptotic genes revealed
that POLB overexpression affected CASP9 gene expression.

Keywords: POLB; myoblasts; RNA-seq; qPCR; analysis

1. Introduction

Jiaxian Red cattle, a Chinese native cattle breed, are deeply praised by Chinese animal
husbandry experts for their high meat quality, tough feeding resistance, and high fertility.
A high level of genomic diversity and low inbreeding has been observed in Jiaxian Red
cattle [1]. Angus cattle is a world-famous beef cattle breed, with the characteristics of high
muscularity and a fast growth rate [2]. Since the twentieth century, breeders have started
making enormous changes in the growth, stature, and body composition of American
Angus cattle through artificial selection. It has become one of the major varieties of high-
grade beef production in the United States, Australia, and other countries. The high
selection pressure for fast growth can result in an increase in the frequency of beneficial
alleles within Angus cattle. This long-term selection leaves behind selection signatures in
the genome around the gene that contributed to the selection response [3].

Previously, we used fixation index (FST) and cross-population extended haplotype
homozygosity (XP-EHH) methods to identify the candidate signatures of positive selection
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in Jiaxian Red cattle by comparing them with Angus cattle [1]. The genes within the regions
of positive selection in Jiaxian Red cattle were mainly related to meat quality traits and the
immune system response [1]. Comparative genomic analysis between Angus cattle and
Jiaxian Red cattle makes it possible to identify selection signatures and candidate genes for
growth. In this study, the candidate signatures of positive selection in Angus cattle were
identified, which we carried out to obtain more regions and genes that were potentially
responsible for growth traits.

RNA-seq analysis has been proven to be an effective method to identify genes for eco-
nomic traits in cattle [4–6]. The transcriptome of subcutaneous adipose tissue in Qaidaford
cattle, cattle–yak, and Angus cattle were analyzed by RNA-seq. A total of 4167 differen-
tially expressed genes (DEGs) were identified in cattle–yak adipose tissue and 3269 genes
in Qaidamford cattle, compared with those in Angus cattle. Some genes are involved
in the PI3K–Akt and ECM–receptor interaction pathways, which are important for lipid
metabolism-related biological processes [7]. Combining RNA-seq analysis and selection
signature analysis might improve the efficiency of identifying the candidate genes for
certain traits.

In this study, the POLB gene was screened by selection signature and RNA-seq analysis.
DNA polymerase β (DNA polymerase beta (POLB)) is a DNA polymerase isolated from
the bovine thymus [8,9]. POLB belongs to the DNA polymerase X family, which plays an
important role in DNA replication, DNA damage repair, and cell cycle regulation. POLB
is used to repair DNA damage by participating in the base resection repair (base excision
repair (BER)) system. If DNA damage cannot be effectively repaired in cells, it can easily
lead to cell senescence, apoptosis, and carcinogenesis [10]. The effects of the POLB gene
on the proliferation and apoptosis of bovine primary myocytes were then validated in
the current study. This study provides a potential reference for further understanding the
regulatory mechanisms of muscle growth and development.

2. Materials and Methods
2.1. Animals and Sequencing

Blood samples were collected from thirty Jiaxian Red cattle from the core breeding
farm of the Jiaxian Red Cattle Breeding Center. Genomic DNA was extracted using the stan-
dard phenol–chloroform method and then used for whole-genome sequencing (DNA-seq).
Additionally, the whole-genome sequencing data of fifteen Angus cattle were used [1,11].
The read-mapping and SNP-calling procedures were the same as those in a previously
performed study [1]. In brief, the Burrows–Wheeler aligner BWA-MEM (v0.7.13-r1126) was
used to align the clean reads to the cattle reference genome ARS-UCD1.2. Picard tools were
used to filter duplicates, and GATK was used for calling the SNPs. After SNP calling, we
used the parameters “variant confidence/quality by depth > 2.0, FS < 60.0, RMS mapping
quality > 40.0, MQRankSum > −12.5, ReadPosRankSum > −8.0 and SOR < 3.0” and the
mean sequencing depth of variants (all individuals) “<1/3× and >3×” to filter the SNPs.

