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Abstract: Some members of the genus Acanthamoeba are facultative pathogens typically with a
biphasic lifestyle: trophozoites and cysts. Acanthamoeba is capable of infecting the cornea, resulting in
Acanthamoeba keratitis. The cyst is one of the key components for the persistence of infection. Gene
expression during Acanthamoeba encystation showed an upregulation of glutathione S-transferase
(GST) genes and other closely related proteins. mRNA sequencing showed GST, and five genes
with similar sequences were upregulated after 24 h of inducing encystation. GST overexpression
was verified with qPCR using the HPRT and the cyst-specific protein 21 genes as controls. The
GST inhibitor ethacrynic acid was found to decrease cell viability by 70%. These results indicate a
role of GST in successful encystation, possibly by maintaining redox balance. GST and associated
processes could be targets for potential treatments alongside regular therapies to reduce relapses of
Acanthamoeba infection.
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1. Introduction

Acanthamoeba is well known to cause infections in the central nervous system [1,2]
and the cornea [3,4] in humans. The infection of the cornea is called Acanthamoeba keratitis
(AK), and it mainly infects contact lens wearers. There are no specific treatments for
AK. Members of the genus Acanthamoeba usually have a biphasic lifestyle composed of
a vegetative trophozoite and a latent cyst. The cysts are particularly problematic as they
facilitate the persistence of the infection [3].

Acanthamoeba encystation consists of two stages; the first is characterised by autophagy
and the degradation of proteins, and the second involves cyst-specific proteins that are
translated, transforming the organism into a cyst [5]. Several factors have been studied
during Acanthamoeba differentiation, including proteases [5,6], autophagy [7,8], cellulose
synthesis [9], and cyst wall proteins [10,11].

The gene expression of encystation of different protozoa has been researched to better
understand the underlying processes [12]. Acanthamoeba and Entamoeba encystation have
been studied through several methods, including microarrays and RT-PCR [12–15]. Several
authors have suggested that blocking encystation might be the key in dealing with encysting
protozoan infections and their persistence [4,16–18].

In this paper, we identified glutathione S-transferases (GST) and related genes as
factors vital for cyst viability and survival. In 1990, the first GSTs in Acanthamoeba were
identified [19]. As with other organisms, the redox state, in which GSTs play an important
role, is vital for life cycle changes in Acanthamoeba as it has been shown to be in several
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other organisms [19–26]. GSTs have already been studied as potential targets for other
protozoan infections such as malaria [27].

2. Materials and Methods
2.1. Acanthamoeba Cell Culture

Acanthamoeba castellanii T4 strain 53 was used for most of the experiments. Strain
53 was isolated in the laboratory from soil samples collected from Silverburn, Scotland
(55◦49′57.5′′ N 3◦15′41.6′′ W). AX2 media was used for Acanthamoeba axenic cultures. It
consisted of Bacto tryptone (14.3 g/L), yeast extract (7.15 g/L), glucose (15.4 g/L), Na2HPO4
(0.51 g/L), and KH2PO4 (0.486 g/L), with a pH of 6.5.

2.2. Encystation and RNA Extraction

To induce encystation, cultures were washed with PBS and Neff’s encystation media
(NEM) was added. NEM consisted of 0.1 M KCl, 8 mM MgSO4, 0.4 mM CaCl2, 1 mM
NaHCO3, and 20 mM 2-amino-2-methyl-1,3-propanediol, pH 8.8. I. 2-amino-2-methyl-1,3-
propanediol could be substituted with 10 mM Tris-HCl pH 8.0 with similar results [28].
Cells were collected at 4 different timepoints: 0, 24, 48, and 72 h after exposure to NEM.
Once each timepoint was reached, cells were collected, centrifuged (150 g for 10 min), and
washed with Neff’s saline. RNA extraction was performed with QIAGEN RNeasy isolation
kit. RNA quality was tested by observing agarose gels and measuring their purity with
QUBIT RNA BR (Broad-Range) Assay Kit (Thermo-Fisher Scientific, Loughborough, UK).
All of the experiments were performed in triplicates.

