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Abstract: The Indian Ocean Lineage (IOL) of the chikungunya virus (CHIKV) East/Central/South
African (ECSA) genotype, which originated in Kenya, spread to the Indian ocean and the Indian
subcontinent, and then expanded through Southeast Asia in the previous decade. It carried an
adaptive mutation E1-A226V, which enhances CHIKV replication in Aedes albopictus. However,
the IOL CHIKV of the most recent outbreaks during 2016–2020 in India, Pakistan, Bangladesh,
the Maldives, Myanmar, Thailand, and Kenya lacked E1-A226V but carried E1-K211E and E2-
V264A. Recent CHIKV genome sequences of the Maldives and Thailand were determined, and
their phylogenetic relationships were further investigated together with IOL sequences reported in
2004–2020 in the database. The results showed that the ancestral IOLs diverged to a sub-lineage
E1-K211E/E2-V264A, probably in India around 2008, and caused sporadic outbreaks in India during
2010–2015 and in Kenya in 2016. The massive expansion of this new sub-lineage occurred after the
acquisition of E1-I317V in other neighboring and remote regions in 2014–2020. Additionally, the
phylogenetic tree indicated that independent clades formed according to the geographical regions
and introduction timing. The present results using all available partial or full sequences of the recent
CHIKVs emphasized the dynamics of the IOL sub-lineages in the Indian subcontinent, Southeast
Asia, and Eastern Africa.

Keywords: chikungunya virus; East/Central/South African (ECSA) genotype; Indian Ocean Lineage;
outbreak; molecular clock analysis; mutation; mosquito
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1. Introduction

Chikungunya virus (CHIKV) is a member of the genus Alphavirus, family Togaviridae,
and causes fever, arthralgia, and rash in humans. The viral genome is a single positive-
stranded RNA of 11–12 kb in length consisting of 5′ and 3′ untranslated regions (UTRs)
and two open reading frames (ORFs) of nonstructural proteins nsP1-4 and structural
polyproteins capsid, E3, E2, 6K, and E1. The first CHIKV was isolated during an outbreak
in Tanzania in 1953. Nowadays, CHIKV is phylogenetically classified into three major
genotypes: East/Central/South/African (ECSA), West African (WA), and Asian, named
after the location where these genotypes were first recognized [1]. Asian CHIKV that had
diverged from ECSA once emerged in South Asia in the 1960s and subsequently spread
to Asia [1]. In 2005, CHIKV re-emerged in these regions as the ECSA genotype that was
later referred to as the Indian Ocean Lineage (IOL). The IOL CHIKV caused epidemics
and consequent outbreaks during the last decade. On the other hand, in 2013, an Asian
CHIKV emerged in the Americas, starting from St. Martin in the Caribbean, and spread
through the South and Central Americas. Previously, CHIKV was transmitted mainly
through Aedes aegypti [2]. However, an alanine-to-valine mutation at position 226 within
the E1 glycoprotein (E1-A226V) in IOL CHIKV was shown to increase viral replication
in Aedes albopictus [3]. For this reason, IOL CHIKV might widely spread to where this
mosquito is abundant, particularly Thailand, Singapore, and Malaysia in Asia, and even in
temperate climate countries such as Italy and France in Europe.

However, IOL CHIKV of the most recent outbreaks during 2016–2017 in India, Pak-
istan, and Bangladesh lacked E1-A226V. Instead, they carried two novel mutations, a lysine-
to-glutamic acid mutation at position 211 within the E1 glycoprotein (E1-K211E) and a
valine-to-alanine mutation at position 264 within the E2 glycoprotein (E2-V264A) [4–6]. We
previously reported that the IOL with these mutations clustered to a novel sub-lineage [6].
IOL sub-lineage E1-K211E/E2-V264A shortly spread from Bangladesh to Thailand in 2017,
resulting in outbreaks with tens of thousands of CHIKV-suspected cases. Besides the
above-mentioned countries, IOLs carrying E1-K211E and E2-V264A was reported in Italy
in 2016–2017 [7], Myanmar, and China in 2019 [8], and even in Eastern Africa, including
Kenya, Sudan, and Djibouti in 2014–2019 [9–12].

To understand the diversity and evolution of the current IOL sub-lineage E1-K211E/E2-
V264A, IOL sequences with these mutations were collected in the Virus Pathogen Resource
(ViPR; https://www.viprbrc.org) (accessed on 1 August 2021) [13]. In addition, nearly
whole genome sequences of Maldives CHIKV collected during the outbreak in 2019 [14] and
those of Bangkok CHIKV in 2020 were determined, and then phylogenetic and molecular
clock analyses were performed. In this paper, it is shown that IOL sub-lineage E1-K211E/E2-
V264A emerged around 2008, likely in India, and caused sporadic outbreaks in India in
2010 and Kenya in 2016. After this, the IOL sub-lineage acquired an additional mutation
of an isoleucine-to-valine mutation within E1 (E1-I317V), and it spread widely to several
regions, including the Indian subcontinent, Eastern Africa, and Southeast Asia during
2014–2020.

2. Materials and Methods
2.1. CHIKV Samples

Sixteen existing, previously published CHIKV real-time RT-PCR-positive sera were
obtained from Indira Gandhi Memorial Hospital, the Maldives in 2019 [14,15] and 10 newly
collected, also CHIKV real-time RT-PCR-positive sera in the Bangkok Hospital for Tropical
Diseases in 2020 were used. The study was conducted according to the Declaration of
Helsinki, and ethical approval was obtained from the National Health Research Committee
in the Maldives. The Ethics Committee of the Faculty of Tropical Medicine, Mahidol
University, approved the protocol (Certificate of Ethical Approval No. MUTM 2020-009-01
and 2020-010-01).

https://www.viprbrc.org
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2.2. CHIKV Genome Sequencing