2.2. Selection Signature Analysis

FST and XP-EHH were used to identify the candidate signatures of positive selection
in Angus cattle. The procedures for calculating the FST and XP-EHH values have been
previously described [1]. In brief, FST analysis was calculated in 20 kb steps in a 50 kb
window using VCFtools [12]. XP-EHH statistics based on extended haplotypes were
calculated using selscan v1.1 [13]. A positive XP-EHH score suggested that selection was
likely to have happened in Angus cattle. The overlaps between each method’s top 1%
genomic regions were considered candidate signatures of positive selection in Angus cattle.
In addition, the overlaps were checked between these identified regions and known growth-
related QTLs available in the Animal QTL Database (Animal QTLdb, release 40) [9]. These
overlaps were considered as the candidate regions for cattle growth.
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2.3. RNA-Seq

RNA-seq data of the longissimus dorsi muscle of Angus cattle (GSE57327) were ob-
tained from the Gene Expression Omnibus (GEO) database. In this dataset, the longissimus
dorsi muscle of three Angus cattle at 18 months of age were collected for RNA-seq [14].

Five Jiaxian Red cattle at 18 months of age were slaughtered for tissue collection. The
longissimus dorsi muscle near the 13th or 14th rib was manually dissected from each animal
immediately. These samples were then stored in liquid nitrogen until use. Total RNA was
isolated from each sample using the TRIzol reagent (Invitrogen, Carlsbad, CA, USA). The
concentration and quality were measured using the NanoDrop 2000 spectrophotometer
(Thermo Fisher Scientific, Carlsbad, CA, USA). RNA integrity was assessed using the
Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). The libraries were
constructed using the NEBNext® UltraTM RNA Library Prep Kit for Illumina® (NEB,
Ipswich, MA, USA) following the manufacturer’s instructions and then subjected to 150 bp
paired-end sequencing with an Illumina Novaseq 6000 platform (Illumina, San Diego,
CA, USA).

After removing the adaptor sequences and low-quality reads, the clean reads were
aligned to the bovine genome (ARS-UCD 1.2) using STAR [15]. HTSeq [16] was used
to count the reads mapped to each gene. Fragments per kilobase per million mapped
fragments (FPKM) were used to determine the gene expression levels. Differential gene
expression analysis of two groups was performed using the DESeq2 package in R [17].
p-values were adjusted for multiple testing by estimating the false discovery rate (FDR)
using the Benjamini–Hochberg method. Genes with a fold change of >2 and FDR of <0.05
were assigned as differentially expressed. The sequencing and analysis were performed by
Novogene Bioinformatic Technology (Beijing, China).

GOseq software (release 2.12) was used to analyze the GO enrichment of different
expression genes in the Jiaxian Red cattle and Angus cattle breeds [18]. KEGG pathway
enrichment analysis of differentially expressed genes was performed by KOBAS 2.0 [19].

2.4. Prioritization of the Candidate Genes

Genes within the identified candidate regions were extracted and prioritized based on
the differential gene expression analysis with RNA-seq. Genes that were expressed at an
FPKM of >1 in either group and with a fold change of >2 and FDR of <0.05 were prioritized.
The POLB gene was prioritized for further analysis. Expression of the POLB gene in twelve
tissues was checked in the Animal Omics Database [19].

2.5. Cell Culture

Bovine primary myocytes were isolated from the bovine dorsal longest muscle of
the fetus. The cells were cultured in high-glucose Dulbecco’s modified Eagle’s medium
(DMEM) with 20% fetal bovine serum (Gibco, Grand Island, NY, USA) and 1% penicillin–
streptomycin (HyClone, Logan, UT, USA). All the cells were cultured in a humidified 5%
CO2 incubator at 37 ◦C.

