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Abstract: Certain microalgal species can grow with different trophic strategies depending on the
availability of nutrient resources. They can use the energy from light or an organic substrate, or
both, and can therefore be called autotrophs, heterotrophs, or mixotrophs. We recently isolated a
microalgal strain from the microplastic biofilm, which was identified as Auxenochlorella protothecoides,
AS-1. Strain AS-1 grew rapidly in bacterial culture media and exhibited different growth rates and
cell sizes under different trophic conditions. We compared the growth performance of AS-1 under
the three different trophic modes. AS-1 reached a high biomass (>4 g/L) in 6 days under mixotrophic
growth conditions with a few organic carbons as a substrate. In contrast, poor autotrophic growth
was observed for AS-1. Different cell sizes, including daughter and mother cells, were observed under
the different growth modes. We applied a Coulter Counter to measure the size distribution patterns
of AS-1 under different trophic modes. We showed that the cell size distribution of AS-1 was affected
by different growth modes. Compared to the auto-, hetero- and mixotrophic modes, AS-1 achieved
higher biomass productivity by increasing cell number and cell size in the presence of organic
substrate. The mechanisms and advantages of having more mother cells with organic substrates are
still unclear and warrant further investigations. The work here provides the growth information of a
newly isolated A. protothecoides AS-1 which will be beneficial to future downstream applications.

Keywords: trophic mode; cell size; Coulter counter

1. Introduction

Microalgae are important primary producers in the ecosystem. Microalgae have
gained a lot of attention recently because they can produce valuable products that have
variable applications (i.e., nutrient supplements, animal feeds, biofertilizers, cosmetics,
renewable energy, etc.) [1–3]. To achieve high algal biomass, fast-growing algae are usually
preferred for industrial processes. Understanding the growth performance of microalgae is
essential to their biotechnological applications. Some microalgae can grow auto-, hetero-,
or mixotrophically depending on the availability of inorganic and organic carbon [4–6].
For example, microalgae such as Chlorella vulgaris [7], Dunaliella salina [8], and Scenedesmus
obliquus [9] are able to use carbon dioxide to make organic carbon through photosynthesis
and can also assimilate organic carbon to support their growth. They can assimilate
organic carbon for heterotrophic growth in dark environments and grow mixotrophically if
additional light is provided.

Usually, the mitosis of eukaryotic microalgae happens as binary fission when a single
cell (called the mother cell) is divided into two cells (called the daughter cell) [10–12].
However, among eukaryotic microalgae, another mechanism called multiple fission (or
multi-fission) that produces more than two daughter cells (or autospores) can also hap-
pen [11,13–15]. In this case, mother cells may contain multiple daughter cells and increase
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in size before they release daughter cells [15,16]. Because of this nature, microalgal cells
with different cell sizes can be produced under different nutrient environments [12]. It
has been reported that the size structure of a microalgal population can be affected by its
physiological status [17–22]. In reality, a microalgal culture consists of cells in different cell
cycles with different sizes. Solely considering the population as having individual cells with
the same growth rate, biochemical composition, and metabolism cannot reflect the situation
behind growth [23]. Therefore, characterizing growth and cell size distribution will deepen
our understanding of the growth performance of microalgae in different environments.

Microscopic observation is a traditional way to observe cell morphology and quantify
cell number. When many samples are involved, counting cells, and measuring their size
using microscopes can be tedious and time-consuming. Moreover, the complexity of
different cell proliferation phases also hinders the microscopic analysis of its cell size
distribution [24]. The Coulter counter is a different electronic counting method that was
developed for counting blood cells. However, the technology has also been widely used
for counting microalgal cells [25–28]. This electro-sensing area approach measures the
impedance pulses produced by particles suspended in an electrolyte solution while passing
through a small pore in a glass tube [29,30]. The proportional relationship between the
impedance pulses and particle volume provides instrumental information about the particle
volumes and numbers with high intrinsic precision based on large counting numbers.

