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Abstract: The biological degradation of plant residues in the soil or on the soil surface is an integral
part of the natural life cycle of annual plants and does not have adverse effects on the environment.
Crop straw is characterized by a complex structure and exhibits stability and resistance to rapid
microbial decomposition. In this study, we conducted a microcosm experiment to investigate the
dynamic succession of the soil microbial community and the functional characteristics associated
with lignocellulose-degrading pathways. Additionally, we aimed to identify lignocellulose-degrading
microorganisms from the straw of three crop species prevalent in Northeast China: soybean (Glycine
max Merr.), rice (Oryza sativa L.), and maize (Zea mays L.). Our findings revealed that both the
type of straw and the degradation time influenced the bacterial and fungal community structure
and composition. Metagenome sequencing results demonstrated that during degradation, different
straw types assembled carbohydrate-active enzymes (CAZymes) and KEGG pathways in distinct
manners, contributing to lignocellulose and hemicellulose degradation. Furthermore, isolation of
lignocellulose-degrading microbes yielded 59 bacterial and 14 fungal strains contributing to straw
degradation, with fungi generally exhibiting superior lignocellulose-degrading enzyme production
compared to bacteria. Experiments were conducted to assess the potential synergistic effects of
synthetic microbial communities (SynComs) comprising both fungi and bacteria. These SynComs
resulted in a straw weight loss of 42% at 15 days post-inoculation, representing a 22% increase
compared to conditions without any SynComs. In summary, our study provides novel ecological
insights into crop straw degradation by microbes.

Keywords: black soil; crop straw; KEGG pathways; lignocellulose-degrading microbes; microbial
community structure; synthetic microbial communities

1. Introduction

The Northeast China black soil region stands as one of the four primary black soil
regions worldwide, contributing to 20% of the country’s crop production and serving as the
largest commercial crop production base in China [1]. The main food crops in this region
are soybean (Glycine max Merr.), rice (Oryza sativa L.), and maize (Zea mays L.). In recent
years, there has been a significant surge in the annual generation of crop straw, posing
challenges for field operations to cultivate crops for the following year [2]. Traditional
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straw disposal methods, such as removal, burning, and burial in soil, have their drawbacks.
Removal requires additional labor, while widespread burning contributes to severe air
pollution [3], a concern that led to its prohibition in Northeast China. Both removal and
burning are inefficient and wasteful, as crop straw is a rich source of carbon resources,
primarily lignocellulose. When incorporated into the soil and allowed to decompose, this
organic material enhances soil health by releasing nutrients for crop growth and adding soil
organic carbon [4]. The natural decomposition of buried straw in the soil is slow, and intact
straw brought to the surface during tillage operations for subsequent crops can obstruct
field machinery. Therefore, finding a pollution-free solution for straw disposal is crucial for
promoting green agriculture and improving resource utilization rates.

In recent research, a novel technique for crop straw biodegradation employing specific
microbial communities has been investigated. This method is environmentally friendly,
requires minimal energy input, is cost-effective, and operates under mild conditions [5]. Mi-
croorganisms imparting biodegradation encompass bacteria, fungi, and actinomycetes [6].
Nevertheless, studies focusing on lignocellulose-degrading microorganisms indicate that
fungi are sensitive to surrounding environmental conditions and are unsuitable for large-
scale industrial production [7,8]. Conversely, bacteria exhibit a lower lignin degradation
capacity compared to fungi [9]. Therefore, it is crucial to explore potential decomposer mi-
croorganisms to accurately predict their performance in degrading lignin from crop straw.

Specific microbes capable of degrading lignin establish on the surface of straw and act
as decomposing agents [10]. These microbes produce cellulose-degrading enzymes that
break down long-chain cellulose polymers into smaller molecular weight or monomeric
compounds [11]. Crop straw exhibits a complex structure, including covalent bonds with
hemicellulose and proteins embedded within cellulose, thereby enhancing its stability
and resistance to degradation by single microbial taxa [12,13]. Rather than employing the
traditional “one-microbe-at-a-time” approach [14], an alternative strategy involves creating
synthetic microbial communities (SynComs). In these communities, the synergy of different
taxa may enhance the degradation rate of straw from various crop species [15].

