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Abstract: In recent years, with the acceleration of urbanization and the frequent occurrence of
extreme weather globally, the risk of urban flood disasters has gradually increased, and its potential
consequences are immeasurable. Therefore, conducting risk assessment of urban flood disasters is of
great significance, as it is one of the foundations and decision-making means for Disaster Prevention
and Mitigation, and has become a hot topic and trend in current research. This paper starts by
exploring the concept and formation mechanism of urban flood disasters, taking Hazard Factors,
Disaster-prone Environment sensitivity, Vulnerability of Exposed Bodies, and Disaster Prevention
and Mitigation Capabilities as primary indicators. Based on this, a risk assessment index system is
established with 14 secondary indicators, such as annual average rainfall, distance to water systems,
elevation, and terrain undulation. The spatialization of each indicator data point is processed through
ArcGIS10.7, and the importance of hazard and sensitivity indicators is ranked using the Random
Forest algorithm. The indicators are then weighted using a combination of the Analytic Hierarchy
Process (AHP) and the entropy method, and the combined weights of each assessment indicator
are calculated. Taking Wuhan City as the research area, the weights of each indicator are input into
the established risk assessment model. ArcGIS spatial analysis techniques and raster calculation
functions are utilized to solve the fuzzy comprehensive evaluation of the assessment model, obtaining
zoning maps of risk levels for hazard, sensitivity, vulnerability, disaster prevention, and mitigation
capabilities, as well as the distribution of comprehensive risk levels. The validity and rationality of
the model results are verified by actual disaster data, providing important reference for urban flood
disaster prevention in the future.

Keywords: flood disaster; risk assessment; ArcGIS; random forest; composite weighting

1. Introduction

Natural disasters, as extremely serious natural phenomena, disrupt ecosystems, lead
to socio-economic instability, and directly impact the balance of supply and demand for
societal resources [1–5]. Flood disasters are an integral component of natural disasters.
Jongman [6] argues that over the past few decades, the losses caused by floods globally
have been escalating, making floods the most frequent and destructive type of disaster
occurring today. To prevent and mitigate the losses caused by disasters, risk assessment is
often employed as a decision-making tool. It is a quantitative method aimed at assessing the
potential impact and extent of losses that a risk event might bring. Delalay [7] developed a
flood risk assessment model that mapped and quantified population vulnerability in the
flood-prone areas of the Sindupalchowk District in Nepal. This model identified areas prone
to urban flooding. Quesada [8] conducted an analysis and classification of 82 cities in Costa
Rica based on the hazard, sensitivity, and vulnerability to floods. They designed a flood risk
index to understand the role of risk-driving factors at the local level. Mokhtari [9] utilized
the Analytic Hierarchy Process (AHP) to integrate multi-criteria data, such as slope, river
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network density, soil type, rainfall, population density, land use type, and drainage system
density, to identify and map flood-prone areas in the Cheliff-Ghrib watershed. Abdrabo [10]
conducted a study in a coastal city in Egypt, where they developed and assessed a urban
flood vulnerability index based on the exposure, susceptibility, and resilience of the city to
urban flooding.

The commonly adopted methods for flood risk assessment can generally be classified
into the following categories: (1) Historical Disaster Records: Using mathematical and
statistical methods, combined with historical disaster records in the area, this approach
involves a thorough analysis of the hazard, characteristics, and probability of disaster
occurrences to better predict future trends [11]. Its calculation method is relatively simple,
but still subject to limitations. Firstly, it requires access to long-term and continuous disaster
information. However, during the information collection process, it is challenging to ensure
consistency, completeness, and authority of the information, making the statistical results
less accurate [12]. Secondly, historical disaster data are typically aggregated over larger
scales, such as administrative regions and river basins, which reduces the applicability
of historical disaster records within specific areas. Benito discussed risk assessment by
studying ancient and historical flood data [13]. Benito [14] discussed risk assessment
by studying ancient and historical flood data. (2) The Index System Approach: Starting
from the mechanism and conditions of disaster formation, this method selects specific risk
indicators and factors in the study area. By processing raw data through mathematical
methods, it constructs a comprehensive evaluation index system to assess the level of risk.
This approach has a wider application scope, convenient data acquisition, and can reflect
the macroscopic characteristics of risk distribution in the area. However, it is subject to
subjective judgment, and the selected indicators vary greatly between regions, leading to
insufficient accuracy [15]. Cai [16] employed the Analytic Hierarchy Process (AHP) with
triangular fuzzy numbers to determine the weights of 11 indicators influencing floods.
They conducted an in-depth exploration of the dynamic risk patterns and hotspots of
precipitation changes to achieve more accurate results. (3) The Remote Sensing and GIS
Integration Approach [17,18]: utilizing satellite remote sensing technology to acquire a
series of disaster-related information, including flood extent, frequency, duration, and
water body data, and integrating GIS data collection and spatial analysis capabilities to
conduct visualized analysis of flood disaster risks.