2.6. Vector Construction, shRNAs, and Transfection

In order to overexpress POLB, the full length of the CDS region of the POLB (NC_037354.1)
gene was amplified using the cDNA of the cattle longissimus dorsi muscle. The overexpres-
sion vector was then constructed by inserting SmaI and XmaI digestion sites at both ends of
the full-length sequence of the amplified POLB and attaching them to pHBAd-MCMV-GFP.
Short hairpin RNA (shRNA) (F:5′-gatccTCGCAAACTTTGAGAAGAACGTGAATTCAAGA
GATTCACGTTCTTCTCAAAGTTTGCGATTTTTTg-3′,R:5′-aattcAAAAAATCGCAAACTT
TGAGAAGAACGTGAATCTCTTGAATTCACGTTCTTCTCAAAGTTTGCGAg-3′) to tar-
get POLB was designed to inhibit POLB and was synthesized by General Biol (Chuzhou,
China). When the cell growth adhesion reached 70–80%, the cells were transfected using the
LipofecterTM transfection reagent with the following constructs. 1. POLB overexpression
(POLB Cdna): the POLB gene-overexpressing recombinant adenovirus vector plasmid and
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the pHBAd-BHGlox backbone plasmid were co-transfected to generate artificial chromo-
somes overexpressing POLB. 2. POLB knockdown (POLB shRNA): cells were transfected
with POLB shRNA constructs to silence POLB expression. 3. Negative control (NC): cells
were transfected with a non-targeting scrambled-sequence plasmid as a negative control.

2.7. Cell Proliferation Assay

The expression of overexpressed and interfering apoptosis marker genes in treated
bovine primary myocytes was detected at the mRNA level and protein level by RT-PCR
and Western blotting. Cell proliferation was examined using a CCK-8 Kit and RT-PCR
following the research protocol afforded by the manufacturer.

2.8. Cell Apoptosis and Cell Cycle Analysis

The infestation was carried out in groups according to the experimental requirements,
and the samples were collected after 48 h. Cell cycle and apoptosis were detected by the
Cytometry Assay Kit. The CASP9 gene associated with apoptosis was detected with the
following primers (Table 1).

Table 1. Primers used in this study.

Gene Primer Sequence (5′ to 3′) GeneBank ID PCR Product (bp)

DNA polymerase beta (POLB) Forward: AATCCGTCCCCTGGGTGTCA
Reverse: GGATGGGCCTCACTCGCTTC NM_001034764.1 127

Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH)

Forward: ATGGAGAAGGCTGGGGCTCA
Reverse: GTTGGTGGTGCAGGAGGCAT NM_001034034.2 153

Cytochrome C, somatic (CYCS) Forward: TCAGAAGTGTGCCCAGTGCC
Reverse: TCAGCGTCTCCTCTCCCCAG NM_001046061.2 161

Fas cell surface death
receptor (FAS)

Forward: GCTCTGCTCAGAGGGGAACG
Reverse: GGTGTTGCTCGTTGGTGTGC NM_174662.2 241

BCL2-associated X, apoptosis
regulator (BAX)

Forward: CTCAAGGCCCTGTGCACCAA
Reverse: GTCTGCCATGTGGGTGTCCC NM_173894.1 152

Caspase-8 (CASP8) Forward: GCCGGCCATGTCAGACTCTC
Reverse: TTCAGGCACCTGCTTCCGTG NM_001045970.2 142

Caspase-9 (CASP9) Forward: TGGACGCTGGTTCTGGAGGA
Reverse: CGCGGCAGAAGTTCACGTTG NM_001205504.2 135

Tumor protein p53 (TP53) Forward: CGGAGGTTGTGAGGCGTTGT
Reverse: TCCGTCCCAGCAGGTTACCA NM_174201.2 297

2.9. Statistical Analysis

All samples contained three biological replicates and three technical replicates. All data
were expressed as means ± SD. An unpaired two-tailed Student’s t-test with Bonferroni
correction was performed using GraphPad Prism 9.0 for the statistical analysis. The
differences were considered significant, highly significant, and very highly significant
when p-value < 0.05, p-value < 0.01, and p-value < 0.001, respectively.

3. Results
3.1. Candidate Gene Selection

FST and XP-EHH tests were performed to detect signatures of positive selection in
Angus cattle. Based on the analysis, 435 regions of positive selection in Angus cattle were
obtained [Figure 1a]. Among these regions, 10 regions overlapped with the known growth-
related QTLs that are available in the QTLdb (release 40), involving 9 candidate genes
located within these regions (Table 2).