In this study, we employed a comprehensive methodology to investigate the degrada-
tion times of various straw types by indigenous black soil microorganisms. Additionally,
we isolated different types of lignocellulose-degrading microorganisms. The specific objec-
tives were as follows: (1) quantify the impact of three common crop straw types and their
decomposition times on the soil microbiome structure and composition through amplicon
sequencing, (2) identify changes in straw degradation by analyzing prominent biomarker
microorganisms in KEGG pathways and enzymatic pathways through metagenome se-
quencing, (3) isolate lignocellulose-degrading microorganisms and construct SynComs
using artificially synthesized microbiomes, and (4) assess the functionality of synthetic
microbial communities during crop straw degradation.

2. Material and Methods
2.1. Soil Preparation and Straw Characterization

The black soil (Mollisols in the US taxonomy system) was gathered from chernozem
in northeastern China in Keshan County, Qiqihar City, Heilongjiang Province (48◦21′ N,
126◦03′ E) [16]. Surface layer (0–20 cm depth) soil samples were obtained from six sites
within a 50 m area and sifted through a 2-mm screen to remove stones and organic materials
to create a composite sample. Subsequently, the soil samples were sealed in airtight plastic
bags, which were placed on ice for transport to the laboratory. In the laboratory, all
soil samples were subsequently homogenized and subdivided; for one part, soils were
stored at −80 ◦C for subsequent analysis of 16S rRNA and ITS sequencing. For the
other part, soils were air-dried at room temperature for subsequent soil physicochemical
property measurements. Soil properties had the following values: 7.77 pH (1:2.5, w/v),
13.8 µs/cm electric conductivity (1:2.5, w/v), 2.31 g/kg total nitrogen, 6.02% soil organic
matter, 6.85 mg/kg available phosphorus, and 159 mg/kg available potassium.



Microorganisms 2024, 12, 938 3 of 13

Crop straws were collected from a local farm in Qiqihar, China (47◦35′ N, 123◦92′ E);
the chemical properties of the soybean, rice, and maize straw were 41.2%, 37.1%, and
40.6% total carbon, respectively, and 0.94%, 0.69%, and 0.72% total nitrogen, respectively.
Air-dried crop straws were cut into 3–4 cm pieces [17] and then evenly mixed with black
soil at a 1:10 (wt:wt) ratio in pots. Soil moisture was adjusted to 60% of field capacity by
adding water, and this level was maintained by periodic weighing and adding water as
needed. Pots were covered to minimize evaporation and placed in an incubator at 30 ◦C
for 180 days. Soil samples were collected from the surface of the straw using a brush on
days 0, 90, 120, and 180 [18]. Each group comprised five biological replicates. Fresh soil
samples from each sampling date were stored in a −80 ◦C freezer for subsequent analysis
for microbial community structure and diversity.

2.2. DNA Extraction and Sequencing Analyses

The genomic DNA extraction from soil samples was conducted using the E.Z.N.A.®

soil DNA Kit according to the manufacturer’s guidelines (Omega Biotek, Norcross, GA,
USA). The hypervariable V3–V4 regions of the bacterial 16S rRNA gene were amplified
with primer pairs 338F/806R [19]. Additionally, the ITS genes were amplified using primer
pairs ITS1F/ITS2R on an ABI GeneAmp® 9700 PCR thermocycler (Applied Biosystems,
San Diego, CA, USA). Subsequently, PCR segments were obtained from a 2% agarose gel,
purified with an AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA,
USA), and quantified using a Quantus Fluorometer (Promega, Madison, WI, USA).

Paired-end amplicon sequencing (Appendix A) was performed on an Illumina MiSeq
PE300 platform (Illumina, San Diego, CA, USA). For downstream bioinformatics analysis,
raw sequences were demultiplexed based on barcodes and adaptors, and primer sequences
were removed using Quantitative Insights into Microbial Ecology 2 (QIIME2) [20]. DADA2
was employed for denoising by filtering out sequences with an abundance of less than
five. The final amplicon sequence variants (ASVs) with 100% similarity were obtained [21].
Taxonomy was assigned by the q2-feature-classifier [22] with the classify-sklearn method
against the UNITE reference database [23]. Purified amplicons were equimolarly pooled
and subjected to paired-end sequencing on an Illumina MiSeq PE300 platform (Illumina,
San Diego, CA, USA) following the instructions of Majorbio Bio-Pharm Technology Co.,
Ltd. (Shanghai, China) [24].