With the development of artificial intelligence and the arrival of the big data era, statis-
tical learning algorithms can be utilized in conjunction with traditional methods to assess
flood risk. Random Forest is a powerful machine learning algorithm commonly used for
solving classification and regression problems [19]. This method has been applied to predict
disease risk [20], forecast stock market direction [21], land cover classification [22], predict
crop yield [23], and more. Based on the above research, the Random Forest algorithm has
the potential applicability in assessing urban flood disaster risk. By utilizing the Random
Forest algorithm to comprehensively assess various indicators and factors related to flood
disasters, it can provide valuable support for urban disaster risk assessment.

This study constructs an urban flood disaster risk assessment model. It spatially
processes the data of each assessment indicator using ArcGIS10.7. Additionally, it ranks
the importance of hazard and sensitivity indicators using the Random Forest algorithm. It
adopts a combined Analytic Hierarchy Process (AHP) and entropy method to weight the
indicators, obtaining the composite weights of each assessment indicator. Taking Wuhan
City as the research subject, it inputs the weights of each indicator into the established
risk assessment model. Then, it conducts fuzzy comprehensive evaluation and draws
the disaster risk level zoning map on the ArcGIS platform. Furthermore, it validates the
final results based on actual disaster data, demonstrating the scientific rationality of the
constructed indicator system. This study provides valuable insights and reference for
subsequent urban flood disaster prevention measures.
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2. Materials and Methods
2.1. Description of the Study Area

Wuhan is situated in the eastern part of the Jianghan Plain, at the heart of the Yangtze
River Basin [24]. It stretches approximately 134 km from east to west and about 155 km from
north to south, covering an area of 8569.15 square kilometers. With a permanent population
of 13.649 million, it consists of 13 administrative districts. Serving as a vital strategic hub in
the rise of central China, Wuhan’s administrative divisions are depicted in Figure 1. The
Yangtze River flows 145 km within the boundaries of Wuhan, with 60 km flowing through
the urban area. The width of the Yangtze river surface ranges from 1000 m to 1200 m,
reaching up to 3400 m at its widest point. During periods of abundant rainfall and extreme
heavy rain, the water level of the Yangtze River can rise to 27–28 m. Historically, the peak
water level of the Yangtze River in the Wuhan section reached 29.73 m in 1954 and 29.43 m
in 1998. Within the boundaries of Wuhan, the Yangtze River is joined by tributaries such
as Dongjing River, Han River, Fu River, She River, Dao River, and Ju River to the north,
and larger tributaries such as Jinshui River, Xunsi River, and Qingshan Port to the south.
The Han River and Fu River converge with the Yangtze River within the main urban area
of Wuhan. Wuhan city boasts abundant lake resources and is known as the “City of a
Hundred Lakes”. According to statistics from the Wuhan Lake Bureau, there are a total of
166 lakes within the city’s boundaries, with a total water area of 5925.2 square kilometers
and a total water surface area of 779 square kilometers under normal water levels. Among
them, 40 lakes are distributed within the main urban area of Wuhan.
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2.2. Assessment System

Based on the principles of selecting evaluation indicators, we construct a risk assess-
ment model for urban flood disasters from four aspects: the Hazard of Causative Factors,
Vulnerability of Disaster-prone Environment, Vulnerability of Exposed Bodies, and Disaster
Prevention and Mitigation Capability [25–27], we input the data from each indicator layer
into ArcGIS for processing to assess the risk of urban flood disasters.

