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Abstract: Palm kernel cake (PKC), a byproduct of palm oil extraction, serves an important role in
Ecuador’s animal feed industry. The emergence of yellow-orange fungal growth in PKC on some
cattle farms in Ecuador sparked concerns within the cattle industry regarding a potential mycotoxin-
producing fungus on this substrate. Due to the limited availability of analytical chemistry techniques
in Ecuador for mycotoxin detection, we chose to isolate and identify the fungus to determine its
association with mycotoxin-producing genera. Through molecular identification via ITS region
sequencing, we identified the yellow-orange fungus as the yeast Candida ethanolica. Furthermore, we
isolated two other fungi—the yeast Pichia kudriavzevii, and the fungus Geotrichum candidum. Molecular
identification confirmed that all three species are not classified as mycotoxin-producing fungi but in
contrast, the literature indicates that all three have demonstrated antifungal activity against Aspergillus
and Penicillium species, genera associated with mycotoxin production. This suggests their potential
use in biocontrol to counter the colonization of harmful fungi. We discuss preventive measures
against the fungal invasion of PKC and emphasize the importance of promptly identifying fungi on
this substrate. Rapid recognition of mycotoxin-producing and pathogenic genera holds the promise
of mitigating cattle intoxication and the dissemination of mycotoxins throughout the food chain.

Keywords: mycotoxins; yeast; palm kernel cake; surveillance; Geotrichum candidum; Pichia kudriavzevii;
Candida ethanolica

1. Introduction

Over the past few decades, Ecuador has witnessed the remarkable growth of its cattle
and dairy industry, with a substantial increase to nearly four and a half million animals [1].
Simultaneously, approximately 225,000 hectares of the country’s tropical regions have
been dedicated to oil palm cultivation. This extensive monoculture venture constitutes a
noteworthy 4% of Ecuador’s agricultural production, yielding an annual output of around
2,418,855 tons of palm oil [1]. Within the ambit of this booming industry, an essential
byproduct produced from the palm oil extraction process is palm kernel cake (PKC). This
residual substance, left behind after the extraction of oil from palm kernels, is considered
a valuable source of protein and fiber. Its significance is emphasized by its widespread
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utilization as an ingredient in animal food, serving the nutritional needs of dairy cattle and
various other livestock [2–4].

Mycotoxins are toxic compounds with a low molecular weight that are produced as
secondary metabolites by specific filamentous fungi. These mycotoxin-producing fungi
are widely recognized in the agricultural industry and can contaminate staple products
like corn, peanuts, and rice [5,6]. Principally, fungi belonging to the genera Aspergillus,
Penicillium, Fusarium, and Alternaria are known for their ability to produce significant
mycotoxins [7]. Among these mycotoxins, aflatoxins stand out due to their potency as
some of the most potent natural toxins, associated with carcinogenic and teratogenic
properties [7,8].

Examples of mycotoxin contamination have been observed in food crops and stored
food within tropical and subtropical climates, including mycotoxin presence in peanuts
from Malaysia, India, and Nigeria, as well as in corn from Saudi Arabia and South
Africa [9,10]. PKC, the residual byproduct from the palm oil industry, is no exception,
and it has been established that this cattle food supplement can serve as a substrate for
the growth of mycotoxin-producing fungi [11–13], causing growing concern within the
dairy industry. Mycotoxin contamination in cattle feed can have a significant risk to both
calves and dairy cattle, leading to acute and chronic disorders in animal production and
substantial economic losses. In addition to this direct effect, there is a risk of transmission
of mycotoxins to humans through products derived from these cattle, such as milk and
cheese [7,14,15].