2.3. mRNA Sequencing

Libraries were prepared for an automated TruSeq stranded mRNA-seq from total RNA.
The sequencing data generation was made with HiSeq-4000 75PE. These experiments were
carried out by Edinburgh Genomics, The University of Edinburgh. The reference genome
(FASTA and GTF files) from A. castellanii was obtained from ENSEMBL Protists [29]. The
genome was indexed, and the reads aligned using STAR 2.5.3a software [30].

2.4. Differential Expression Analysis

The differential expression analysis was performed using R studio and edgeR [31].
Counts per gene were generated using featureCounts software with reverse stranded
reads [32]. The data was normalised using the trimmed median of M values or TMM [33].
Data was filtered by applying a counts per million (CPM) threshold of 0.1. The disper-
sion was estimated assuming that biological coefficient variation is constant and fitted to
generalised linear models using the quasi-likelihood approach.

The differential expression analysis was performed using Limma’s “makeContrasts”
and “topTags” functions [34]. Differentially expressed genes were found using criteria of a
Log2 fold change (Log2FC) value over 2 and under -2 with an FDR threshold of 0.05.

Later, to select overexpressed genes of interest, we focused on Log2FC genes that
had values over 5. Once selected, hypothetical proteins were searched using BLAST.
Cyst-specific protein 21 (CSP21) was used as a positive control for all encystation profile
experiments [10].

2.5. qPCR Expression Analysis

Sequencing results were verified using qPCR. Primers were developed for GST-
identified genes using HPRT and CSP21 as a control [35]. Primer design was performed
with Primer-BLAST and Primer3Plus [36,37]. Primers focused on the GST gene reported
in the literature (ACA1_116240). Parameters were optimized for Tm between 57 and
59 ◦C, and a length of 75 to 200 bp. Table 1 shows the sequences and characteristics of the
primers used. qPCR was performed using SYBR Green Universal Master Mix from Applied
Biosystems following the manufacturer’s instructions. Cycling conditions included 95 ◦C
for 10 min, followed by 45 cycles of 95 ◦C for 10 s, 60 ◦C for 15 s, and 72 ◦C for 20 s.
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Table 1. qPCR primers and their characteristics.

Gene Sequence (5′-3′) Tm Amplicon Lenght Source or Accesion
Number

GST
F: CAAGTGCTACCCCAAGGAC 57.75

162 bp NW_004457554
R: CCCTTCTCGTCCGGGTAG 58.48

CSP21
F: ACTTTGGCGACAAGGTGTG 58.6

80 bp XM_004337011
R: CGACACGTCGTCCCTCT 58.31

HPRT
F: GGAGCGGATCGTTCTCTG 58.4

201 bp [35]
R: ATCTTGGCGTCGACGTGC 58.4

Data were analyzed using the 2−∆∆CT method [38]. HPRT was used as a calibra-
tion gene, and CSP21 was used as a positive control since it increases expression during
encystment [10,35].

2.6. Glutathione S-Transferase (GST) Inhibitors

Acanthamoeba cultures were grown to confluence. Media were discarded, and cultures
were washed with Neff’s saline. Cultures grown in AX2 media were used as a negative
control, while positive controls were obtained by adding NEM to cultures. The treatments
were created with cultures grown in NEM supplemented with GST inhibitors: etacrynic
acid (25 µM and 250 µM concentrations) and sulfasalazine (100 µM and 1 mM). Three
cultures for each treatment were maintained at room temperature for 72 h. Trophozoite
and cysts were counted in each culture using a haemocytometer. Cyst viability was tested
using the trypan blue exclusion method [39].