Twenty-five µL of CHIKV positive sera with low viral load (ct above 16) were used
to isolate virus strains in C6/36 cells in order to increase the number of the virus using
the previously described protocol [6]. For genome sequencing, total RNA was extracted
either from cell culture supernatant or directly from the original sera with high viral titers
(ct less than 15) using the QIAamp viral RNA mini kit (Qiagen, Hilden, Germany) and
then subjected to PCR amplification [6]. The library was prepared using an Illumina
Nextera XT kit (Illumina, San Diego, CA, USA), and the paired-end of the 2 × 250 bp
sequencing reaction was conducted using the Miseq platform (Illumina, San Diego, CA,
USA). The forward and reverse short reads were aligned to the reference strain (MF773566
Bangladesh 2017) using the map to reference command in CLC Genomics Workbench soft-
ware version 20 (Qiagen, Aarhus, Denmark). The consensus sequences were extracted and
deposited in the DNA Data Bank of Japan (DDBJ, http://www.ddbj.nig.ac.jp) (accessed on
13 December 2021) with the access number LC664141-LC664166 (Table 1). Newly generated
CHIKV sequences were trimmed at 5′UTR and 3′UTR to obtain the ORFs region with the
untranslated junction region (complete coding sequence; CDS; 11,237 bp). The identities
of nucleotides and amino acids of the CHIKV ORFs and the corresponding nonstructural
and structural protein sequences, respectively, were determined using compute distance in
Mega version 11 [16]. The sequence similarity to CHIKV in the database was examined
in the NCBI Blastn suite [17]. To determine genotypes of our newly obtained CHIKV, the
maximum likelihood (ML) tree of our sequences, the reference sequences of WA, Asian,
ECSA, IOL, and the related sequences from Blast results, were constructed in IQ-TREE [18]
(Supplementary Figure S1).

Table 1. List of CHIKV sequences in the present study.

Strain Collection Date Location Sample Type Passage History Accession No.

MLD19-01 30 March 2019 Maldives isolate C6/36 LC664141
MLD19-06 31 March 2019 Maldives isolate C6/36 LC664142
MLD19-09 30 March 2019 Maldives isolate C6/36 LC664143
MLD19-20 24 April 2019 Maldives isolate C6/36 LC664144
MLD19-22 1 April 2019 Maldives isolate C6/36 LC664145
MLD19-27 3 April 2019 Maldives isolate C6/36 LC664146
MLD19-37 7 April 2019 Maldives serum no passage LC664147
MLD19-39 4 April 2019 Maldives isolate C6/36 LC664148
MLD19-40 April 2019 Maldives isolate C6/36 LC664149
MLD19-47 10 April 2019 Maldives isolate C6/36 LC664150
MLD19-53 14 April 2019 Maldives isolate C6/36 LC664151
MLD19-68 19 May 2019 Maldives isolate C6/36 LC664152
MLD19-70 May 2019 Maldives isolate C6/36 LC664153
MLD19-71 May 2019 Maldives isolate C6/36 LC664154
MLD19-72 18 June 2019 Maldives isolate C6/36 LC664155
MLD19-77 2 August 2019 Maldives serum no passage LC664156

BHTD20-WM05 29 June 2020 Bangkok, Thailand isolate C6/36 LC664157
BHTD20-WM14 21 July 2020 Bangkok, Thailand isolate C6/36 LC664158
BHTD20-WM19 4 August 2020 Bangkok, Thailand isolate C6/36 LC664159
BHTD20-WM27 19 August 2020 Bangkok, Thailand serum no passage LC664160
BHTD20-WM29 20 August 2020 Bangkok, Thailand isolate C6/36 LC664161
BHTD20-WM34 26 August 2020 Bangkok, Thailand isolate C6/36 LC664162
BHTD20-WM37 28 August 2020 Bangkok, Thailand serum no passage LC664163
BHTD20-WM40 8 September 2020 Bangkok, Thailand serum no passage LC664164
BHTD20-WM44 13 September 2020 Bangkok, Thailand serum no passage LC664165
BHTD20-WM48 25 September 2020 Bangkok, Thailand serum no passage LC664166

2.3. Data Collection and Phylogenetics

The CHIKV sequences were collected using the ViPR database by filtering the geog-
raphy and time option as the retrieval date of August 2021 [13]. Genbank was also used

http://www.ddbj.nig.ac.jp
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to trace the publication of the sequences and the PopSet data of the studies. To analyze
the presence or absence of the mutations at E1-211, E1-226, and E2-264, 765 IOL CHIKV
nucleotide sequences (Supplementary Table S1) covering at least the E2 to E1 region were
aligned and translated to amino acids using AliView v1.26 [19]. In order to mitigate possi-
ble temporal inference localization errors in the spatiotemporal analyses using a Bayesian
phylogenetic methodology, the sequences retrieved from the ViPR database were curated
by the following criteria: (1) IOL sequence with E1-K211E and E2-V264A representing
multiple geographical regions collected from 2010 to present or the earliest IOL strains
in 2004–2005 [1] and their descendant strains collected from 2004 to 2010; (2) sequences
covering at least 10,000 bp of CDS region; (3) sequences after removal of the laboratory
strains, those with ambiguous nucleotides, or duplicated ones detected by the ML tree
analysis and TempEst v1.5.3; (4) sequences after removal of the recombinant screened using
GARD [20]. After the curation, the dataset of 271 IOL CHIKV CDS sequences (26 of these
were generated in the present study, and the others were collected from the public database,
Supplementary Table S3) was finally prepared, and the initial ML tree was constructed
using IQ-TREE [18]. The evolutionary temporal signal of the dataset was further inspected
in TempEst v1.5.3 prior to the molecular clock analysis (Supplementary Figure S2). The
time-scaled tree for the IOL CHIKV sequences was reconstructed using a Bayesian Markov
chain Monte Carlo (MCMC) method provided in the BEAST package v1.10.4 under GTR
+ F + I + G4 with an uncorrelated lognormal clock and Bayesian Skygrid, as described in
the previous study [6]. The grid point was set at 16. Four independent runs of MCMC
were carried out for 50,000,000 generations each, with sampling every 5000 generations,
and they were checked for convergence and the effective sample sizes in Tracer v1.7.1. All
runs were combined in LogCombiner v1.10.4. Time of the most recent common ancestor
(tMRCA) and its 95% highest probability density 215 (95% HPD) were expressed as a year
and parts per 100 of the year, which was subsequently converted to a respective month.
The maximum clade credibility (MCC) tree was generated using TreeAnnotator v1.10.4 and
visualized in FigTree v1.4.4. The nonsynonymous mutations specific to lineage or clade
were investigated in the alignment of amino acid translation prepared in AliView v1.26. To
investigate the evolution in the E1 region, another ML tree of 962 sequences of E1 retrieved
from the ViPR database was constructed using IQ-TREE (Supplementary Figure S3).