Notably, between 2020 and 2021, there was a significant rise in calf mortality in tropical
areas of Ecuador where PKC is commonly used as animal feed, prompting an industry-
wide alert regarding mycotoxin presence. However, the root cause of these deaths was
never thoroughly investigated. Also, in the same year, cattle ranchers in Ecuador raised
concerns about a yellow-orange fungal intrusion in PKC storage facilities (as shown in
Figure 1), suggesting that this growth indicates the presence of pathogenic or mycotoxin-
producing fungi potentially harmful to their cattle. As a result, they requested a thorough
investigation into the matter.
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Several techniques are regarded as the gold standard for mycotoxin detection in food,
including high-performance liquid chromatography (HPLC), or liquid chromatography–
electrospray ionization–tandem mass spectrometry (LC-ESI-MS/MS) [16,17]. These meth-
ods can be employed in various food sources such as corn, rice, and other seeds. However,
they can be costly and/or inaccessible in rural areas, posing a significant limitation, es-
pecially for low-income countries. Moreover, the chemical diversity and co-occurrence
of mycotoxins, their different concentrations in agricultural products and complex food
matrices with mycotoxin contamination require special extraction, clean-up, and detection
methods. No laboratory in Ecuador has yet standardized this for the sample in question.

Alternative strategies for strengthening the surveillance of mycotoxin-producing fungi
have been developed using molecular biology techniques, such as a multiplex polymerase
chain reaction (PCR) that can detect the four major mycotoxin metabolic pathway genes,
nor1 (aflatoxin), Tri6 (trichothecene), FUM13 (fumonisin), and otanps (ochratoxin), us-
ing culture isolates [18]. Another alternative approach involves the direct detection of
mycotoxin-producing fungal genera or species by identifying genera or species-specific
genes using PCR. [19,20]. Due to the limited availability of HPLC or LC-ESI-MS/MS tech-
niques in Ecuador, we opted for the latter option and decided to identify the predominant
fungus, distinguished by its striking coloration, through molecular techniques involving
PCR and sequencing. We extracted DNA from primary cultures and the yellow-orange
spores produced by this fungus to facilitate their respective identification. The aim of our
research was to determine whether the fungus with the alarming orange-yellow spores
was non-harmful and unrelated to a genus known for producing mycotoxins.

2. Materials and Methods
2.1. Area of Study and Sampling

Farms located in the tropical regions of Ecuador, specifically in Santo Domingo de los
Tsáchilas and Los Ríos provinces, were chosen for sampling. These farms play a pivotal
role in a significant dairy industry that relies on palm kernel cake (PKC) for calf feeding. A
PKC storage outbuilding exhibiting conspicuous yellow-orange fungal growth was singled
out as the sampling site.

Using a small gardening shovel, we collected a portion of the whitish mycelium,
along with the palm cake substrate, and placed them in sterile 15 mL Falcon tubes. To
gather the orange-yellow spores, we gently agitated the shovel near the Falcon tubes until
approximately 100 µL of orange particles was deposited inside. Subsequently, all samples
were transported at room temperature to the research laboratories at Universidad De Las
Americas in Quito, Ecuador, for further examination.

2.2. Fungi Culture

In the laboratory, the mycelium was cultured by placing small fragments of approx-
imately 2 mm2 of the visible mycelium structure onto Sabouraud Dextrose Agar (SDA)
medium using a sterile inoculation loop. The fragments were gently pressed onto the
surface of the plate. To enhance selectivity against commensal microorganisms, chloram-
phenicol (50 mg/L), nalidixic acid (25 mg/L), and vancomycin (10 mg/L) were added to
the culture medium.

Spores were cultured by inoculating the yellow-orange spores, stored in the 15 mL
Falcon tube, onto SDA medium with antibiotics using a sterile swab. The samples were then
incubated at 25 ◦C for a period of 15 days. To determine whether the isolated fungi could
utilize PKC for growth, a re-isolation test was performed in which fungi previously cultured
on SDA were re-isolated on sterile PKC under the same culture conditions previously used
for the isolation on SDA.