3. Results

mRNA sequencing for encystment in Acanthamoeba was performed to identify genetic
factors involved in the process. In total, 13,271 transcripts were analyzed by comparing the
vegetative stage to encystment. Using a Log2FC cut-off of 1, 2026 transcripts were identified
as downregulated during encystment after 24 h, while 1557 were identified as upregulated.
As a control, the expression profile of the CSP21 was studied. CSP21 was upregulated after
24 h with a Log2FC over 5. Transcripts with a similar expression profile with a Log2FC
over 5 were researched. In total, 56 upregulated transcripts were identified with such
characteristics. The selected genes were queried in AmoebaDB. Of the 56 genes, 40 were
registered as hypothetical proteins. BLAST analysis was performed with these hypothetical
genes, comparing the values of identity from the genomic sequence, predicted mRNA,
and predicted protein. From the BLAST results, five protein sequences had identities
with a value over 50% compared to the known “Acanthamoeba glutathione S-transferase,
C-terminal domain containing protein” (ACA1_116240). The Log2FC values of the genes
after 24, 48, and 72 can be seen in Table 2. The data are compared to the values obtained
from the original GST C-terminal domain containing protein and CSP21. The identity
values obtained with BLAST can be seen in Table 3. The five genes are recorded with their
gene IDs from AmoebaDB: ACA1_ 188370, ACA1_247090, ACA1_096640, ACA1_022350,
and ACA1_374130.

After mRNA sequencing, the results were verified using qPCR. The experiments
confirmed the overexpression of GST-related genes after 24 h of inducing encystment. The
results of qPCR can be observed in Figure 1.

The qPCR results confirmed the RNAseq differential expression profile. GST showed
an overexpression fold change of 2.71 after 24 h compared to the control belonging to the
trophozoite stage. The fold change for CSP21 was 6.86.
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Table 2. Log2FC values for hypothetical proteins related to GST c-terminal compared against gene
expression at 0 h. The table includes values for the original glutathione S-transferase C-terminal
domain containing protein and the cyst-specific protein 21 as reference.

Gene_ID Description 24 h 48 h 72 h

ACA1_116240 GST C-terminal domain
containing protein 4.7154 0.4877 0.4623

ACA1_075240 Cyst-specific protein 21 6.5435 3.5723 1.7860

ACA1_022350 Hypothetical protein 8.4458 3.9417 1.4994

ACA1_096640 Hypothetical protein 7.0754 4.2638 1.8371

ACA1_188370 Hypothetical protein 10.0624 6.1620 3.4728

ACA1_247090 Hypothetical protein 7.5066 2.7215 0.8404

ACA1_374130 Hypothetical protein 6.8663 2.5504 0.2569

Table 3. Identity values for the five hypothetical proteins in relation to glutathione S-transferase
c-terminal domain. The values obtained from the predicted protein, the predicted RNA, and the
genomic sequence as obtained from AmoebaDB.

Gene_ID Predicted Protein Predicted RNA Genomic

ACA1_188370 74% 73% 75%

ACA1_022350 NA 75% 75%

ACA1_247090 54% 72% 68%

ACA1_096640 54% 74% 73%

ACA1_374130 79% 81% 79%
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Figure 1. Differential expression of GST (left) and CSP21 (right) after 24 h of encystment stimulus.
Each graph compares treatments at 0- and 24-h, representing fold change in expression; error bars
represent standard error of the mean.

Once genes related to GST were identified, cultures were treated with GST inhibitors.
Trophozoites and encysting cultures were treated with GST inhibitors and incubated for
72 h. Trophozoites did not show any difference in viability after 72 h of incubation with
the inhibitors (data not shown). During encystment, a significant decrease in cell viability
occurred when treating the cultures with GST inhibitors. Both inhibitors reduced cell
viability. Ethacrynic acid showed the largest effect as it lowered viability by 70% of the cells,
while sulfasalazine prevented cyst viability in slightly over 40% of the cysts. The results
can be seen in Figure 2.



Microorganisms 2023, 11, 992 5 of 9

Microorganisms 2023, 11, x FOR PEER REVIEW 5 of 9 
 

 

while sulfasalazine prevented cyst viability in slightly over 40% of the cysts. The results 
can be seen in Figure 2. 