2.4. Selection Analysis

The dataset of 271 CDS sequences of IOL CHIKV was trimmed to two datasets of
the nonstructural polyprotein ORF (7473 bp) and structural polyprotein ORF (3744 bp).
These datasets were used for selection pressure analysis implemented in HyPhy using
four methods: a mixed-effects model of evolution (MEME), fast, unconstrained Bayesian
approximation (FUBAR), single-likelihood ancestor counting (SLAC), and fixed-effect
likelihood (FEL) for the site-specific selection.

3. Results
3.1. CHIKV Obtained in the Present Study

A total of 26 CHIKV sequences of nearly the whole genome, including 16 Maldives
strains from the 2019 outbreak and 10 Thailand strains from the 2020 outbreak, were
generated (Table 1). CHIKV genomes shared a high degree of similarity since the nucleotide
and amino acid identities among Maldives strains were 99.93–99.99% and 99.84–100%,
respectively, while those among Thailand strains were 99.68–99.97% and 99.72–100%,
respectively (Supplementary Table S2). To identify the most similar strain to the newly
obtained virus in the database, each sequence was used in the NCBI Blastn suite. All
Maldives strains showed the highest similarity to an Indian CHIKV collected in June
2019 in Kerala, the southern state (MW042255.1), with 99.85–99.88% nucleotide identities.
On the other hand, the Bangkok strains BHTD20-WM05, 14, and 19 were most closely
related to the 2019 strains from Bangkok and its neighboring city Samut Sakhon (LC802269
and MT495608, respectively) with 99.85–99.95% nucleotide identities; BHTD20-WM34
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and 37 were most closely related to a Southern Thailand strain 2018 (MK468801) with
99.88–99.93% nucleotide identities. Interestingly, the remaining Bangkok strains BHTD20-
WM27, 29, 40, 44, and 48 showed the highest nucleotide identities (99.89–99.91%) to
the Chinese CHIKV returned from Myanmar in 2019 (MT668625). All newly obtained
CHIKV sequences were genotyped as ECSA and belonged to IOL with the related strains
from neighboring areas (Supplementary Figure S1). In addition, the obtained CHIKV
sequences from the Maldives and Thailand carried the mutations E1-K211E and E2-V264A
(Supplementary Table S1).

3.2. Distribution of Indian Ocean Lineage Carrying E1-K211E and E2-V264A of CHIKV ECSA

To determine the distribution of novel mutations of E1-K211E and E2-V264A, CHIKV
nucleotide sequences available in the ViPR database retrieved on 1 August 2021 were
investigated. Seven hundred and sixty-five IOL CHIKV sequences covering at least the
E2 to E1 region were analyzed. Among them, 427 showed the presence of E1-K211E and
E2-V264A (Supplementary Table S1). In Table 2, the earliest detection of E1-K211E and
E2-V264A mutation was observed in November 2009–January 2010 in Singapore and India.
Initially, the detection of this variant was limited within these two countries during the
period of 2009–2013. Although the Singapore strain MH647212 was the earliest strain with
E1-K211E and E2-V264A, the majority of Singapore strains in 2010–2012 were sporadic
and imported cases [21]. On the other hand, the Indian strains were reportedly associated
with local outbreaks, particularly those in the northern part, with the highest number of
sequences recorded in 2010 [22]. Later, IOL sub-lineage E1-K211E/E2-V264A was first
detected in the new region, particularly Kenya, in 2014–2015 and continually observed until
2018. In 2016, the number of reported IOL sub-lineage E1-K211E/E2-V264A sequences
increased substantially in India and was subsequently found in neighboring countries
such as Pakistan in 2016–2017 and Bangladesh in 2017, where massive outbreaks were
reported in those years. The distribution of the IOL carrying E1-K211E and E2-V264A
became remarkable in 2018–2019 when this IOL was widely reported in multiple regions
and countries, including the south of the Indian subcontinent (Maldives), Africa (Sudan,
Djibouti), Southeast Asia (Myanmar, Thailand, and Malaysia), and East Asia (China and
Taiwan). Consequently, local transmission occurred in many of these regions. Additionally,
the coincidence of this IOL new sub-lineage in non-endemic countries was frequently
reported during the peak of sequence detection in epidemic countries (Table 2).

3.3. Evolutionary Dynamics of the Indian Ocean Lineage of CHIKV ECSA

To investigate the evolution of IOL ECSA of CHIKV in 2004–2020, a dataset of nearly
full length 271 CDS was constructed, which consisted of sequences from the earliest IOL
strains detected in coastal Kenya and Comoros in 2004 [23] to the recent outbreak in 2020,
covering all the geographic regions of IOL CHIKV epidemics including Africa, the Indian
subcontinent, Southeast Asia, East Asia (Myanmar and Thailand border of China), and
Europe (Italy and France). The dataset exhibited a strong positive correlation between
genetic divergence and sampling time (R2 = 0.91) (Supplementary Figure S2). The time-
scaled MCC tree inferred in BEAST showed the evolutionary dynamics of IOL sub-lineages
of CHIKV ECSA across the countries surrounding the Indian ocean over time (Figure 1).
The tree topology showed two major spreads of the IOL. The tMRCA for the first spread
was November 2002 (2002.88) with an interval of December 2001–February 2004 (95%
HPD of 2001.98–2004.10). The long tMRCA interval reflected the small number of genome
sequences collected at this period. The earliest IOL originated from coastal Africa (Kenya
HQ456254 and HQ456255) and was separately introduced to the Indian Ocean and Indian
subcontinent. IOL strains that circulated in the Indian subcontinent descended to several
clades, such as Southeast Asian and Italian clades. On the other hand, the second major
spread of the IOL was associated with E1-K211E/E2-V264A, forming a monophyletic clade
distinct from the previously spread IOL. This new IOL sub-lineage emerged in December
2007 (2007.97) with an interval of April 2007–September 2008 (95% HPD: 2007.26–2008.74)
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by the basal sequence of the sub-lineage observed in India and was re-introduced not
only to the same regions, as in the previous spread in Southeast Asia, but also to Eastern
Africa. Furthermore, IOL sub-lineage E1-K211E/E2-V264A later diverged into two distinct
clades in February 2012 (2012.12) with an interval of April 2011–January 2013 (95% HPD:
2011.32–2013.04), with a posterior probability (pp) support at 1.

Table 2. Number of CHIKV sequences with E1-K211E and E2-V264A by region/country and year
of collection.