By comparing the transcriptomic data of the longissimus dorsi muscle samples from
five Jiaxian red cattle and three Angus cattle, 7131 DEGs were screened. Among the
7131 DEGs, 4945 genes were significantly up-regulated and 2186 genes were significantly
down-regulated in Jiaxian Red cattle compared with Angus cattle, respectively. The
heatmap shows that there were significant differences in the gene expression profiles



Animals 2024, 14, 1323 5 of 12

between Jiaxian Red cattle and Angus cattle. The two varieties were clustered into two
independent groups on the heatmap, indicating that they had distinct genetic differen-
tiation at the transcriptome level. It is worth noting that most differentially expressed
genes were expressed more in Jiaxian Red cattle than in Angus cattle. [Figure 1b]. The
results demonstrate the significant differences in gene expression between Jiaxian Red cattle
and Angus cattle. The GO functional enrichment analysis showed that the differentially
expressed genes were mainly enriched in the biological processes related to metabolism.
The KEGG signaling pathway analysis showed that the differentially expressed genes were
mainly enriched in the oxidative phosphorylation pathway [Figures S1 and S2].
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Figure 1. Candidate gene selection based on selection signature and RNA-seq analysis. (a) Manhattan
plot of selective sweeps in Angus cattle. Genes within the growth-related QTLs are shown. Red
dots mean the regions harbored the candidate genes. (b) Heatmap showing log2 fold change of the
differentially expressed genes between the longissimus dorsi of Jiaxian Red cattle and Angus cattle at
18 months.

Table 2. The summary of selective sweeps in Angus cattle compared with Jiaxian Red cattle.

Chr 1 Start
(bp)

End
(bp)

FST
Value

XP-EHH
Value

Gene in the
Region Overlap with QTLs Published in QTLdb 2

10 27920001 27970000 0.46 2.57 LOC510112
(OR4F13) Weaning weight (68,115, 68,116)

14 22700001 22750000 0.34 3.29 XKR4 Insulin-like growth factor 1 level (57,469, 57,478)
14 22720001 22770000 0.35 3.16 XKR4 Insulin-like growth factor 1 level (71,532, 30,649)
14 23000001 23050000 0.34 3.66 TMEM68 Insulin-like growth factor 1 level (71,518, 71,519, 71,527)

14 23220001 23270000 0.34 4.15 LYN Metabolic body weight (131,341, 131,347, 131,348,
131,349)

14 23240001 23290000 0.37 3.96 RPS20; LYN Metabolic body weight (131,341, 131,347, 131,348,
131,349, 131,351)

14 23280001 23330000 0.34 3.53 MOS; PLAG1
Insulin-like growth factor 1 level (71,513, 71,514), carcass
weight (122,423), longissimus muscle area (122,424), and

metabolic body weight (131,351)
27 37120001 37170000 0.35 2.68 IKBKB Body weight gain (69,373)
27 37140001 37190000 0.36 2.92 IKBKB Body weight gain (69,373)
27 37160001 37210000 0.39 3.00 IKBKB; POLB Body weight gain (69,373)

1 Chr represents chromosome; 2 Previously identified QTLs related to growth with records in the QTLdb (https:
//www.animalgenome.org/cgi-bin/QTLdb/BT/index (accessed on 15 February 2020), release 40). IDs of the
QTLs are shown in brackets.

https://www.animalgenome.org/cgi-bin/QTLdb/BT/index
https://www.animalgenome.org/cgi-bin/QTLdb/BT/index


Animals 2024, 14, 1323 6 of 12

In the analysis of the expression of genes in the selective sweeps in Angus cattle
compared with Jiaxian Red cattle (Table 3), the POLB gene was highly expressed in the
longissimus dorsi muscle in both breeds (FPKM > 1). The POLB gene was significantly
more highly expressed in Angus cattle (fold change > 2; FDR < 0.05). Based on the Animal
Omics Database, the POLB gene was most highly expressed in the skeletal muscle among
the twelve tissues [Figure 2]. The results suggest that the POLB gene might be involved in
the regulation of bovine muscle growth and development. The POLB gene was prioritized
for further analysis.