2.3. Molecular Method for the Identification of the Fungi

DNA was extracted from the sampled spores and cultured mycelium using the follow-
ing procedure: a sterile bacteriological loop inoculated spores or cultured mycelium into a
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1.5 mL Eppendorf tube containing 200 µL of TE solution (10 mM Tris-HCl and 1 mM EDTA,
pH 8.0). The tube was then incubated at −20 ◦C overnight. Following incubation, the
samples underwent sonication in an Ultrasonic Water Bath 5.7 L CPX3800 FisherbrandTM

(Fisher Scientific, Waltham, MA, USA) for 30 min. After sonication, the tubes were placed
on ice for 10 min, heated at 95 ◦C for 5 min, refrigerated at −20 ◦C for 15 min, and vortexed
three times. Subsequently, they were centrifuged at approximately 1450 rad/s (14,000 rpm)
for 1 min, and the supernatant was carefully collected and transferred to a new 1.5 mL tube.
The DNA content was quantified using a NanoDrop 2000 Spectrophotometer (Thermo
Scientific, Vacaville, CA, USA).

For the PCR, the 2× concentrated GoTaq® Green Master Mix (Promega, Fitchburg, WI,
USA) was employed, with a final volume of 15 µL. The concentrations used were as follows:
10 ng DNA and the forward and reverse primers at 0.4 µM each. The primer set (ITS1,
5′-TCCGTAGGTGAACCTGCGG-3′) and (ITS4, 5′-TCCTCCGCTTATTGATATGC-3′) was
used to amplify a ~600-base pair (bp) DNA fragment of the ITS region. The amplification
process commenced with an initial denaturation step at 95 ◦C for 5 min, followed by
35 cycles consisting of denaturation at 94 ◦C for 1 min, annealing at 55 ◦C for 2 min,
extension at 72 ◦C for 1 min, and a final extension step of 10 min at 70 ◦C.

The PCR amplicons were analyzed using a 2% TBE agarose gel with SYBR Safe. The
electrophoresis process was carried out at 100 V for 30 min within a Labnet Enduro Gel
LX horizontal chamber (Labnet International, Inc., Edison, NJ, USA). Subsequently, the
gel was imaged using a Chemi-DocTM Imaging system (BioRad, Hercules, CA, USA). The
resulting fragments were then sequenced via the Sanger method, utilizing an ABI 3500xL
Genetic Analyzer sequencer (Applied Biosystems, Foster City, CA, USA) with a BigDye
3.1® capillary electrophoresis matrix. Finally, the obtained sequences were identified
using NCBI BLAST-Nucleotide. Phylogenetic trees were constructed within the MEGA
X program, employing the maximum-likelihood method with the following parameters:
Kimura 2-parameter model, bootstrap analysis with 500 replicates, gamma distribution
with invariant sites (G+I), a discrete number of gamma categories of 4, nearest-neighbor
interchange (NNI), and a number of treatments of 16.

3. Results

A total of five PKC samples of the fungus growing with typical yellow-orange col-
oration (Figure 1) were collected and inoculated on culture medium.