Year
Local Strain Travel-Associated Strain

Region Location Region Reported Country (Origin Country)

2009 Southeast Asia Singapore * 1 (1)

2010 Indian subcontinent India 20 (15) Europe France (India) 1 (0)
Europe France 1 (0) East Asia China (India) 4 (4)

Southeast Asia Singapore * 4 (4)

2011 Indian subcontinent India 8 (5)
Southeast Asia Singapore * 2 (2)

2012 Indian subcontinent India 16 (10)
Southeast Asia Singapore * 3 (3)

2013 Indian subcontinent India 6 (6)
Southeast Asia Singapore * 2 (2)

2014 Indian subcontinent India 4 (4)
Africa Kenya 2 (2)

2015 Indian subcontinent India 5 (5)
Southeast Asia Singapore * 1 (1)

Africa Kenya 1 (1)

2016 Indian subcontinent India 27 (27), Pakistan 8 (7) Pacific Australia (India) 1 (1)
Africa Kenya 15 (12) East Asia Hong Kong (India) 2 (2)

2017 Indian subcontinent India 4 (4), Pakistan 5 (1),
Bangladesh 37 (37) East Asia China (Pakistan) 1 (1), (Bangladesh) 2 (2)

Africa Kenya 5 (5) Pacific Australia (Bangladesh) 1 (1)
Europe Italy 10 (10)

Southeast Asia Singapore * 1 (1)

2018 Indian subcontinent India 2 (2) Europe Slovenia (Thailand) 1 (1)
Africa Kenya 19 (19), Sudan 80 (80)

Southeast Asia Thailand 15 (15)

2019 Indian subcontinent India 1 (1), Maldives 16 (16) Pacific Australia (Thailand) 1 (1)

Africa Djibouti 1 (1) East Asia
China (Myanmar 10 (10), Thailand 1 (1))
Taiwan (Myanmar 7 (0), Thailand 4 (0),

Malaysia 1 (0))
Southeast Asia Thailand 29 (29) Europe Finland (Thailand) 2 (2)

East Asia China 7 (7), Taiwan 8 (0)

2020 Southeast Asia Thailand 21 (21)

The numbers in brackets indicate those with the whole genome sequences, * Asterisks indicate suspected travel-
associated strains.
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Indian subcontinent/Southeast Asian clade are indicated in the right bracket. Triangular clades
represent collapsed sequences indicated to the right. The branch color corresponds to the geographic
region indicated. The timescale in years is shown on the x-axis at the bottom. The amino acid
mutations specific to each lineage are shown on the right, and the color corresponds to the amino
acid indicated below.

3.3.1. The Emergence of IOL Sub-Lineage E1-K211E/E2-V264A

Our molecular clock analysis suggested that the IOL emerged in the Indian subconti-
nent in September 2004 (2004.73) with an interval of June 2004–February 2005 (95% HPD:
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2004.48–2005.10), then spread and circulated in India, Sri Lanka, and Bangladesh, subse-
quently descended to the new clades, and was distributed to wider geographic regions.
The tMRCA for the Southeast Asian clade, including sequences from Singapore, Malaysia,
Thailand, Laos, and Cambodia, was estimated to be July 2007 (2007.50) with an interval
of February–November 2007 (95% HPD: 2007.16–2007.88), whereas that for the Italian
clade was July 2006 (2006.52) with an interval of February 2006–January 2007 (95% HPD:
2006.14–2007.0). During the first emergence of the IOL, the remarkable adaptive muta-
tion E1-A226V was identified as it enhanced IOL CHIKVs replication in Aedes albopictus.
Co-circulation of the IOL E1-A226V variant with E1-226A virus was primarily observed
in the Indian Ocean clade and the South Asian clade during 2005–2013 (Figure 2). The
circulation of the IOL E1-A226V variant was predominant in the Southeast Asian clade and
the Italian clade, whereas in India, a sporadic outbreak of the IOL E1-A226V variant and
E1-226A virus continued through 2006–2014. The investigation of CHIKV sequences in the
database showed that the sequence presenting E1-A226V was totally absent from India in
2014 (Supplementary Table S1).
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Figure 2. An enlarged view of the IOL MCC tree showing the root IOL and the early IOL sub-lineage
E1-K211E/E2-V264A corresponding to the dotted square region of the top-left inset of reduced
Figure 1B. Root and sub-lineage E1-K211E/E2-V264A of IOL with the most recent common ancestor
(tMRCA) and 95% highest probability density (95% HPD) are indicated by arrows. The numbers of
posterior probability (PP) support and amino acid substitutions are shown adjacent to the ancestral
key nodes. The IOL variants are indicated in brackets. The yellow circle indicates the key node of IOL
clades. The IOL clade, tMRCA, and 95% HPD are indicated in brackets. The branch color corresponds
to the geographic region indicated. The timescale in years is shown on the x-axis at the bottom. The
amino acid mutations specific to each lineage are shown on the right, and the color corresponds to
the amino acid indicated below.

Since 2010, the proportion of E1-K211E/E2-V264A in the background of E1-226A
has increased year by year (Table 2). As described above, E1-K211E/E2-V264A IOL was
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first detected in November 2009 in Singapore, but the majority of strains reported in
Singapore in 2009–2012 were either sporadic or imported strains [21]. In the same period,
E1-K211E/E2-V264A IOL was also detected in India in January 2010 [22]. Among E1
sequences, the mutation E1-K211E was initially observed in Puducherry, the southern
state of India, in 2006 [24]. Since there was an insufficient number of full sequences
but a sufficient number of E1 sequences from India before 2010, another phylogenetic
analysis was conducted using 962 E1 sequences to investigate the evolution of E1-K211E
(Supplementary Figure S3). The tree topology showed that not only nearly full-length
CHIKV genomic sequences carrying E1-K211E/E2-V264A (Figure 1) but also CHIKV E1
sequences carrying E1-K211E in the background of E1-226A (Supplementary Figure S3)
formed a distinct clade as the new sub-lineage. As described above, the IOL sub-lineage
E1-K211E/E2-V264A emerged in December 2007 (2007.97) with an interval of April 2007–
September 2008 (95% HPD: 2007.26–2008.74). In the early period, the E1-K211E/E2-V264A
IOL evolved into two clades: the India-Kenya clades a (IK-a) and b (IK-b). IK-a consisted of
sequences from India in 2010–2013 that shared a tMRCA in October 2008 (2008.79) with an
interval of April 2008–June 2009 (95% HPD: 2008.30–2009.47, whereas IK-b was a cluster of
Kenyan strains in 2016 shared tMRCA in May 2015 (2015.37) with an interval of December
2014–November 2015 (95% HPD: 2014.96–2015.89). Although IK-b Kenya strains were
most closely related to the Indian strains 2014 (KX619422 and KX619423), they shared
E1-K211E and E2-V264A in common, the long branch between IK-b and New Delhi 2014
suggested possible missing sampling of circulating strains in this gap. In addition, there
were nonsynonymous mutations (nsP1-V139I, nsP2-V793I, E1-I344M, E3-T23S) specific to
the IK-b clade, indicating a unique evolution of the Kenya 2016 viruses [25].