Table 3. Expression of genes in the selective sweeps in Angus cattle compared with Jiaxian Red cattle.

Gene ID Gene
Name Gene Position FPKM in Jiaxian

Red Cattle
FPKM in

Angus Cattle log2FC p-Value FDR

ENSBTAG00000003549 OR4F13 10:27939007-27939951 0.00 0.00 / / /
ENSBTAG00000044050 XKR4 14:22640221-22953771 0.02 0.00 10.06 0.01 0.03
ENSBTAG00000005893 TMEM68 14:23034280-23070124 5.99 1.05 0.70 0.16 0.29
ENSBTAG00000020034 LYN 14:23134995-23244752 2.84 1.08 0.33 0.57 0.72
ENSBTAG00000019147 RPS20 14:23278316-23279689 177.26 68.45 0.42 0.46 0.62
ENSBTAG00000019145 MOS 14:23299177-23300199 0.00 0.00 / / /
ENSBTAG00000004022 PLAG1 14:23330541-23375751 0.19 0.18 −1.00 0.28 0.43
ENSBTAG00000007599 IKBKB 27:37127811-37180362 3.40 1.17 0.57 0.15 0.27
ENSBTAG00000000225 POLB 27:37192520-37217387 15.57 2.81 1.50 <0.01 <0.01
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3.2. Overexpression of POLB Gene Promotes Apoptosis in Bovine Primary Myocytes

Figure 3 shows that overexpression of POLB induces apoptosis in primary bovine
myoblasts. The mRNA and protein expression levels of the POLB gene were significantly
higher in the primary bovine myoblasts with POLB overexpression compared with the
NC (negative control) group. As demonstrated by RT-PCR and Western blot assays, POLB
overexpression led to a robust elevation in POLB transcripts and protein in bovine primary
myocytes, validating the establishment of a POLB overexpression cell model for further
functional studies. Quantitatively, compared with the NC control, the relative levels of
POLB mRNA and protein in the overexpressed group were increased by 8.46 times and
3.2 times, respectively (Figure 3a,b) [Figure S3]. Compared with the NC group, the cell
viability of the primary bovine myoblasts in the POLB overexpression group was signifi-
cantly decreased, which suggests POLB overexpression decreased cell proliferation rates
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(Figure 3c). Moreover, the cell apoptosis rate (Figure 3d) and flow cytometry (Figure 3e)
revealed increased apoptosis in POLB-overexpressing cells. The percentage of cells in the S-
phase was also significantly higher with POLB overexpression (Figure 3f,g), which suggests
that overexpression of the POLB gene can affect the S-phase of bovine primary myocytes.
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Figure 3. Overexpression of POLB gene promotes apoptosis in bovine primary myocytes. (a) RT-PCR
analysis of the efficiency of overexpression of POLB in bovine primary myoblasts. (b) Western blot
and RT-PCR analysis of the protein expression levels when overexpressing the POLB gene. (c) Cell
viability of bovine primary myoblasts was detected by CCK-8 assay, while POLB was overexpressed
24 h later. (d,e) RT-PCR and flow cytometry analysis of the effects of overexpression of the POLB
gene on apoptosis. (f,g) Cell cycle phase index of bovine primary myoblasts was detected by flow
cytometry. The data are presented as means ± standard deviation. * p < 0.05, ** p < 0.01, and
*** p < 0.001.