Metagenomic sequencing (Appendix A) was conducted on an Illumina NovaSeq
(Illumina Inc., San Diego, CA, USA) at Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai,
China) using a NovaSeq 6000 S4 Reagent Kit v1.5 (300 cycles) following the manufacturer’s
instructions. Briefly, paired-end Illumina reads were trimmed of adaptors, and low-quality
reads (length < 50 bp, with a quality value < 20, or having N bases) were removed using
fastp (version 0.20.0). The metagenomic data were assembled using MEGAHIT (version
1.1.2), employing succinct de Bruijn graphs. Contigs with a length ≥ 300 bp were selected
as the final assembly result, followed by gene prediction and annotation.

2.3. Isolation and Characterization of Lignocellulose-Degrading Microorganisms

The straw lignocellulose-degrading bacteria were isolated from soil samples collected
at various sampling dates using the serial dilution plate method [25]. To initiate the isolation
process, 1 g of soil obtained from the straw surface was thoroughly mixed and added to
9 mL of sterile water in a shaker set at 30 ◦C and 120 rpm for 20 min. Subsequently, the soil
suspension was serially diluted and inoculated onto a straw agar medium consisting of
20 g/L of commercial straw powder (<1 mm) and 1 g/L of urea and adjusted to a pH of 7.0.
Following a 7-day incubation period at 30 ◦C, single colonies were selected and cultured
on the same medium to achieve purification. Genomic DNA extraction was performed
employing a bacterial genomic DNA extraction kit (Tiangen Biochemical Technology Co.,
Ltd., Beijing, China). Bacteria and fungi were identified using the primers 27F/1492R and
ITS1/ITS4, respectively. The obtained 16S rRNA and ITS gene sequences were compared
using the Ezbiocloud and NCBI databases. After the removal of potential clonal duplicates,



Microorganisms 2024, 12, 938 4 of 13

a total of 59 bacterial and 14 fungal strains were successfully isolated, and their glycerol
stocks were prepared and stored at −80 ◦C.

2.4. Lignocellulose-Degrading Enzyme Activity

The strains were initially pre-cultured in a liquid beef paste peptone medium for 24 h
and subsequently inoculated into a liquid minimal medium adjusted to a pH of 7.0 [26].
Straw was employed as the exclusive carbon source in the medium, and the cultures were
incubated on a shaker at 30 ◦C and 150 rpm for 7 days. Following this incubation period,
the broth underwent centrifugation at 4 ◦C and 12,000 rpm for 10 min, after which the
supernatant was subjected to a secondary centrifugation to separate cellulase, xylanase,
and laccase. Enzyme activity was quantified using enzyme activity kits procured from
Grace Biotechnology (Suzhou Grace Biotechnology Co., Ltd., Suzhou, China) following
the manufacturer’s instructions. Straw-degrading SynComs were assembled by combining
strains in equimolar ratios guided by their metagenomic and enzyme-producing capabili-
ties. The remaining straw in the liquid medium was harvested, dried to a constant weight,
and the straw weight loss rate was computed.

2.5. Statistical Analysis

Statistical analyses were conducted using R version 4.0.3 [27]. Alpha diversity was
computed employing the Shannon and Simpson indices via the OTU.diversity function
in the RAM package [28]. Microbial β-diversity was evaluated using non-metric multidi-
mensional scaling (NMDS) based on Euclidean and Bray–Curtis dissimilarity metrics for
normalized ASV data of bacteria and fungi, respectively [29]. To examine the impact of
straw type and degradation times on community dissimilarity, permutational multivariate
analysis of variance (PERMANOVA) was performed using the “vegan” package. Kyoto
Encyclopedia of Genes and Genomes (KEGG) annotation profiles corresponding to the
genes were obtained from the KEGG database. Reporter scores, based on Z-scores, were
utilized to statistically assess all KEGG orthologs (KOs) involved in a pathway. Reporter
scores exceeding 2.58 or falling below −2.58 (99% confidence) were set as the detection
threshold. Annotation profiles of carbohydrate-active enzyme genes were acquired by
comparing them with the Carbohydrate-Active enZymes database (CAZyme) [30]. Sta-
tistical evaluation of significantly different abundances of taxonomic metagenomes was
conducted using the linear discriminant analysis (LDA) effect size with LEfSe analysis [31].
The Wilcoxon test was employed for comparing two groups, while for more than two
groups, a one-way analysis of variance (ANOVA) followed by Tukey’s honestly significant
difference (HSD) test was performed to determine statistical significance among treatments.