3.3.2. The Expansion of IOL Sub-Lineage E1-K211E/E2-V264A

The expansion of the IOL sub-lineage E1-K211E/E2-V264A was observed in recent
outbreaks after 2015. This new IOL sub-lineage India and Pakistan strains circulating in
2016 spread rapidly to Bangladesh in 2017 and from Bangladesh to Myanmar, Thailand,
and China in 2018–2020. Moreover, this IOL sub-lineage also spread from India to the
Maldives and Kenya, Sudan, and Djibouti in 2014–2019. In Figure 3, the phylogenetic
analyses show that those sequences were clustered to a monophyletic clade at a poste-
rior probability support of 1 and shared the tMRCA at 2012.12, with a substitution rate of
1.22 × 10−3 substitutions/site/year (s/s/y). Besides the mutations E1-K211E/E2-V264A,
this clade shared an additional amino acid substitution of E1-I317V specific to the recent
IOL 2014-2020. The phylogenetic tree in Figure 3 show that IOL sub-lineage E1-K211E/E2-
V264A with E1-I317V independently evolved into two major phylogenetic clades corre-
sponding to different geographical regions, including the Indian subcontinent/Eastern
African clade (IE clade) and the Indian subcontinent/Southeast Asia clade (IS clade), which
were arbitrarily named according to the virus-circulating regions.

The Indian subcontinent/Eastern Africa clade (IE clade) contained viruses from India
2016–2019, Kenya 2014–2018, Sudan 2018, Djibouti 2019, and Maldives 2019. The tMRCA of
this clade was estimated at January 2013 (2013.04) with an interval of June 2012–July 2013 (95%
HPD: 2012.47–2013.58), with a substitution rate of 1.88 × 10−3 (2.86× 10−3–4.51× 10−3) s/s/y.
The IE viruses had C-N79S and E2-A76T as the common amino acid substitutions among
the clade. In addition, there were two distinct subclades within this clade with different
geographic regions of their sampling site: (1) Eastern Africa subclade or (IE-a) and (2)
Maldives subclade (IE-b) that originated in September 2013 (2013.74) with an interval of
July 2013–January 2014 (95% HPD: 2013.52–2014.0) and May 2018 (2018.39) with an interval
of January–October 2018 (95% HPD: 2018.06–2018.77), respectively. The IE-a subclade
contained Kenyan isolates 2014–2018 together with viruses from neighboring countries,
including Sudan in 2018 and Djibouti in 2019. IE-a viruses shared the mutation of E2-M74I.
On the other hand, the IE-b subclade was limited to viruses only from the Maldives collected
in 2019. The most related strain to IE-b was India strain 2019 (MW042255), suggesting that
the new sub-lineage had spread from India to the Maldives, circulating widely to the south
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of the Indian subcontinent. Those sequences shared the unique amino acid mutation of
nsP4-L500S.
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Bangladesh-MK468613-CHRF_0106-2017_06_24