Recently, a new microalgal strain was isolated accidentally in our laboratory when we
isolated bacteria from the biofilms growing on microplastic samples [31]. This algal strain
grows rapidly on bacterial culture medium and grows under light incidence, suggesting
that this algal strain has the potential to perform auto- and heterotrophic growth. In this
study, we first identified this algal strain based on its 18S rRNA-ITS1-5.8S rRNA-ITS2
operon sequence. We then compared the growth performance of this algal strain under
auto-, hetero-, and mixotrophic conditions. Additionally, we applied a Beckman-Coulter
Multisizer 4e analyzer to monitor the change in cell size of this algal strain under these
three different growth modes. The algal strain was identified as A. protothecoides AS-1.
Interestingly, different cell size distribution patterns were observed for this alga when it
was cultivated under auto-, hetero-, and mixotrophic conditions, respectively.

2. Materials and Methods
2.1. Isolation of Green Algal Strain AS-1

Strain AS-1 was isolated from microplastic beads incubated in the Baltimore Inner
Harbor (39◦17′11.05′′ N, 76◦36′22.77′′ W) during an incubation study of microplastics [31].
Microplastic beads with green spots can be seen after the incubation (Figure S2). The
original intention was to isolate heterotrophic bacteria from microplastic biofilm [31]. A
dark green colony appeared quickly upon inoculation and was purified multiple times on
the R2B agar plate (Figure 1). The isolate was initially considered as bacteria as it grew
on the heterotrophic medium. It was named strain AS-1 because Ana Sosa first isolated
this strain.
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Figure 1. The phylogenetic relationship between strain AS-1 and other representatives of microalgae
based on the sequences of the 18S rRNA-ITS1-5.8S rRNA-ITS2 operon. The tree was generated by the
maximum likelihood method with 100 bootstrap replicates. The figure on the upper left shows AS-1
colonies on an R2B agar plate. R2B is a bacterial culture medium but AS-1 proliferates quickly on the
R2B medium.

2.2. Identification of Strain AS-1 Based on the Sequence of the 18S rRNA-ITS1-5.8S
rRNA-ITS2 Operon

The sequence of the 18S rRNA-ITS1-5.8S rRNA-ITS2 operon was recovered when the
partial genome of AS-1 was sequenced. The total DNA of AS-1 was extracted using a
modified phenol–chloroform protocol [32]. The purity and quantity of the extracted DNA
were assessed with a NanoDrop Spectrophotometer ND-1000 (ThermoFisher Scientific, Inc.,
Waltham, MA, USA. The genome sequence was determined using the New-Generation
Illumina MiSeq (Illumina, Inc., San Diego, CA, USA) at the BioAnalytical Services Labora-
tory at the Institute of Marine and Environmental Technology. This sequencing effort was
mainly to sequence the chloroplast genome of AS-1, not the chromosomal genome of AS-1.
Genome data were assembled using SPAdes (Version 3.15.4). The 18S rRNA-ITS1-5.8S
rRNA-ITS2 region of AS-1 was identified from the genome data using the 18S rRNA-ITS1-
5.8S rRNA-ITS2 operon of A. protothecoides SAG 211/8D (Accession number: FR865686.1).
The sequence of the 18S rRNA-ITS1-5.8S rRNA-ITS2 operon of AS-1 was aligned using
MEGA 11 with the available data from the public NCBI nr database based on the BLAST
result. This operon sequence of AS-1 was deposited in the NCBI database under accession
number PP623876. Sequences were trimmed and aligned using the ClustalW method with
MEGA 11. Maximum likelihood trees were constructed with 100 bootstrap values. The
reference sequences used for the phylogenetic tree construction were retrieved from the
NCBI nr database, and the corresponding accession numbers were included.