 
Figure 2. Cell viability of cultures encysting with GST inhibitors. Values represent percentage of cell 
viability. Negative control was used as a regular culture with AX2. The positive control is the en-
cysting culture with NEM. EA25: Ethacrynic acid 25 µM. EA250: Ethacrynic acid 250 µM. SS100: 
Sulfosalazine 100 µM. SS1: Sulfosalazine 1 mM. Error bars represent the standard error of the mean. 

4. Discussion 
GSTs belong to a protein family that normally plays a role in normal cell metabolism 

and detoxification by maintaining redox balance. Redox balance and fluctuations have 
been identified as important factors in the life cycle of several organisms such as yeast, 
plants, and mammalian cells [20,23]. Of note is the pronounced up-regulation of genes 
that encode for GST or related proteins in the present study. Biochemically speaking, these 
enzymes have various functions in the detoxification of xenobiotics and defense against 
certain secondary reactive oxygen species (ROS) and lipid peroxidation products and are 
also able to bind and store a variety of compounds such as fatty acids in a non-enzymatic 
�ligandin’ function [40–44]. However, given their function in maintaining the redox bal-
ance in the cell as mentioned before, GST can also exert a documented pro-oxidative func-
tion by depleting the redox capacity of the GSH/GSSG pool, with clear consequences for 
the structural properties of the mitochondrial population in axons [45]. In the present 
study, no genes encoding antioxidant proteins were found to be up-regulated, and in 
some cases were even down-regulated (alternative oxidase, AOX, results not shown); 
thus, a pro-oxidant effect by GSTs might drive Acanthamoeba encystment by promoting the 
fragmentation of mitochondria. Punctate mitochondria are necessary for autophagy to be 
effective in recycling them as they are more readily engulfed by phagophore membranes 
[46–48]. Autophagy induction is a cellular hallmark during encystment of amoebae 
[5,8,49–51]. Other microorganisms also display transitions of mitochondrial morphology 
during certain developmental processes. During the sporulation of Saccharomyces cere-
visiae, pronounced mitochondrial fragmentation takes place [52]. Furthermore, in the fila-
mentous fungus Podospora anserina, it was experimentally demonstrated that mitochon-
drial fission is necessary for allowing ascospores to germinate efficiently [53]. In general, 
the processes of encystment and sporulation might have several biological principles in 
common. 

Previously, Lloyd speculated that preserving redox balance is vital to maintain cell 
viability in Acanthamoeba, and the evidence obtained from inhibiting GSTs during 

Figure 2. Cell viability of cultures encysting with GST inhibitors. Values represent percentage of
cell viability. Negative control was used as a regular culture with AX2. The positive control is the
encysting culture with NEM. EA25: Ethacrynic acid 25 µM. EA250: Ethacrynic acid 250 µM. SS100:
Sulfosalazine 100 µM. SS1: Sulfosalazine 1 mM. Error bars represent the standard error of the mean.

4. Discussion

GSTs belong to a protein family that normally plays a role in normal cell metabolism
and detoxification by maintaining redox balance. Redox balance and fluctuations have been
identified as important factors in the life cycle of several organisms such as yeast, plants, and
mammalian cells [20,23]. Of note is the pronounced up-regulation of genes that encode for
GST or related proteins in the present study. Biochemically speaking, these enzymes have
various functions in the detoxification of xenobiotics and defense against certain secondary
reactive oxygen species (ROS) and lipid peroxidation products and are also able to bind and
store a variety of compounds such as fatty acids in a non-enzymatic ‘ligandin’ function [40–44].
However, given their function in maintaining the redox balance in the cell as mentioned
before, GST can also exert a documented pro-oxidative function by depleting the redox
capacity of the GSH/GSSG pool, with clear consequences for the structural properties of the
mitochondrial population in axons [45]. In the present study, no genes encoding antioxidant
proteins were found to be up-regulated, and in some cases were even down-regulated
(alternative oxidase, AOX, results not shown); thus, a pro-oxidant effect by GSTs might
drive Acanthamoeba encystment by promoting the fragmentation of mitochondria. Punctate
mitochondria are necessary for autophagy to be effective in recycling them as they are more
readily engulfed by phagophore membranes [46–48]. Autophagy induction is a cellular
hallmark during encystment of amoebae [5,8,49–51]. Other microorganisms also display
transitions of mitochondrial morphology during certain developmental processes. During
the sporulation of Saccharomyces cerevisiae, pronounced mitochondrial fragmentation takes
place [52]. Furthermore, in the filamentous fungus Podospora anserina, it was experimentally
demonstrated that mitochondrial fission is necessary for allowing ascospores to germinate
efficiently [53]. In general, the processes of encystment and sporulation might have several
biological principles in common.