Maldives-MLD19-01-2019

Thailand-MT495608-BK1764-2019_11_06

Kenya-MT526806-KLF_4908-2017_04_03

Kenya-MT380150-322_01_18-2018_01

  India-MK473625-2016_08_26

Kenya-MT380161-232_12_17-2017_12

  India-Rajasthan-EU564335.1-2006

Maldives-MLD19-39-2019

  India-MK473629-2016_10_18

  India-Australia-KY751908.1-IN16C1-2016

Kenya-MT526797-KLF_148987-2018_05_15

Thailand-LC580259-THBKK19_09-2019_10

Bangladesh-MF773566-2017

  India-MK286893.1-MH_Pune1732191-2017
  India-MK286896.1-MH_Pune1732664-2017

  India-MK473628-2016_10_13

Myanmar_China-MN402884-19CHKYN03ZJF-2019_06_28

Thailand-BHTD20-WM44-2020

Thailand-LC580257-THBKK19_06-2019_10

Thailand-MN974219-SK2474_18-2018_07_13

Maldives-MLD19-71-2019

  India-MH124580-IND/2016/DEL/01-2016

Thailand-LC580265-THBKK19_16-2019_10

  Myanmar-China-MT668625.1-TJ/2019/CHIKV-2019

Kenya-MT526807-KLF_3200-2016_01_26

  Pakistan-MF774616-Pakistan_06-2016

Maldives-MLD19-72-2019

China-MW110473-19RL33_2019_-2019_10_06

Bangladesh-LC580242-BGD17_1147-2017_09

  Kenya-HQ456254-2004

China-MT123008-QZ0901_1-2017_09_01

China-MW110472-19RL05_2019_-2019_09_28

  India-MK473621-2016_09_02

India-MG137428-Shivane_CHIK2016-2016_06_29

  Italy-MK120198-Calabria_ISS_977-2017_08_02

Thailand-MN974207-SK2614_19-2019_03_12

Kenya-MT526801-KLF_75443-2015_09_02

Thailand-MN974222-SK2484_18-2018_07_21

India-MW042255-2019_06

Singapore-MH647207-SGEHI41085Y15-2015_10

Bangladesh-LC580240-BGD17_0932-2017_08

Maldives-MLD19-37-2019

  India-MK473627-2016_10_23

  Italy-MH507158-Lazio_INMI2_2017-2017

Maldives-MLD19-27-2019

Thailand-LC580269-THBKK19_21-2019_10

  Thailand-Finland-MN075150.1-2019

China-MW110474-19RL34_2019_-2019_10_06

Maldives-MLD19-22-2019

Kenya-MT380148-226_01_18-2018_01

China-MW110477-19RL51_2019_-2019_10_12

Maldives-MLD19-40-2019

Thailand-BHTD20-WM48-2020

China-MW110476-19RL50_2019_-2019_10_12

  Pakistan-MF774614-Pakistan_04-2016

  Kenya-HQ456255-2004

Bangladesh-MK468617-CHRF_0105-2017_06_21

Bangladesh-LC580244-BGD17_1210-2017_09

Myanmar_China-MN402886-19CHKYN04CZT-2019_07_02

Maldives-MLD19-53-2019

Thailand-BHTD20-WM05-2020

Myanmar_China-MN402892-19CHKYN10ZZN-2019_08_02

Bangladesh_China-MG912993-ZJQZ3-2017_08_30

Thailand-LC580264-THBKK19_15-2019_10

  India-MK473624-2016_10_23

Singapore-MH647184-SGEHI43628Y12-2012_10

  Pakistan-MF774613-Pakistan_01-2016

Thailand_China-MN402883-19CHKYN01LY-2019_05_07

Myanmar-MN402888-19CHKYN09PYINI-2019_08_01

Bangladesh-LC580239-BGD17_0306-2017_07

Thailand-MK468801-TC37-2018_06_27

Kenya-MT526798-KLF_84807-2018_01_12

India-KY057363-119067-2016_08_28

Sudan-MW161455-2018_10

China-MN402891-19CHKYN07LHX-2019_07_30

Bangladesh-LC580249-BGD17_1319-2017_10

Bangladesh-MK468608-CHRF_0071-2017_06_17

Myanmar_China-MN402890-19CHKYN06HYG-2019_07_26

Sudan-MW161456-2018_10

Thailand-BHTD20-WM40-2020

Bangladesh-LC580248-BGD17_1299-2017_10

Maldives-MLD19-68-2019

Kenya-MT526802-KLF_69219-2014_08_20

Singapore-MH647187-SGEHI06410Y13-2013_02

Bangladesh-MK468621-CHRF_0111-2017_07_18

Pakistan_China-MH349097-SMGC_1-2017_04_30

Sudan-MW161366-2018_10

  India_Gujrat-FJ000065-2006

Sudan-MW161367-2018_10

  Italy-MG049915-Lazio_INMI1_2017-2017

China-MT123009-QZ0901_2-2017_09_01

  Pakistan-MF774618-Pakistan_09-2016

  India-MK286897.1-MH_Pune1841379-2018

  Thailand-Australia-MN630017.1-2019

  Italy-MK120200-Calabria_ISS_1028-2017_08_09

Singapore-MH647208-SGEHI23451Y17-2017_06

Indian subcontinent/Southeast Asian clade (IS)
2015.02 
(2014.08-2015.52)

1

region
Eu
SEA
IOL
EA
SA
Africa

2002.5 2005 2007.5 2010 2012.5 2015 2017.5 20202002.5            2005             2007.5            2010             2012.5           2015              2017.5            2020

Indian Ocean Islands

Indian subcontinent 

Africa

Southeast Asia
East Asia

Europe

Regions

E
1-

21
1

E
2-

26
4

E
1-

31
7

2002  2003  2004    2005    2006   2007    2008   2009    2010    2011   2012    2013   2014   2015   2016    2017    2018   2019     2020

Figure 3. An enlarged view of the IOL MCC tree showing IOL sub-lineage E1-K211E/E2-V264A
and E1-I317V of the IOL MCC tree corresponding to the dotted square region of the top-left inset
of reduced Figure 1B. The Indian subcontinent/Eastern African (IE) clade and Indian subconti-
nent/Southeast Asian (IS) clade with the most recent common ancestor (tMRCA) and 95% highest
probability density (95% HPD) are indicated by arrows and the pink- and light blue-shaded boxes,
respectively. The number of posterior probability (PP) support and amino acid substitutions are
shown adjacent to the ancestral key nodes. IOL clades, tMRCA, and 95% HPD are shown in brackets.
The branch color corresponds to the geographic region indicated. The timescale in years is shown on
the x-axis at the bottom. The amino acid mutations specific to each lineage are shown on the right,
and the color corresponds to the amino acid indicated below.
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The Indian subcontinent/Southeast Asia clade (IS clade) was a large monophyletic
clade comprising isolates from India, Pakistan, and Bangladesh in 2016–2017, and Thai-
land, Myanmar, and China (adjacent cities to Myanmar) in 2018–2020. The tMRCA was
estimated at January 2015 (2015.02) with an interval of January 2014–July 2015 (95% HPD:
2014.08–2015.52) with a substitution rate of 6.04 × 10−4 (3.11 × 10−4–9.51 × 10−4) s/s/y.
The analysis suggested an expansion route of IOL sub-lineage -E1-K211E/E2-V264A with
E1-I317V virus that reached the adjacent regions including Pakistan and Bangladesh in the
2016–2017 epidemic from India, especially northern India, particularly Delhi and Maha-
rashtra, located in the south of Delhi. The phylogenetic tree indicated that the IS-a subclade
arose in Pakistan around June 2015 (2015.44) with an interval of February–October 2015
(95% HPD: 2015.15–2015.78) and that the IS-b subclade emerged in Bangladesh in December
2015 (2015.97) with an interval of September 2015–March 2016 (95% HPD: 2015.74–2016.24).
The IS-c subclade was composed of Italian viruses that arose in July 2016 (2016.56) with
an interval of April–October 2016 (95% HPD: 2016.31–2016.83). Additionally, the IS-b
subclade consisted of the descending strains circulating during 2018–2020 in Southeast
Asia, including Thailand, Myanmar, and China (cities adjacent to Myanmar), forming a
clade IS-d separate from the Bangladesh strains. The re-introduction of the IOL to these
regions occurred around May 2017 (2017.34) with an interval of January–August 2017 (95%
HPD: 2017.07–2017.63). Moreover, local transmission in China was observed in the IS-e
subclade. In addition, the IS clade was defined by amino acid mutations of nsP2-E145D
and nsP4-S55N, whereas the IS-d subclade was defined by nsP2-N495S and C-K73R.

3.4. Selection Analyses

The dataset of 271 IOL CHIKV sequences was screened for positive selection using
different individual site models. Seven codon sites were identified under positive selec-
tion by at least two methods (Table 3). Of these, two sites were within nonstructural
polyproteins, codon 171 in nsP1 and codon 665 in nsP2, which corresponded to R171Q and
H130Y. Notably, nsP2-H130Y was observed in viruses of IE and IS clades collected during
2014–2020. Furthermore, five codons were within structural polyproteins in C, E2, 6K, and
E1 (Table 3). In particular, codon 471 with Q146R substitution at E2 showed significant
values by all four methods.

Table 3. Evidence of positive selection on the IOL CHIKV ORFs inferred using individual site models.