(1) Hazard of Causative Factors [28]. The main causative factor for urban flood
disasters is typically heavy rainfall, especially under extreme conditions. Therefore, we
use annual average precipitation and distance to water bodies as evaluation indicators
to study the Hazard of Causative Factors. Using the spatial analysis module in ArcGIS,
we downloaded monthly precipitation data for each district in Wuhan from the Chinese
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Academy of Sciences Data Center for the years 2000 to 2020. We filtered and summarized
the data in Excel2021 to calculate the total precipitation for each year by summing the
monthly values. We divided the total precipitation by the number of years to obtain the
annual average precipitation for each district in Wuhan. We saved this vector data and
imported it into ArcGIS to join it with the administrative boundaries of Wuhan’s districts.
We applied kriging interpolation analysis to generate raster data of the annual average
precipitation for Wuhan. We downloaded hydrological data for Wuhan from the National
Geographical Information Resource Catalog Service System. We imported the data into
ArcGIS for Euclidean distance analysis. We established multi-level buffer zones based on
the distance from lakes and rivers, categorized into five intervals: <200 m, 200 m~500 m,
500 m~1000 m, 1000 m~3000 m, >3000 m, as shown in Figure 2.
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(2) Vulnerability of Disaster-prone Environment [29]. As the background for flood
disaster occurrence, the Disaster-prone Environment typically represents the attributes of
the underlying surface. It generally consists of the geographical location, terrain features,
natural hydrological conditions, and vegetation coverage of the urban environment. We
selected elevation, terrain undulation, slope, river network density, and vegetation coverage
area as evaluation indicators. We selected SRTM data provided by NASA with a resolution
of 30 m. Import elevation data for Hubei Province and use masking extraction to clip out
the elevation data for Wuhan City. Based on the elevation characteristics, we applied the
natural breaks classification method in ArcGIS to divide the elevation data for Wuhan City
into five different levels, from low to high. When calculating terrain ruggedness, the focal
statistics function in ArcGIS 10.7is commonly used to process elevation data. This helps
calculate the difference between high and low points within a specified range, resulting
in a terrain standard deviation classification map. Using ArcGIS’s slope analysis tool, we
generated slope information for the Wuhan area based on elevation data. We imported
the data downloaded from OpenStreetMap into ArcGIS and clipped it. We used the raster
calculator to assign zero values to any null values. We converted the raster data to points
and perform kriging interpolation to obtain the distribution of river network density in
Wuhan, as shown in Figure 3.
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(3) Vulnerability of Exposed Bodies. Based on human safety and socio-economic
factors, if an area has a larger population and more developed economy, the damage caused
by flood disasters will be greater [30]. Typically, the vulnerability level of flood disasters
is used to describe the severity of this situation. In this paper, the indicators selected for
vulnerability assessment are population density, GDP per unit area, and land use types.
We selected the data for these indicators with their corresponding units, and performed
masking extraction to obtain Figure 4.
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(4) Disaster Prevention and Mitigation Capability. This refers to humanity’s defense
and resistance capabilities in the face of flood disasters. The societal capacity to withstand
disasters can reduce the losses caused by disasters [31]. The stronger the capacity, the
lower the losses. This paper selects medical rescue capability, road density, and financial
support capability to reflect the region’s Disaster Prevention and Mitigation Capabilities.
We selected the 2020 national point of interest (POI) data and extracted medical service
data. We imported and clipped it to obtain relevant medical points of interest in Wuhan
City. We utilized the kernel density analysis tool in spatial analysis, employing geometric
intervals to classify it into five categories. We downloaded national road data from the
OpenStreetMap website, imported it, and clipped it to obtain road data for Wuhan City.
We used the raster calculator to assign zero values to any null values. We converted the
raster data to points and performed kriging interpolation to obtain road density data for
Wuhan City. We downloaded vector data for regional GDP and local fiscal revenue. We
calculated per capita GDP by dividing the regional GDP by the population for each region.
We imported the data into ArcGIS and rasterized it based on county administrative units.
We utilized the standard deviation method for classification to obtain distribution maps for
local fiscal revenue and per capita GDP, as shown in Figure 5.
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2.3. Data Source

The risk assessment framework for flood disasters consists of the objective layer,
criteria layer, and indicator layer, which are multi-level and composed of complex elements.
The sources of each data are presented in Table 1.

Table 1. Data source.

Target Layer Criterion Layer Indicator Layer Data Source

Flood disaster risk
assessment

Hazard of Causative Factors [32]
Rainfall Resources and Environmental

Science Data Center

Water system distance Resources and Environmental
Science Data Center

Vulnerability of Disaster-prone
Environment [33]

Elevation NASA’s Land Processes DAAC
terrain relief NASA’s Land Processes DAAC

slope NASA’s Land Processes DAAC

Vegetation coverage Resources and Environmental
Science Data Center

River network density Open Street Map

Vulnerability of Exposed Bodies
Population density WorldPop [34]

GDP Resources and Environmental
Science Data Center

Land type Resources and Environmental
Science Data Center [35]

Disaster Prevention and
Mitigation Capability

Medical rescue capability Resources and Environmental
Science Data Center

Road density Open Street Map
Local fiscal revenue Wuhan Bureau of Statistics

Per capita GDP Wuhan Bureau of Statistics

2.4. Random Forest Analysis

Through Random Forest analysis, we can evaluate the influence of feature factors
on the final results. The risk factors are set as feature vectors (X), and the flood points
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(extracted from the 2020 Wuhan flood disaster data and inundation maps) were set as target
vectors (Y) [36–38]. Since flood disasters are only related to pre-disaster environmental
factors, and the rescue capabilities of various regions after the disaster cannot be reflected
by flood disasters, Random Forest classification analysis was conducted on pre-disaster
environmental factors such as hazard and sensitivity indicators.