2.3. Growth of A. protothecoides AS-1 under Different Trophic Modes

The autotrophic, heterotrophic, and mixotrophic growth of A. protothecoides AS-1 was
tested in BBM (Bold Basal Medium, pH = 7), TSB (Tryptic Soy Broth, pH = 7), and BBM+TSB
(pH = 7), respectively. BBM+TSB was prepared using BBM as a base to prepare TSB
(weighting and adding TSB ingredients to the BBM liquid culture medium). Experiments
were carried out with batch culture in 125 mL baffled flasks. The BBM medium consisted of
the following (g/L): Boric Acid, 11.42; Manganese Chloride • 4H2O, 1.44; Calcium Chloride,
Anhydrous, 18.87; Potassium Hydroxide, 31.0; Cobalt Nitrate • 6H2O, 0.49; Potassium
Phosphate, Dibasic, 75.0; Cupric Sulfate • 5H2O, 1.57; Potassium Phosphate, Monobasic,
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175.0; EDTA, Disodium Salt, 63.61; Sodium Chloride, 25.0; Ferrous Sulfate • 7H2O, 4.98;
Sodium Molybdate, 1.19; Magnesium Sulfate, Anhydrous, 36.63; Sodium Nitrate, 250.0;
Zinc Sulfate • 7H2O, 8.82. The TSB medium consisted of the following (g/L): Tryptone,
17.0; Soytone, 3.0; Dextrose, 2.5; Sodium Chloride, 5.0; Dipotassium Phosphate, 2.5.

A colony of AS-1 from an agar plate was inoculated in 125 mL baffled flasks with
50 mL BBM+TSB medium, and the culture was grown mixotrophically for three days. After
three days of acclimation, 2.5 mL of algal culture was pipetted into each flask containing
50 mL of medium (at about a 5% inoculation rate). The initial Optical Density (OD) at
680 nm was kept at 0.3–0.5 [33]. Flasks with culture were placed in a temperature-controlled
incubator (Eppendorf, Inc., Hamburg, Germany) with a shaking speed of 120 rpm, temper-
ature setting at 25 ◦C, and under continuous white LED lighting at 30 µmol m−2 s−1. Auto-
and mixotrophic cultures were grown under a 16 h light and 8 h dark regime, while het-
erotrophic cultures were grown in the dark. The culture flasks were sealed with breathable
membranes with pores (0.2–0.3 µm) to avoid potential contamination from the air.

2.4. Growth Measurement

Cell growth was monitored by Optical Density (OD) measurement, cell counting, and
dry biomass. Optical Density (OD) at 680 nm was measured using spectrophotometry
DU800 (Beckman Coulter, Brea, CA, USA). Cell counts were performed using the Coulter
counter 4e (Beckman Coulter). The filtration method was employed for cell dry weight
measurement. 5 mL of the sample was filtered through a pre-weighed glass microfiber
filter paper (Whatman GF/C, 1.2 µm) and washed twice with 5 mL of distilled water.
The biomass retained on the filter paper was dried overnight at 100 ◦C. After cooling, the
biomass dry weight was calculated based on the weight difference before and after filtration.
For cell size measurement, 4 mL of samples were collected, fixed with 0.5% glutaraldehyde,
and stored at 4 ◦C.

2.5. Observation of Algal Cells with Light and Fluorescence Microscope

We observed the algal cells using a Zeiss Axioplan microscope under a 100× oil lens
(Oberkochen, Germany), with either light or epifluorescence mode. We also applied SYBR
Green I stain to visualize the algal nuclei. To stain the algal cells, 5 mL of 1% (v/v) SYBR
Green I in TBE buffer (mmol/L: boric acid 90, Tris 40; EDTA 2; pH 7.6) was added to
a 10 mL cell suspension in culture solution; the mixture was incubated in darkness at
room temperature for two hours [34]. Slides were allowed to stabilize for 10 min before
observation. Then, filter set 49 (G365 for the excitation filter, FT395 for the dichroic mirror,
BP450/50 for the emission filter) was used for observation. For light microscope observation,
twenty algal cells per sample were captured randomly using the ZEN 2012 software (Zeiss
Inc., 2013), and their cell sizes were measured. The cell size was calibrated with a micrometer
(American Optical Company, Inc., Buffalo, NY, USA). The average cell diameter with
standard deviation was calculated for each sample (See Supplementary Figure S1).