Codon
Site

MEME
p < 0.1

FUBAR
pp > 0.9

FEL
p < 0.1

SLAC
p < 0.1

Amino Acid
Substitution Sequences with Derived Amino Acid State

Nonstructural proteins

171 0.00 0.999 0.002 0.006 nsP1-R171Q

Comoros 2005: HQ456252
Italy 2007: MK120202, KX262993

Sri Lanka 2006: AB455493
India 2016: MW321606, MG137428;

2017: MK286893
Kenya 2016: MH423803; 2017: MT380161

665 0.12 0.946 0.095 0.131 nsP2-H130Y

Singapore 2009: MH647212; 2010: MH647214
2012: MH647182, MH647184; 2013: MH647187

India 2014: MW042254; 2015: MK370031
IE clade virus *, IS clade virus *

Structural proteins

24 0.09 0.893 0.069 0.296 C-T24A

Laos 2013: MF076569
Djibouti 2019: MT023791

Thailand 2019: LC580269; 2020:
BHTD20-WM14, BHTD20-WM19
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Table 3. Cont.

Codon
Site

MEME
p < 0.1

FUBAR
pp > 0.9

FEL
p < 0.1

SLAC
p < 0.1

Amino Acid
Substitution Sequences with Derived Amino Acid State

471 0.03 0.995 0.022 0.079 E2-Q146R

Seychelles 2005: AM258991
Bangladesh 2017: MG912993

Kenya 2018: MT526797
Thailand 2019: MN075150; 2020:

BHTD20-WM05

546 0.12 0.965 0.097 0.237 E2-K221R

India 2012: MW581867
Bangladesh 2017: LC580241, LC580244

Thailand 2019: MN075150; 2020:
BHTD20-WM27

795 0.07 0.902 0.061 0.296 6K-A47V
6K-A47G

India 2016: MK473625
Pakistan 2016: MF774613

Singapore 2013: MH647192; 2014: MH647202

813 0.12 0.946 0.093 0.198 E1-V4A

India 2007: EU372006; 2008: GQ428215; 2009:
KT336777

2015: KX619425, KX619424
2016: MK518340, MK551552, MK551553,

MK473628
Bangladesh 2008: FJ807898; 2011: KU365371

Singapore 2013: MH647192; 2014: MH647202
Thailand 2020: BHTD20-WM44,

BHTD20-WM27, BHTD20-WM48

Positive selection site is highlighted in boldface, p = p-value, pp = posterior probability, * Virus clades correspond
to those in Figure 3.

4. Discussion

In the present study, IOL CHIKV sequences with time spanning from 2004 to the
present were analyzed to investigate the evolution of the IOL for a better understanding of
the current IOL genetic diversity. The first emergence of the IOL of CHIKV genotype ECSA
was in late 2002, consistent with the previous studies [1]. Based on the available deposited
sequences in the database, the earliest IOL that originated in coastal Kenya potentially
caused an impact on the spread and transmission over several countries in the Indian
Ocean, Indian subcontinent, and Southeast Asia. Notably, an adapted CHIKV variant
carrying A226V in E1 that enhances viral replication in Aedes albopictus was identified [3].
The IOL-E1-226V variants dominated successfully over other variants, especially where
Aedes albopictus was abundant, such as in Kerala in India in the 2007 outbreak [26]. Conse-
quently, the IOL-E1-226V CHIKV was introduced to Singapore, Thailand, and Malaysia in
2008, resulting in the subsequent outbreaks through 2008–2013. The present investigation
of IOL sequences carrying E1-226V showed that E1-226V was totally absent from India
after 2014 (Supplementary Table S2). Although both IOL E1-226A and E1-226V variants
were detected during the continuous outbreaks in India in 2007–2010, IOL E1-226A was the
major strain at that time [27–30].

After the initial major outbreaks, Indian IOL has retained E1-226A but gained ad-
ditional mutations of E1-K211E and E2-V264A. As described above, the earlier presence
of E1-K211E/E2-V264A IOL was reported in early 2010, particularly in Tamil Nadu, An-
dra Pradesh, and Delhi in India [22,29,31]. The present phylogenetic analysis showed
that E1-K211E/E2-V264A IOL formed a distinct monophyletic clade with high posterior
probability support around 2008, establishing the new sub-lineage of IOL consisting of
the descended clades of IOL 2010–2020 strains (Figures 1 and 2). Notably, the E1 and E2
glycoproteins mediated cell fusion and entry [32]. They formed an E1-E2 heterodimer
on the viral surface [33]. The combination of E1-K211E and E2-V264A mutations was
proposed as the viral adaptation to Aedes aegypti by increasing infectivity, dissemination,
and transmission in this mosquito species [5]. Aedes aegypti was present in several areas
over India instead of Aedes albopictus [34,35]. Evidently, the IOL transmission in India had
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expanded widely, from 13 states in the first emergence in 2005–2006 to 30 states/union
territories in 2019 [35].

In terms of the amino acid variation at 211 in E1 among CHIKV genotypes, an E1-
K211E was observed in the IOL variant in 2006 in Kerala and Puducherry, India [29]. On the
other hand, E1-211E was highly conserved among Asian genotypes in both the Asia lineage
that circulated since 1963 and the Caribbean lineage that emerged recently in 2013. E1-211E
conferred resistance against neutralization activity in human sera [36]. Unfortunately, the
exact beginning of the E2-V264A mutation is unclear since prior to 2010, only the E1 region
was commonly sequenced. However, the earliest E2-V264A appeared possibly in January
2010 in Tamil Nadu as a secondary mutation after the virus acquired E1-K211E since the
combination of the wild type E2-264V and E1-K211E was detected in December 2009 in
Hyderabad, Andhra Pradesh [29]. Vector competence and adaptation were driven where
Aedes aegypti and Aedes albopictus coexisted. The mutation E1-K211E with E2-V264A and
the E1-A226V with E2-L210Q or E2-K252Q enhanced virus fitness in Aedes aegypti and
Aedes albopictus, respectively [5,37,38]. Accordingly, India is supposed to be the origin of the
IOL sub-lineage E1-K211E/E2-V264A. However, it should be noted here that the previous
CHIKV outbreak in India led the national surveillance program, which might have resulted
in more perceptible database deposition of the viral sequences than in other countries,
potentially causing unrecognized influences in our tracing.