3. Results
3.1. Effects of Straw Degradation on Soil Microbial Community Structure and Composition

Straw degradation significantly increased bacterial α-diversity and decreased fungal
α-diversity as indicated by the Shannon and Simpson indices. A significant two-way inter-
action between crop straw type and degradation time was observed (Figure 1B–E). Notably,
maize straw exhibited the lowest bacterial and highest fungal α-diversity, indicating that
maize degradation recruited less bacterial species and more fungal species than soybean
or rice straw. Consistent with these findings, the non-metric multidimensional scaling
analysis (NMDS) revealed significant alterations in bacterial (PERMANOVA, p < 0.001) and
fungal (PERMANOVA, p < 0.001) phylogenetic β-diversities with respect to straw types
and degradation time (Figure 1F,G). Proteobacteria, Actinobacteria, and Firmicutes were
the main bacterial phyla, while Ascomycota, Mortierellomycota, and Basidiomycota were
the dominant fungal phyla across the different crop straw types (Figure 1H,I).
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on degradation days 0, 90, and 180. Ellipses cover 90% of the data for each treatment. (H) Phylum-
level distribution of the bacterial community. (I) Phylum-level distribution of the fungal commu-
nity. Effects of time on straw degradation (SDs), different crop straws (CS), and their interaction are 
shown as the F value with the test of significance (* p < 0.05; *** p < 0.001) of the two-way ANOVA. 
Error bars represent standard errors with five biological replicates. Different lowercase letters indi-
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Figure 1. Changes in microbial community diversity and structure in the soil on the surface of
crop straw. (A) Diagram illustrating the method of preparing straw for the degradation experiment.
(B) Shannon index at the bacterial level. (C) Simpson index at the bacterial level. (D) Shannon index
at the fungal level. (E) Simpson index at the fungal level. (F) NMDS with Euclidean distance showing
bacteria on degradation days 0, 90, and 180. (G) NMDS with Bray–Curtis distance analyzing fungi on
degradation days 0, 90, and 180. Ellipses cover 90% of the data for each treatment. (H) Phylum-level
distribution of the bacterial community. (I) Phylum-level distribution of the fungal community.
Effects of time on straw degradation (SDs), different crop straws (CS), and their interaction are shown
as the F value with the test of significance (* p < 0.05; *** p < 0.001) of the two-way ANOVA. Error
bars represent standard errors with five biological replicates. Different lowercase letters indicate
significant differences (p < 0.05).
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3.2. Changes in Functional Characteristics in Degradation of Different Straw Types