2.6. Cell Size Measurement with the Coulter Counter

The cell size was measured with a Beckman Coulter Multisizer 4e analyzer using
0.2 mm filtered isotonic II (Beckman Coulter) as the diluent and blank. The samples were
fixed with 0.5% glutaraldehyde and were diluted 10,000 times with filtered IsoFlow Sheath
Fluid (Beckman Coulter), and 500 µL of algal culture was analyzed each time. Particle size
distribution was obtained with a 70 µm aperture, which measured particle size ranging
from 1.4 to 56 µm. Data on cell diameter and density of a peak were obtained with the
software Multisizer v4.03 (Beckman Coulter). Raw data sets were retrieved for plotting size
distribution patterns.
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2.7. Data and Statistical Analysis

The growth data of the algae were processed with GraphPad Prism 9.0 (GraphPad
Software Inc., San Diego, CA, USA) or Excel v2.73 to generate growth curves. Data in
triplicates were expressed as mean ± standard deviation. Student’s t-test and one-way
ANOVA were used in the post hoc analysis of this study. The results were considered
statistically significant if p < 0.05.

3. Results

When we tried to isolate heterotrophic bacteria from the Baltimore Inner Harbor using
bacterial culture medium R2B, a large colony with a dark green color was formed on the
R2B plate. This green isolate, AS-1, also grew rapidly in the R2B liquid medium and
appeared to be eukaryotic microalgae under the light microscope. The sequences of the 18S
rRNA-ITS1-5.8S rRNA-ITS2 operon showed that AS-1 shares the highest sequence identity
(~97%) with three different strains of A. protothecoides CCAP 211/17, CCAP 211-7a, and
CCAP 211/8D). The phylogenetic analysis based on this operon further confirms that strain
AS-1 is most closely related to several A. protothecoides strains (Figure 1). Therefore, we
named the strain AS-1 as A. protothecoides AS-1.

A. protothecoides AS-1 grown under the mixotrophic condition yielded a higher cell
density than those grown under the autotrophic and heterotrophic conditions, based on cell
counts, OD680, and dry biomass data (Figure 2a–c). Autotrophic growth of AS-1 yielded
the lowest cell density. In the first two days, the hetero- and mixotrophic growth of AS-1
appeared to have a similar quick start. However, after day 2, the mixotrophic growth
outperformed the heterotrophic growth. AS-1 can reach more than 4 g/L biomass (dry
weight) in 6 days (Figure 2c) and 1.6 × 108 cells/mL on day 3 (Figure 2a). In terms of
photosynthetic efficiency, the mixo- and autotrophic cultures shared a similar pattern, but
the heterotrophic culture had a downward trend after day 3 (Figure 2d).
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Figure 2. The growth performance of A. protothecoides AS-1 under auto-, hetero-, and mixotrophic
growth conditions in 6 days. (a) Cell density of A. protothecoides AS-1 measured by the Beckman
Coulter Counter. (b) Optical Density (OD) at 680 nm (c) Dry weight. (d) The fluorescence-based
maximum quantum yield for photosystem II (Fv/Fm) of A. protothecoides AS-1.
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During the growth experiment, we observed a certain number of enlarged cells under
all the growth modes (Figure 3). While the majority of AS-1 cells have cell sizes ranging
from 3 to 5 µm in diameter, the size of the large cells ranges from 6 to 10 µm in diameter
(Figure 3). The large cells seem to contain multiple small cells, a scenario similar to the
relationship between mother and daughter cells (see the discussion). Up to 16 small cells
within one large cell were observed. Thus, large cells are identified as mother cells and
small cells as daughter cells (or autospores). It then became interesting to know how the
number and cell size of the mother and daughter cells change at different growth stages
and with different growth modes.
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Figure 3. Microscopic images of A. protothecoides AS-1 under different trophic modes on day 1. The
upper panel images were taken under a light microscope and the lower panel images were taken
using epifluorescence microscopy. Algal cells were stained with SYBR Green I to better visualize the
nuclei. The autofluorescence of chlorophyll yielded a red color. The scale bars (10 µm) in the upper
panel images apply to all images here.