Several tens of fungi colonies were obtained and both macroscopically and micro-
scopely, three morphological distinctive strains could be differentiated for the growth
on SDA medium in the re-isolation test and optical microscopy, respectively. One strain
showed a filamentous fungus. Two other unicellular yeasts strains were obtained from
a mycelium-like growth on the substrate but also from the spores, both showing slightly
different colors and structures (Figure 2A–C).
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Figure 2. Optical microscopy at 40× magnification of the three isolated fungi from palm kernel cake
of a cattle farm in Ecuador. Figure 2A–C were identified as follows: (A) Geotrichum candidum also
named Galactomyces candidus in previous studies; (B) Pichia kudriavzevii; and (C) Candida ethanolica.
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The molecular identification, utilizing the internal transcribed spacer region (ITS
sequence) and its analysis with Blastn, available at https://blast.ncbi.nlm.nih.gov/Blast.cgi,
and last accessed on 16 August 2023, revealed three distinct fungal DNA sequences. The
filamentous species (Figure 2A) was identified as Geotrichum candidum (formerly known
as Galactomyces candidus in some older studies) with a confirmed identity value of 99.6%.
The unicellular microorganisms (Figure 2B) were identified as the yeast Pichia kudriavzevii
with a confirmed identity value of 99.6%. The growth from the orange-yellow spores was
identified as the yeast Candida ethanolica with a confirmed identity value of 100% (Figure 2C).
None of the three species are known to produce mycotoxins. The ITS sequences obtained
have been uploaded to GenBank with the following accession numbers: ON478985 and
ON478986 (Geotrichum candidum isolates), ON694346 (a Pichia kudriavzevii isolate), and
ON478987 (Candida ethanolica isolate). The phylogenetic analysis conducted with the
ITS sequences confirmed the identification and the relationship of our species with other
nearby species and with the reference strains for Pichia kudriavzevii ATCC:24210 and Candida
ethanolica ATCC:44956. (Figure 3: phylogenetic tree for G. candidum; Figure 4: phylogenetic
tree for P. kudriavzevii; and Figure 5: phylogenetic tree for C. ethanolica).
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Figure 3. Phylogenetic tree for isolate LR03222. The phylogram shows the close relationship between
our isolate and the sequences of Geotrichum candidum and Galactomyces candidus obtained from
GenBank Nucleotide (available at https://www.ncbi.nlm.nih.gov/nuccore [accessed at 20 August
2023]). The tree shows the bootstrap values (numbers next to the vertex) and the distance between
each sequence. The tree was constructed using the maximum-likelihood method, Kimura 2-parameter
model and a bootstrap analysis with 500 replicates.
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isolate and the sequences of Pichia kudriavzevii obtained from GenBank Nucleotide (available at
https://www.ncbi.nlm.nih.gov/nuccore [accessed at 20 August 2023]). The tree shows the bootstrap
values (numbers next to the vertex) and the distance between each sequence. The tree was constructed
using the maximum-likelihood method, Kimura 2-parameter model and a bootstrap analysis with
500 replicates.
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4. Discussion

Palm kernel cake (PKC) is widely produced across the equatorial tropics, encom-
passing regions such as Southeast Asia, Africa, and South America, and stands as a vital
protein and energy source for the cattle industry. However, various factors, including
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storage conditions, humidity levels, and high temperatures, make PKC susceptible to inva-
sion with mycotoxin-producing fungi, posing potential threats to both cattle and human
health [12,21].

The “yellow-orange” fungus in PKC pools alerted farmers to potential economic losses
from mycotoxins and human health risks. In general, the color of fungi or the spores is not
directly related to toxin production. Fungal species can vary widely in color, and while
some toxigenic fungi may have characteristic colors, it is not a reliable indicator of toxin
production [22,23]. The ability of a fungus to produce toxins depends on various factors
such as species, environmental conditions, and genetic makeup. For example, certain
fungi like Aspergillus flavus, which can produce aflatoxins, may have yellow-greenish
spores, but not all yellow-greenish fungi produce aflatoxins. Similarly, some molds that
produce mycotoxins may not display any particular coloration. Therefore, while color
can sometimes provide clues about fungal species, it is not a definitive indicator of toxin
production. Toxin production is best determined through laboratory testing or an analysis
specific to the fungal species in question. The three species isolated in this current study,
including the one producing orange-yellow spores, were determined to be unrelated to
mycotoxin-producing fungi. The three species typically inhabit environments such as soil,
milk, plant tissues, water, air, and the digestive tracts of mammals [24,25].

To our knowledge, our study marks the first of its kind in Ecuador or South America,
focusing on the identification of potential mycotoxin-producing fungi in PKC used for
cattle feeding. Recognizing the presence of pathogenic or mycotoxin-producing fungi
is paramount due to the broad-reaching implications for animal welfare and food safety.
Despite this importance, there exists a lack of surveillance and comprehensive studies
regarding mycotoxin-producing fungi in Ecuador. This significant knowledge gap served
as the primary motivation behind our research effort.