To obtain a more comprehensive perspective, we selected 18 DNA samples from
the three crop straw types at both 0 and 120 days of straw degradation and conducted
metagenomic sequencing to unveil the functional characteristics. Initially, we analyzed the
enriched families based on their taxonomy using Manhattan plots (Figure 2A–C). Among
the three types of crop straw, the species that exhibited greatest enrichment after 120 days
of degradation belonged to a diverse array of bacterial phyla, including Acidobacteria,
Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes (Figure 2A–C). Additionally,
we observed a significant overlap among soybean, rice, and maize-enriched families after
120 days of degradation; specifically, 331 families were enriched across the three straw
types (Figure 2D–G).
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Figure 2. Taxonomic characteristics of different bacteria in the degradation of three crop straw
types. (A) Manhattan plot showing enriched families in soybean for 120 vs. 0 days of degradation.
(B) Manhattan plot showing enriched families in rice for 120 vs. 0 days of degradation. (C) Manhattan
plot showing enriched families in maize for 120 vs. 0 days of degradation. (D) Overlapping enriched
families in soybean and maize for 120 vs. 0 days of degradation. (E) Overlapping enriched families
in rice and maize for 120 vs. 0 days of degradation. (F) Overlapping enriched families in soybean
and rice for 120 vs. 0 days of degradation. (G) Overlapping enriched families among soybean, rice,
and maize for 120 vs. 0 days of degradation. Each triangle represents the bacterial phylum (log2(fold
change) > 1, FDR adjusted p < 0.05).
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After establishing taxonomic differences, we conducted an analysis of functional
compositions, specifically the NMDS ordination of KOs and CAZymes. The results demon-
strated a significant variation in the soil microbiome community after 120 days of straw
degradation time (PERMANOVA, p < 0.001; see Figure 3A,B). To further elucidate the
specialized and distinct functional profiles among the various crop straw types at the two
degradation time points, we searched the carbohydrate-active enzyme (CAZyme) database
associated with cellulose, hemicellulose, lignin, and cellulose oligosaccharide degradation.
Our findings indicated a substantial increase in the activities of polysaccharide lyases (PLs),
glycosyl transferases (GTs), glycoside hydrolases (GHs), and carbohydrate esterases (CEs)
after 120 days of degradation (see Figure 3C–H). Additionally, we observed significant
upregulation of the cellobiose hydrolysis gene (bglX) and hemicellulose degradation genes
(lacZ, xynA, and abfA) following crop straw degradation. Moreover, the crop straw exhib-
ited enrichment in genes with KEGG Orthologs (KOs) related to lignin and hemicellulose
degradation, with notable increases in K07406, K01218, K01179, and K00428 (Figure 3I).
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Figure 3. Functional characteristics of different bacteria in the crop straw degradation process in the
KEGG and CAZymes database. (A) NMDS with Bray–Curtis distance analysis of KOs in three straw
types after 120 days of degradation. (B) NMDS with Bray–Curtis distance analysis of CAZymes in
three straw types after 120 days of degradation. Ellipses cover 90% of the data for each treatment.
(C–H) Expression of six CAZymes. (I) The difference in KEGG pathway of straw degradation after
120 days. Error bars represent standard errors with three biological replicates.
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To assess the similarities and differences in KOs across various crop straw types at both
0 and 120 days of degradation, reporter scores based on KEGG pathways were analyzed.
The analysis revealed that after 120 days of degradation, several pathways associated
with the biosynthesis of amino acids, biosynthesis of nucleotide sugars, amino sugar and
nucleotide sugar metabolism, bacterial secretion system, flagella assembly, o-antigen nu-
cleotide sugar biosynthesis, 2-oxocarboxylic acid metabolism, biosynthesis of cofactors,
lysine biosynthesis, carbon metabolism, carotenoid biosynthesis, lipopolysaccharide biosyn-
thesis, sulfur metabolism, and biotin metabolism were significantly enriched. In contrast,
on the initial sampling date (day 0), only seven KEGG pathways showed enrichment:
arabinogalactan biosynthesis, phenylalanine metabolism, retrograde endocannabinoid sig-
naling, biosynthesis of ansamycins, the phosphotransferase system, furfural degradation,
and degradation of aromatic compounds (Supplementary Figure S3).

3.3. Isolation of Lignocellulose-Degrading Microorganism Strains and Determination of Enzyme
Production Capacity

To identify microbial strains capable of degrading lignocellulose, we isolated and
cultured microorganisms from the soil adhered to the surface of the crop straw. We screened
a total of 59 strains of straw-degrading bacteria, which belonged to 14 different families
and 19 different genera. Additionally, 13 fungi from six different families and six different
genera were screened through the straw medium (Figure 4A,B). Using LEfSe analysis of
metagenomic data, we identified 20 cultured strains with higher LDA values from twelve
bacterial species and six fungal species. These selected strains were further investigated
for their cellulase, xylanase, and laccase production capacity (Supplementary Figure S2,
Table S1). We observed that fungi generally exhibited better enzyme-producing abilities
compared to bacteria. Notably, Aspergillus_sp. J19, Fusarium_sp. J11, and Fusarium_longipes
GUO showed a high capacity to produce cellulase (endo-β-1,4-glucanase) and xylanase
(hemicellulase) as well as a significant weight loss rate in the crop straw (Supplementary
Figure S4). Finally, we utilized the constructed SynCom system to inoculate the three crop
straw species. SynCom2 demonstrated a significantly higher reduction in straw weight loss
at 15 DPI (days post inoculation) compared to other SynCom microorganisms (Figure 5,
Table S2).
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4. Discussion