To understand if different cell sizes occur in different trophic modes and how they
change over incubation time, we used a Beckman Coulter counter to estimate the cell
number and size of AS-1. Different cell size distribution patterns were observed for the
auto-, hetero-, and mixotrophic modes (Figure 4a–c). We defined mother cells as those
with cell diameters ranging from 6 to 10 µm and daughter cells from 2 to 6 µm. Under
the autotrophic conditions, daughter cell populations had a wide cell size range (2–6 µm)
with less distinguishable peaks (Figure 4a). In contrast, AS-1 daughter cells grown under
the hetero- and mixotrophic conditions had an obvious peak at 3.5 µm. More mother
cells (6–10 µm) under the hetero- and mixotrophic conditions were seen compared to the
autotrophic condition (Figure 4a–c). Peak heights and positions changed with incubation
days and trophic modes, suggesting that the cell size of AS-1 varies with nutrient sources
and growth time.

We further calculated the contribution of mother cells to total cell density for the three
different trophic modes over time. At the beginning of the experiment (day 0), mother
cells contributed to 8% of the total cell counts (Figure 5). The percentage of mother cells
increased rapidly (up to 14%) on day 2 for heterotrophic and mixotrophic AS-1, while the
percentage of mother cells decreased for autotrophic AS-1 on day 1. On day 3 and 6, the
percentage of mother cells decreased gradually and reached the lowest points for all three
growth modes on day 6 (Figure 5).
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4. Discussion

The algal isolate was identified as Auxenochlorella protothecoides, strain AS-1. A. protothe-
coides (formerly known as Chlorella protothecoides) belongs to the family Chlorellaceae [35].
The subgenus Auxenochlorella within genus Chlorella was created by Shihira and Krauss [36]
and later became a genus Auxenochlorella protothecoides (Krueger), according to Kalina and
M. Puncoch [37]. Interestingly, A. protothecoides has the smallest chloroplast genome of
photosynthetic green algae [38]. It is closely related to another pathogenic colorless alga,
Prototheca wickerhamii, that lives a parasitic life [39]. Our phylogenetic tree based on the
18S rRNA-ITS1-5.8S rRNA-ITS2 sequence supports AS-1 to be classified as A. protothecoides.
A. protothecoides is a facultative heterotrophic microalga and has been considered for use in
biodiesel production as this strain grows fast under heterotrophic conditions [40–42]. In
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addition, Auxenochlorella species have been used to treat sewage because they are efficient
in removing organic carbon and nitrogen, and inorganic nutrients [43–45].

AS-1 achieved high mixotrophic biomass (>4 g/L) when supplemented with 2.5 g/L
glucose. It has been known that a mixotrophic cultivation strategy can achieve higher
biomass [43,46–50]. Heredia-Arroyo et al. [51] used C. protothecoides 249 to achieve high
mixotrophic biomass (>4 g/L) with 15 g/L glucose but with no significant difference with
heterotrophic growth. A. protothecoides SAG 211-7a also achieved similar biomass (>4 g/L)
on mixotrophic conditions with 10 g/L glucose [52]. A. protothecoides can use organic
carbon efficiently [53]. Our results showed that under the mixotrophic mode, AS-1 used
less glucose (2.5 g/L) to gain biomass over 4 g/L compared to earlier studies. This is
probably due to the combined effect of different factors, including the strain of algae, the
C/N ratio of the medium [54], and the possible impact of oxygen supply [55].

Giant cells appear more frequently under hetero- and mixotrophic conditions (Figure 3).
Green algae have the following two fission modes: binary and multiple fission [11,56]. A
classic mother cell undergoing multiple fission (Chlorella ellipsoidea and Chlamydomonas)
is a multi-nuclear cell similar to a ‘cluster’ [11,57]. Therefore, the division pattern of AS-
1 could be similar to that of Chlorella and Chlamydomonas [11,58]. It has been reported
that A. protothecoides growing in both autotrophic and heterotrophic conditions showed
the same division pattern [59]. The increased growth rates can lead to the overlapping
division sequences of multiple fission, resulting in a giant mother cell with more than 2n

daughter cells [59,60]. Therefore, higher growth rates of AS-1 in the hetero- and mixotrophic
conditions lead to more giant AS-1 mother cells compared to the autotrophic condition
(Figure 3). Earlier studies showed that A. protothecoides cells under the heterotrophic growth
are filled with lipid vesicles (more than 50% dry weight) [40,61]. Thus, the enlargement of
AS-1 cells can also partially be attributed to lipid vesicles.