4.1. Candida ethanolica

The molecular identification of the fungus with yellow-orange spores found in the PKC
storage outbuilding, C. ethanolica, refers to a yeast species known for its ability to ferment
ethanol. Candida species, in general, can be opportunistic pathogens, primarily causing
infections in individuals with compromised immune systems or in specific clinical settings.
However, C. ethanolica is not among the more common opportunistic pathogens within the
Candida genus. This yeast demonstrates a close genetic relationship with Pichia deserticola.
Both share genetic sequences in their ITS regions, exhibiting only 5.6% differentiation
between them [26]. Pichia deserticola has gathered attention for its potential applications
in preventing and treating postharvest diseases in fruits, particularly for the control of
Penicillium, Botrytis, Alternaria, and Aspergillus species [27,28]. Moreover, C. ethanolica has
been shown to possess antifungal properties and can potentially inhibit the growth of fila-
mentous fungi like Aspergillus and Penicillium species. These antifungal properties make C.
ethanolica a candidate for biological control or biocontrol strategies against pathogenic fungi
in various applications, such as agriculture, food preservation, or pharmaceuticals [27].
However, the extent of its inhibitory effects and the specific fungi it can target may vary
based on experimental conditions and interactions between different microbial species.
Regarding the striking yellow-orange color observed for this yeast growing on PKC, this
coloration could arise from an intricate interplay between its metabolism and the substrate,
potentially influenced by the notably high levels of phenolic compounds and essential oil
content of PKC. Significantly, it is worth noting that the yeast’s coloration disappeared
when cultured on SDA agar lacking these compounds.

4.2. Geotrichum candidum

This fungus, also known as Galactomyces candidus in older publications [29], is
extremely common and has a worldwide distribution. G. candidum is a filamentous fungus
characterized by branching hyphae that form a network of interconnected threads. It is
commonly isolated from soil, air, water, milk, silage, plant tissues, and the digestive tract
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in humans and other mammals. G. candidum is widely used in the production of certain
dairy products, including rind cheeses such as Camembert, Saint-Nectaire, Reblochon, and
others. Additionally, this fungus has demonstrated antifungal capacity against Aspergillus
spp. and has been shown to reduce the mycelial growth as well as the generation of
conidia, which impacts fungal dispersion [27]. Furthermore, the fungus is an opportunistic
pathogen for humans, with pulmonary involvement being the most frequently reported
form of the disease. However, bronchial, oral, vaginal, cutaneous, and alimentary infections
have also been noted [30].

4.3. Pichia kudriavzevii

This yeast, also known as Candida krusei in older publications, is both an opportunistic
pathogen and an important industrial yeast. The yeast is widely distributed in nature [31]
and is often encountered in spontaneous fermentations. The species is used to produce sev-
eral traditional fermented foods, such as fermented cassava and cacao in Africa, fermented
milk in Tibet and Sudan, and maize beverages in Colombia.

Additionally, this yeast species produces compounds that have fungicidal or fungistatic
effects on various other fungi. P. kudriavzevii has been studied for its potential to be used as
a biocontrol agent to prevent the growth of harmful fungi in different contexts, such as in
agricultural settings or in food preservation [32]. However, the inhibitory effects of this
yeast can depend on factors such as the specific strains of both this yeast and the target
fungi, as well as environmental conditions. While P. kudriavzevii can have antagonistic
effects against certain fungi, its effectiveness and the mechanisms involved can vary.

As an opportunistic pathogen, this species is the fifth most common cause of can-
didemia, but it is most noteworthy for its innate resistance to the antifungal agent flucona-
zole, in addition to its somewhat reduced susceptibility to other drugs [33].