3.3. Knockdown of POLB Gene Does Not Inhibit Apoptosis in Bovine Primary Myocytes

Figure 4 shows that the knockdown of POLB did not significantly impact the prolif-
eration or apoptosis of bovine primary myocytes. Compared with the negative control
group (NC), the mRNA (Figure 4a) and protein expression (Figure 4b) levels of the POLB
gene in bovine primary muscle cells were significantly reduced after POLB knockdown,
to 90.6% and 77.3% of the NC levels, respectively [Figure S4]. The knockdown efficiency
in bovine primary muscle cells was greater than 70%, which was suitable for subsequent
experiments. However, according to the cell viability assay results (Figure 4c), at 24 h,
the POLB knockdown and NC groups had similar cell viability levels, with no significant
difference between them. At 48 h, although there was a certain difference in cell viability
between the POLB knockdown and NC groups, statistical tests showed that the difference
did not reach a significant level. After continuous culture for 72 h, the viability curves of the
POLB knockdown and NC groups were similar again, with the viability of the two groups
returning to comparable levels, and the difference was not significant. Compared with the
NC group, POLB knockdown did not considerably alter cell apoptosis levels (Figure 4d,e).
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Figure 4. Knockdown of POLB gene does not inhibit apoptosis in bovine primary myocytes. (a) RT-
PCR analysis of the efficiency of inhibition of POLB in bovine primary myoblasts. (b) Western blot
and RT-PCR analysis of the protein expression levels of inhibition of the POLB gene. (c) Cell viability
of bovine primary myoblasts was detected by CCK-8 assay, while POLB was inhibited 24 h later.
(d,e) RT-PCR and flow cytometry analysis of the effects of inhibition of the POLB gene on apoptosis.
The data are presented as means ± standard deviation. * p < 0.05 and *** p < 0.001.

3.4. Overexpression of POLB Gene Affects Expression of Apoptosis-Related Gene CASP9

Figure 5 shows that overexpression of the POLB gene affects the expression of apoptosis-
related genes. Only CASP9 mRNA expression was increased in the POLB gene-overexpressing
bovine primary myocytes (Figure 5a), but no change was observed upon POLB knockdown
(Figure 5b) relative to the NC. Western blot analysis showed that POLB overexpression
increased the CASP9 protein level by 2.63 times compared with the NC group (Figure 5c)
[Figure S5]. Therefore, POLB overexpression may activate CASP9-mediated apoptosis,
while POLB knockdown does not substantially impact this pathway.
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analysis of the effect of overexpression of POLB on other apoptosis-related genes in bovine primary
myoblasts. (b) RT-PCR analysis of the effect of inhibition of POLB on other apoptosis-related genes
in bovine primary myoblasts. (c) Western blot and RT-PCR analysis of the effects of overexpression
of the POLB gene on CASP9. The data are presented as means ± standard deviation. * p < 0.05 and
*** p < 0.001.

4. Discussion

In this study, we compared the genome differences between Jiaxian Red cattle and
Angus cattle through selective scanning analysis and found that the POLB gene was in the
QTL region affecting body weight gain, suggesting that the POLB gene may be related to
the growth traits of cattle. By the functional verification test of POLB gene overexpression
and knockdown, it was found that POLB overexpression induced the apoptosis of bovine
primary myoblasts, but POLB knockdown did not cause significant changes.

Comparative genomic analyses among different cattle breeds have been successfully
used to identify signatures of selection and candidate genes for economic traits. Selective
sweep analysis is able to detect different genomic regions between cattle breeds that may
contain variations affecting important economic traits [20,21]. In this study, selective sweep
analysis was performed to identify candidate regions associated with cattle growth by
comparing Jiaxian Red cattle and Angus cattle. By this method, the pleomorphic adenoma
gene 1 (PLAG1) was found, which was already proven to play an important role in cattle
growth. In the F2 population of Holstein and Jersey cattle, the PLAG1 gene was found to
be located in the QTL associated with body weight [22]. PLAG1 can promote proliferation
and inhibit the apoptosis of bovine primary myoblasts [23]. We also found the POLB gene
shown in the genome is different between Jiaxian Red cattle and Angus cattle by selective
sweep analysis. In the Animal QTLdb, POLB is located within a QTL (no. 69373) associated
with the body weight gain of cattle. This preliminary evidence suggested that POLB might
affect cattle growth. Although the RNA-seq data came from public databases with potential
batch effects, we introduced feature selection analysis. This approach helped minimize
batch effects and identify relevant growth-related genes.