The size distribution patterns of A. protothecoides AS-1 grown under the heterotrophic
and mixotrophic modes are similar to each other, but they are very different from AS-1
grown under the autotrophic mode (Figure 4). The cell size of microalgae can be influenced
by the process of cell division [13,28,56]. The change in algal cell size under different trophic
modes has been previously reported. Chioccioli et al. [62] observed larger Chlorella vulgaris
CCAP 211/11B cells in the culture media supplemented with glucose. Based on the flow
cytometry analysis, Sánchez-Alvarez et al. [63] found that Marinichlorella kaistiae KAS603
preferred maintaining mother cells under nutrient-rich conditions and daughter cells under
nutrient-poor conditions. Based on their microscopic observation, Li et al. [64] noticed that
cells of mixotrophic Asterarcys sp. were larger than those under autotrophic conditions.
Understanding cell size variation during the growth phase is important because cell sizes
affect the nutrient uptake efficiency of algae. Nutrient deprivation conditions seem to
favor the production of small cells as a higher surface-to-volume ratio performs better with
nutrient absorption [63,65], while large cells can store nutrients for more extended periods
due to higher nutrient storage capacity [63,66]. Therefore, different population structures
can be observed in different nutritional environments [58]. We observed that AS-1 grown
under the hetero- and mixotrophic conditions had the highest percentage of mother cells
on the second day, and the proportion decreased in the following days (Figure 5). The
reduced number of mother cells is likely caused by decreased nutrient concentration. The
decrease in AS-1 mother cells under autotrophic growth conditions could be related to the
slow growth of AS-1. The high percentage of mother cells on day 0 is due to the amount of
mother cells carried from the seed culture.

The Coulter counter enabled us to enumerate algal cells with their size information. A
large number of cells with different size ranges can be analyzed quickly with the Coulter
counter, but it does not provide cell images like the microscopic method. On the other
hand, counting cells and measuring cell size using a microscope can be tedious and time-
consuming. To ensure that the cell size measurement based on the Coulter counter is
accurate, we also measured the cell size using the microscopic method. The average
diameter of cells under the microscope is consistent with the average cell size measured by
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the Coulter counter (Figure S1), suggesting that both methods are comparable. Microscopic
results also suggested that some binary fission cells share a similar size to some large
undivided single cells (See Figure 3). Therefore, classifying algal cells into different stages
based on cell size may be biologically inaccurate [11]. To better understand the cell division
(i.e., mother cells vs. daughter cells) or cell morphology of microorganisms, the traditional
microscopic observation still has its value.

5. Conclusions

In this study, we compared the growth performance of our newly isolated microalga,
A. protothecoides AS-1, under autotrophic, heterotrophic, and mixotrophic conditions. AS-1
can achieve high biomass and cell density quickly under mixotrophic growth. We noticed
that AS-1 maintained slow growth under autotrophic conditions. Cells of AS-1 with differ-
ent sizes were observed under different trophic modes under the microscope. Some mother
cells can contain up to 16 daughter cells. The fast growth of AS-1 caused cell enlargement
(mother cells), resulting in more mother cells in the mixotrophic and heterotrophic cultures
on day 2. The reduction in mother cells in the later growth stage could be related to the slow
growth limited by nutrients. We provided a comprehensive study on the growth perfor-
mance and cell size variation of A. protothecoides AS-1 under autotrophic, heterotrophic, and
mixotrophic growth conditions. A. protothecoides is known to have great potential to be used
for wastewater treatment and the development of biofuels and other valuable products.
We will continue to explore the industrial use of this new strain of A. protothecoides.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/microorganisms12040835/s1, Figure S1: A comparison of the average cell
diameter obtained from the Coulter counter Multisizer 4e with data from the light microscope (Based
on 20 cells). Figure S2: The biofilm on microplastics under a light microscope. Greenish-colored
biofilm was observed on the surface of microplastics.
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