4.4. Surveillance and Control of Pathogenic and Mycotoxin-Producing Fungi

Continuous surveillance in agricultural and livestock production for mycotoxin-
producing fungi is necessary. The gold standard for the detection of mycotoxins is HPLC,
or liquid chromatography–tandem mass spectrometry (LC-MS/MS). The most crucial
steps before the mycotoxin analysis are the extraction method and clean-up. The choice of
solvents, as well as the method of extraction, contribute significantly to the success of the
extraction. Due to the difficulty involved in the extraction and purification of mycotoxins in
samples such as PKC, most diagnostic laboratories will not carry out this analysis [34–37].

The methodology and results outlined in this study demonstrate an alternative and
highly accessible approach to exploring the presence of potential mycotoxin-producing
fungi. Moreover, our method offers a deeper understanding of the fungal ecology thriving
on distinct substrates. This aspect holds significance as it allows for a nuanced assessment of
fungal diversity in various food sources, potentially indicating the presence of mycotoxins
without the necessity of chromatography analysis. Polymerase chain reaction (PCR)-based
diagnosis has been applied by others as an alternative assay replacing cumbersome and
time-consuming microbiological and chemical methods for the detection and identification
of toxin producers in the fungal genera Fusarium, Aspergillus, and Penicillium. A review
from 2007 covers the numerous PCR-based assays, which have been published since the
first description of the use of this technology to detect aflatoxin biosynthesis genes in A.
flavus. Several other publications have used a combination of fungal culture, identification
with molecular biology techniques and high-performance liquid chromatography (HPLC)
to identify fungal genera and the production of mycotoxins in agarwood, grains and kernels
from various agricultural products and processed meat [19,20,37–40].

Addressing mycotoxin control in food is a need in Ecuador. Two notable studies
conducted in the country shed light on mycotoxins in both food and breast milk. In one
study, it was revealed that aflatoxin exposure through breast milk consumption raised
significant health concerns across rural and urban regions. However, mycotoxin exposure
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from staple cereal consumption was deemed tolerable. In another study, alarming rates of
contamination were observed in paddy rice, white wheat noodles, and oat flakes [41,42].

In our investigation, we found that PKC serves as a habitat primarily for fermenter
species of fungi, none of which were identified as mycotoxin-producing. However, some
of these species are associated with human diseases. For instance, G. candidum, a sapro-
phytic yeast, commonly colonizes various human regions such as the skin, respiratory tract,
and gastrointestinal tract. It has the potential to induce local or disseminated diseases,
known as geotrichosis, particularly affecting immunocompromised individuals. Similarly,
P. kudriavzevii, an emerging fungal nosocomial pathogen, predominantly affects immuno-
compromised patients and those with hematological malignancies. Notably, it exhibits
inherent resistance to fluconazole, a standard antifungal medication [30,33].

4.5. Measures against Fungal Invasion of PKC

The presence of mycotoxins and pathogenic fungi often stems from inadequate stor-
age conditions in food products. Factors such as high humidity, tropical climates, and
insufficient infrastructure create conducive environments for mycotoxin-producing fungi
to proliferate [8]. To mitigate fungal growth on PKC, a cattle feed, it is imperative to store it
in dry, cool, and well-ventilated conditions while regularly monitoring for signs of fungal
development. Maintaining the moisture content of the cake below levels conducive to
fungal growth is essential. Exploring natural or chemical fungicides to impede fungal
growth is an option, although biological control methods are preferred due to their minimal
environmental impact and reduced reliance on pesticides. A notable finding in this research
is the identification of three fungi thriving on PKC that exhibit antifungal properties. [43,44].
Further investigation could explore the potential introduction of Candida species into the
substrate before storage as a strategy to counter the proliferation of mycotoxin-producing
fungi [43,45]. Concerning the laws and rules made by authorities to fight the spread of
mycotoxins in animal feed, we suggest conducting regular studies that determine the levels
of mycotoxins and the presence of mycotoxin-producing fungi in animal food. It is crucial
to put these measures into action quickly to reduce the risk of mycotoxins contaminating
human food through animal feed.