Soil microorganisms play a crucial role in the degradation of organic matter [32].
Crop straw has a high-quality cellulose structural body and serves as a premium carbon
source for the soil carbon cycle [4]. Moreover, the abundant microbial communities in
the soil collaborate to utilize lignocellulose in the straw as a carbon source for normal
functioning [33]. In this study, we observed that the degradation time of three different crop
straws significantly altered the bacterial and fungal community diversity and structure.
Consistent with prior research, Proteobacteria was identified as the dominant phylum
throughout the 180-day degradation experiment [34,35]. Bacteroides were also found
to play a crucial role in the breakdown of hemicellulose and xylan, confirming earlier
studies [36]. Additionally, fungi play a vital role in straw degradation. For example,
Neurospora crassa secretes cellulase and xylanase [37], while Phanerochaete chrysosporium
secretes cellobiose hydrolase and xylanase [38].

Microbial diversity plays a crucial role in system function [39,40]. This study identified
the bacterial and fungal strains that played a dominant role in straw decomposition and
revealed a strong association with carbon and nitrogen metabolism (Supplementary Fig-
ure S1). Additionally, the degradation of straw involves the coordinated action of various
enzymes related to lignocellulosic breakdown, such as endo-β-1,4-glucanase, β-glucosidase,
xylanase, and laccase [41]. In our investigation, the abundance of genes linked to ligno-
cellulose degradation (e.g., bglX, gmuG, and lacZ) significantly increased as crop straw
degradation progressed. This phenomenon is believed to be influenced by the higher
carbon-to-nitrogen ratio observed in rice and maize straw compared to soybean straw.
Notably, Actinobacteria, Proteobacteria, Chloroflexi, Acidobacteria, and Firmicutes were
found to significantly contribute to each CAZyme family, playing a vital role in straw
degradation [42–44]. These enzymes, crucial for straw degradation, are produced through
microbial metabolic activities. This finding aligns with previous research suggesting that mi-
croorganisms utilizing lignocellulose produce a substantial number of enzymes associated
with straw degradation [45–48].

Differences among treatment groups and different periods were determined using
LEfSe analysis [49]. At the bacterial level, Streptomycetaceae, a crucial family of Actinobac-
teriota, has been demonstrated to play a significant ecological role in straw degradation [50]
and their abundance remains stable during the degradation of plant residues [44,51].
Streptomycetaceae and Bacillaceae can degrade cellulose [52], and Klebsiella, a genus of
Enterobacteriaceae, also contributes significantly to the cellulose degradation process [53].
Some related bacterial strains were isolated. Fungi also play a pivotal role in the straw
degradation process [54]. This study revealed that Ascomycetes and Basidiomycota are key
contributors to the straw degradation process [55], with Basidiomycota being the dominant
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phylum. Measurement of the enzyme production of each strain indicated that the enzyme
production capacity of fungi surpassed that of bacteria. For instance, Aspergillus and Fusar-
ium demonstrated production of excellent lignocellulose degradation-related enzymes [56].
In summary, straws from different crop species recruit distinct degrading bacteria, all of
which contribute to straw degradation through enzyme production (Supplementary Figure
S4). The SynComs constructed in this study also provide a reference for straw degradation
in black soil regions.

5. Conclusions

Our study investigated the taxonomy and functional attributes of microbes in soil
adhered to the surface of the straw of various crop species during the degradation process,
elucidating distinct taxon- and function-specific recruitment strategies. We successfully
isolated lignocellulose-degrading bacteria and fungi and identified dominant bacteria
and fungi taxa, providing valuable information for future investigations into crop straw
degradation. These strains demonstrated an ability to accelerate straw degradation rates,
showcasing significant potential applications in crop production systems.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms12050938/s1. Supplementary Figure S1 Linear
discriminant analysis effect size (LEfSe) results after 0 and 120 days of straw degradation. Supple-
mentary Figure S2 Functional predictions at the bacteria level using FAPROTAX after 0, 90, and
180 days of straw degradation. Supplementary Figure S3 Comparison of KEGG pathways between
0 and 120 days of crop straw decomposition. Supplementary Figure S4 Determination of enzyme
production capacity by different strains. (A) Amount of cellobiohydrolase produced by the strains.
(B) Amount of hemicellulase produced by the strains. Supplementary Table S1 Detailed information
on strains at the bacterial and fungal levels. Supplementary Table S2 Strains comprising six synthetic
microbial communities (Syncoms).
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