Previously, Lloyd speculated that preserving redox balance is vital to maintain cell via-
bility in Acanthamoeba, and the evidence obtained from inhibiting GSTs during encystment
supports this [50]. Encystment in Acanthamoeba begins with the degradation of proteins and
autolysis, such as the partial breakdown of actin in the beginning of the process, producing
several components that need to be eliminated for the continual viability of the cyst [5]. The
inhibition of GST alters the redox balance necessary for viable cysts. In other organisms,
oxidative stress and antioxidants can induce the transcription of GST genes, providing
protection from environmental and chemical factors [54]. Therefore, the anti-oxidative
effects of GST upregulation during the encystment process cannot be ruled out.
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We suggest that GSTs might be interesting targets for the treatment of Acanthamoeba-
mediated infections. As a proof-of-principle, GST inhibitors have been successfully employed
as antiparasitic agents, e.g., for inactivating the malarial parasite Plasmodium falciparum [27]
and disrupting the larval stages of the porcine nodule worm Oesophagostomum dentatum [55].
Furthermore, GSTs in protozoans have been linked to drug resistance [56]. Addition-
ally, thiols and enzymes of redox metabolism, antioxidant enzymes, and encystment
pathways have been suggested as potential drug targets for Entamoeba histolytica,
Acanthamoeba polyphaga, and Naegleria fowlerii [22]. Encystment processes and certain
aspects of drug resistance in different protozoans might have a common evolutionary
ancestor as both are survival mechanisms with similar molecular mechanisms.

Ethacrynic acid has been tested for toxicity and potential use in the eye as it has been
shown to increase the facility of outflow [57]. From this, ethacrynic acid was suggested
as an anti-glaucoma drug and even underwent pre-clinical trials [58,59]. There are some
adverse effects to topical application after prolonged exposure and alternatives have been
researched [60]. However, more studies are required in regard to AK since applications
of ethacrynic acid were stopped for glaucoma after one clinical trial failed to reach the
desired outcomes [61]. One of the problems regarding glaucoma is that drugs have to be
long lasting, which is not necessarily the case for AK infection. Sulfasalazine has been tried
as a potential or actual treatment in different ocular diseases such as anterior uveitis [62,63],
ocular cicatricial pemphigoid [64], and posterior capsule opacification [65].

Although GST inhibitors could be used as treatment, they can be potentially difficult
to establish due to the fact that humans as well as other eukaryotes produce GSTs. As with
many other therapeutic targets, the challenge is targeting the pathogen but not the host [66].
Moreover, enzyme inhibitors never reach 100% efficiency [67]. In this case, ethacrynic acid
was capable of reducing viability by 70%. Developing siRNA to target the specific GSTs
exclusive from Acanthamoeba might be an option.

Additionally, if the aforementioned link between mitochondrial fragmentation and
Acanthamoeba encystment is demonstrated experimentally, the use of inhibitors of the
division process similar to mitochondrial-division inhibitor 1 (Mdivi-1) [68] could be
attractive for testing as treatments for keratitis. Additionally, as GSTs are related to sulphur
metabolism, studies regarding sulphur metabolism, detoxification, and encystment might
be needed as the oxidative detoxification of hydrogen sulphide by A. castellanii has been
reported [69].

To conclude, cysts are the main reason for infection persistence in AK. Therefore, using
GST inhibitors alongside other treatments might provide a synergistic treatment. We have
shown that GSTs play an important role in the encystment process. Here, we propose
inhibiting the effect of GSTs alongside regular therapies against AK to help reduce the
number of relapses of the disease.
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