At first, the earliest E1-K211E/E2-V264A IOL strain sparsely circulated in Delhi,
Mumbai, and Kerala in India since 2010 [25]. Then, the wide expansion of IOL sub-lineage
E1-K211E/E2-V264A occurred after the virus acquired the mutation of E1-I317V associated
with the later outbreaks. The IOL with these three mutations clustered into the distinct
clade that shared a tMRCA in 2012, while the earliest detection of this clade virus was
around October 2014 in Kerala, the southern state of India [39]. However, the individual
branches, including Singaporean strains [21] and Indian strains [40] observed between
E1-K211E/E2-V264A and E1-K211E/E2-V264A/E1-I317V clusters indicated inadequate
sequence sampling, especially during the inter-epidemic (or inter-outbreak) period during
which IOL variants were possibly diverse.

Shortly after its emergence in 2012, E1-K211E/E2-V264A/E1-I317V IOL separated into
geographically associated clades. In 2013, this variant was introduced to coastal Kenya in
Kilifi and Mombasa in 2014 [41]. Interestingly, the re-emergence of CHIKV in Kenya during
2014–2018 was clearly independent of the Kenya 2016 cluster of IK-b clade in Mandera, the
northern city of Kenya where Aedes aegypti was predominant. Notably, the earliest Kenya
strain collected in 2014 was related to Indian 2016 isolates (MK473627-MK473628) and India
isolate 2014 (MW042254). This IOL variant was also detected in the ongoing outbreaks
in nearby countries Sudan and Djibouti that occurred coincidently with the rise of the
suspected CHIKV infections in other Eastern African countries such as Ethiopia [9–11,42].
Additionally, the genomes of Maldives CHIKV obtained in the present study were related
to Southern India (Kerala and Pune state) and Eastern African strains rather than Northern
Indian subcontinent strains defined by the lineage-specific mutations observed in the IE
clade. On the other hand, the circulation of E1-K211E/E2-V264A/E1-I317V IOL in the
northern parts of the Indian subcontinent was related to CHIKVs in Southeast Asia and
even East Asia, particularly China. The early circulation was detected in Delhi, India, and
Pakistan during 2016. The phylogenetics suggested that this IOL was disseminated to
adjacent countries from Bangladesh to Myanmar, Thailand, and China. Evidently, these IOL
variants were related to the outbreak in Myanmar in 2019, which subsequently contributed
to an outbreak in Yunnan, China [8,43].

Regarding travel-associated CHIKV transmission to remote regions in the non-endemic
area such as East Asia, imported cases were reported in Hong Kong returning from In-
dia in 2016 [44], in Shenzhen, China from Pakistan in 2017 [45], in Zhejiang, China from
Bangladesh, followed by a small cluster [46] in Europe from Thailand [47]. Interestingly, the
introduction of CHIKV to the places with Aedes mosquitos resulted in an autochthonous
case or even a small outbreak [7]. However, it was probably limited by insufficient vector
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availability during the dry season. When ECSA CHIKV invaded Brazil, the virus was
imported from Angola by the index case with a travel history that triggered its sustaining
circulation [48].

The functional role of the lineage-specific mutation E1-I317V is still less known. The
mutation was certainly detected in circulating IOL from 2014 to the present, but there
was no evidence of positive selection pressure on this mutation. The study of in vivo
pathogenesis among CHIKV lineages showed that there was no difference in the swelling
of mouse footpads between the Indian IOL 2010 strain with E1-317I and the Indian IOL
2016 strain with E1-317V [22]. Likewise, a vector competence study comparing Italy 2007
and Italy 2017 strains in Aedes albopictus, the localized vector in Italy, showed that both
had similar infection and transmission rates [49]. In addition, in the large-scale outbreak
of IOL sub-lineage E1-K211E/E2-V264A carrying E1-I317V in Thailand during 2018–2020,
Aedes aegypti was identified as the primary vector, and viral RNA was also found in
another mosquito species, Culex quinquefasciatus [50,51]. In Mombasa, Kenya, these two
mosquito species might have played a role in the outbreak of IOL sub-lineage E1-K211E/E2-
V264A/E1-I317V [41,52]. Whether this mutation has a functional role in viral adaptation to
Aedes aegypti or other mosquito species needs to be clarified by further studies in the future.

The present study characterized the diversity of IOL lineages, especially the current
circulating strains. The limitations of this study are the availability of data and the difficulty
inferring the origin of sequences from the database. Since collection probably placed a
priority on outbreaks and symptomatic patients, fewer viral sequences were deposited
within the inter-epidemic/non-outbreak period. The different sampling strategies or
surveillances in each collection location would also generate biases. To better understand
the dynamics of the IOL, a sampling schema over a wide range of geography, time, and
transmission vectors diversity is important.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/microorganisms10020354/s1, Table S1. Amino acid residues at E1-211, E1-226, and E2-264 in
765 IOL CHIKVs analyzed in the present study. Table S2. Percent nucleotide or amino acid identity of
CHIKV strains obtained in the present study. Table S3. Nearly full length 271 IOL CHIKV sequence
dataset in the present study. Figure S1. Genotype classification of CHIKVs was obtained in the present
study. The maximum-likelihood tree of open reading frames (ORFs) were constructed using GTR+F+I
with 1000 ultrafast bootstrap replications. The Maldives and Thailand sequences obtained in the
present study are labeled with green and blue, respectively. The CHIKV genotypes and a lineage,
East/Central/South/African (ECSA), West African (WA), Asian, and Indian Ocean Lineage (IOL) are
indicated to the right. Bootstrap support values exceeding 85% are shown adjacent to the branch.
Figure S2. Root-to-tip divergence analysis of the dataset of 271 IOL CHIKV CDS sequences. The
regression of root-to-tip divergence against date inferred in TempEst v1.5.3 is shown. The R2 = 0.91
is shown adjacent to the regression line. The x-intercept (tMRCA) was 2003.82. The slope (rate)
was 5.59 × 10−4. The date range was 16 years. The color marker represents the regions indicated
on the right. Figure S3. The Maximum Likelihood tree for 962 E1 sequences (1317 bp) of Indian
Ocean Lineage (IOL) of CHIKV constructed by IQ-TREE under TNe+G4. The combinations of amino
acid variations in E1 K211/A226/I317, K211N/A226V/I317, K211/A226V/I317, K211E/A226/I317,
and K211E/A226/I317V corresponding to the sequence color black, pink, red, green, and blue,
respectively. The number adjacent to the branch indicates the support score of ultrafast bootstrap.
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