While analyzing public datasets has the possibility of random findings, our in-depth
investigation of POLB substantiates its relevance. We characterized POLB’s expression
patterns across bovine tissues. It showed enrichment in muscle, a key growth tissue.
Importantly, we proved overexpression of POLB had a pro-apoptosis effect on bovine
primary myocytes. In mice, Baguma-Nibasheka found that the expression of the POLB
gene was significantly higher in the muscle with MyoD gene deletion than in normal mice,
suggesting that the expression of the POLB gene may be related to muscle development [24].
These results indicate selective sweep analysis is feasible for selecting growth trait candidate
genes. POLB is a good candidate for further cattle growth research. The bioinformatic
prioritization combined with empirical validation underscores POLB’s involvement in
bovine muscular growth and development. Nonetheless, we acknowledge that our study
was limited by the use of public RNA-seq data and a focus on in vitro muscle cell models.
Future longitudinal gene expression profiling in cattle at different growth stages and in vivo
analyses would elucidate POLB’s mechanisms.

As an integral component of the DNA repair mechanism, POLB collaborates with onco-
genes, tumor suppressors, cell cycle regulators, and apoptosis factors to uphold genomic
stability and integrity. Increasing evidence has demonstrated a close association between
POLB expression and the regulation of cell proliferation, growth, and circulation [25,26]. In
this study, we found that overexpression of the POLB gene can promote the apoptosis of
bovine primary myoblasts, but inhibition of the POLB gene has little effect on cells. This
was consistent with the results of Yuan Liu’s study, which showed that the synergistic effect
of POLB and FEN1-terminal nuclease could regulate CAG repeat expansion and, thus, affect
apoptosis [27]. Nevertheless, POLB knockdown induces cell cycle defects and enhances
cell proliferation in mouse esophageal squamous cell carcinoma and human oral squamous
cell carcinoma [28,29]. No similar results were observed in our study. The different results
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between the studies may be due to tissue specificity or cell type. Further studies are needed
to systematically elucidate the tissue-dependent role of POLB in mediating DNA repair, cell
cycle progression, proliferation, and apoptosis. Our study provides preliminary evidence
for the involvement of POLB in bovine muscle growth and development. Future studies
are necessary to explore the translational potential of POLB-centric regulatory mechanisms
in improving important economic traits in cattle.

CASP9, a member of the caspase family of cysteine proteases, is involved in apoptosis
and cytokine processing [30]. The CASP9 protein belongs to the BH3-domain protein
family and is one of the important regulatory factors affecting apoptosis. In this study, we
found that overexpression of the POLB gene can promote the apoptosis of bovine primary
myoblasts. At the same time, CASP9 significantly increased. CASP9 is a key executor of
apoptosis and plays a key role in both endogenous and exogenous apoptotic pathways. Its
activation can directly lead to apoptosis [31]. Therefore, POLB may induce the apoptosis of
bovine primary myocytes by up-regulating the expression and activity of CASP9. Future
studies are needed to verify the interaction between POLB and CASP9 and clarify their
exact mechanisms of action in the apoptotic network of muscle cells. This will be helpful to
better understand the molecular mechanism of the POLB gene in regulating muscle cells.

5. Conclusions

In conclusion, this study showed that the POLB gene plays an important role in the
proliferation and apoptosis of bovine primary myocytes. Overexpression of POLB in bovine
primary myocytes can decrease cell proliferation and promote cell proliferation, while POLB
knockdown exhibits no significant difference. These findings help us better understand the
role and regulatory mechanisms of the POLB gene in skeletal muscle formation.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ani14091323/s1. Figure S1: GO enrichment results; Figure S2:
KEGG Pathway Enrichment Map; Figure S3: Expression changes of POLB and GAPDH proteins
with a negative control (NC) and POLB cDNA construct in bovine primary myocytes; Figure S4:
Expression changes of POLB and GAPDH proteins with a negative control (NC) and POLB shRNA
construct in bovine primary myocytes; Figure S5. Expression changes of Caspase9 and GAPDH
proteins with a negative control (NC) and POLB cDNA construct in bovine primary myocytes; Table:
Gray value.
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