5. Conclusions

The primary objective of this study was to utilize microbiological and molecular
techniques to identify the orange-yellow fungus growing in the storage areas of palm
kernel cake. Through this effort, the research established a robust method for detecting
and monitoring fungi that may produce harmful substances known as mycotoxins. This is
especially vital in tropical settings like Ecuador where palm oil is cultivated and where the
access to analytics techniques such as HPLC is poor.

Our findings revealed that this alarming-colored fungus does not produce mycotoxins.
Furthermore, we demonstrated that we can cultivate, identify, and exclude mycelium
growth or spores as mycotoxin-producing species using simple microbiology and molecular
methods. All three species that we isolated possess antifungal properties, rendering them
potential candidates for biological control strategies against pathogenic fungi [27], and
of course considering the potential pathogenic risks for humans associated with some
of them.

PCR-based detection of mycotoxin-producing fungi was considered a valid method.
Numerous diagnostic PCR-based technologies, as reviewed in reference [46], are now
available for detection in complex food and feed matrices. Compared to other conventional
methods of fungal identification, PCR-based detection technologies offer greater accuracy,
sensitivity, rapidity, cost-effectiveness, safety, and portability for detecting toxigenic fungi
in food and feed matrices. In the future, we can develop a technique as described in
reference [19], where a multiplex polymerase chain reaction (PCR) strategy was established
for rapid identification of mycotoxigenic fungi by detecting fungal species containing
species-specific and mycotoxin metabolic pathway genes.
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Additionally, we recommend cattle farmers to take measures to prevent the prolifer-
ation of microorganisms in cattle feed. This concern is particularly significant due to the
potential transmission of mycotoxins to humans through the food chain if cattle become
infected. Storage in dry, cool, and well-ventilated conditions and regularly checking for
signs of fungal growth are vital [47].

6. Limitations of This Study

This study has some limitations. It is possible that certain fungi were not success-
fully cultivated on SDA, potentially leading to the omission of pathogenic or mycotoxin-
producing fungi. To gain a more comprehensive understanding of the fungal presence
in PKC, employing various selective fungal culture media such as malt extract, brain
heart infusion medium, and chromogenic agar could provide a more precise enumera-
tion of fungi. Additionally, this approach could aid in distinguishing colonies that share
similar appearances.

We acknowledge that our study may not have detected all fungi present on the sub-
strate, and it is possible that some mycotoxin-producing fungi were not directly observable.
However, our findings provide assurance to farmers that this specific orange-yellow fungus
does not produce mycotoxins, thus offering valuable insights for agricultural practices and
food safety.

For the direct detection of multiple fungus species with PCR, we tried to conduct
direct PCR using ITS primers on a DNA sample extracted from PKC. Unfortunately, gel
analysis did not yield distinctly separated bands, and subsequent sequencing of the product
revealed overlapping sequences from various species. To address the challenge of detecting
mycotoxin-producing genera in PKC, one potential solution could be the development
of a multiplex PCR approach. This method, akin to the one we devised and utilized for
Prototheca species [48], involves tailored primers designed for the four genera known to
produce mycotoxins. Implementing such a technique holds promise for facilitating the
direct detection and identification of fungal growth in PKC in future investigations.

Moreover, another restriction of this research relates to the reliance on endpoint PCR
and Sanger sequencing of a fragment of the ITS region from a limited number of cultivated
fungi or their spores for species identification. This methodology does not permit the
identification of the entire fungal community [49,50]. Next-generation sequencing (NGS)
offers novel methods for detecting fungal communities, surpassing microbial culture-
based methods. However, due to its associated costs, NGS remains beyond the reach of
most laboratories. In light of this challenge, we encourage the enhancement traditional
techniques, such as those employed in this study, to provide a cost-effective alternative for
identifying primary mycotoxin-producing fungi.
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