When optimizing the number of decision trees, n_estimators refers to the number of
sub-datasets generated by bootstrap sampling with replacement from the original dataset,
which is the number of decision trees. If it is too small, it may lead to model underfitting,
and if it is too large, it may reduce the significance of the model. The parameter range is
chosen to be 20 to 400. max_features refers to the maximum number of features considered
when building the optimal model of the decision tree, generally ranging from 2 to 10,
while the remaining parameters are set to default values. The accuracy of the algorithm
is detected through ten-fold cross-validation, and the dataset is divided into training and
testing sets, with 90% and 10%, respectively. The GridSearchCV tool in sklearn is used on
the training set to find the parameters with the highest accuracy.

Parameter adjustment is continuously verified, and it is found that when
n_estimators = 118 and max_features = 5, the accuracy is 0.93706. As shown in
Figures 6 and 7, the cross-validation set is repeatedly modified until the highest accuracy
of 0.94418 is obtained.
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In the hazard indicator of flood risk, the proportion of annual average rainfall is
the highest, indicating the highest importance level, reaching 41.8%. Following that are
vegetation coverage, elevation, and river network density, accounting for 16.1%, 12.1%,
and 12.0%, respectively. They also show strong correlations. In comparison, slope, terrain
undulation, and distance to water bodies have the lowest importance levels in the impact
of urban flood disasters, at 7.7%, 5.4%, and 4.9%, respectively, indicating a relatively minor
impact on disasters, as shown in Figure 8.
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2.5. Subjective Weight Calculation

By using the Analytic Hierarchy Process (AHP) to calculate the subjective weights [39],
we construct judgment matrices based on the importance of various indicators obtained
from the Random Forest [40,41]. According to the expert scoring method, we determine
the importance of each indicator. Through the established evaluation model, judgment
matrices are created for each primary and secondary indicator, and all judgment matrices
pass consistency checks, ensuring that indicators at each level are reasonably allocated.
Finally, we integrate and rank the indicators and calculate the weights of each level,
obtaining the subjective comprehensive weight distribution of the 14 indicators, as shown
in Tables 2–7.

Table 2. The allocation of weights for primary indicators.

Evaluation Indicators Hazard Sensitivity Vulnerability Disaster Prevention and
Mitigation Capability Weight

Hazard 1 2 2 3 0.4236
Sensitivity 1/2 1 1 2 0.2270

Vulnerability 1/2 1 1 2 0.2270
Disaster Prevention and

Mitigation Capability 1/3 1/2 1/2 1 0.1223

λmax = 4.0104, CI = 0.0035, CR = 0.0039 < 1.

Table 3. Allocation of weights for hazard indicators.

Evaluation Indicators Rainfall Water System Distance Weight

Rainfall 1 2 0.6667
Water system

distance 1/2 1 0.3333

λmax = 2.000, CI = 0.0000, CR = 0.0000 < 1.

Table 4. Allocation of weights for sensitivity indicators.

Evaluation Indicators Elevation Terrain Relief Slope River Network Density Vegetation Coverage Weight

Elevation 1 2 2 3 4 0.2392
Terrain relief 1/2 1 1 3 4 0.1079

Slope 1/2 1 1 3 3 0.1079
River network density 1/3 1/3 1/3 1 3 0.1801
Vegetation coverage 1/4 1/4 1/3 1/3 1 0.3649

λmax = 5.0719, CI = 0.0180, CR = 0.0161 < 1.
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Table 5. Allocation of weights for vulnerability indicators.

Evaluation Indicators Population Density GDP Land Type Weight

Population density 1 3 4 0.6144
GDP 1/3 1 3 0.2648

land type 1/4 1/3 1 0.1172
λmax = 3.0735, CI = 0.0368, CR = 0.0707 < 1.

Table 6. Allocation of weights for Disaster Prevention and Mitigation Capability indicators.

Evaluation Indicators Medical Rescue Capability Per Capita GDP Local Fiscal Revenue Road Density Weight

Medical rescue
capability 1 2 3 4 0.2392

Per capita GDP 1/2 1 3 4 0.1079
Local fiscal revenue 1/2 1 3 3 0.1079

Road density 1/3 1/3 1 3 0.1801

λmax = 4.1596, CI = 0.0532, CR = 0.0598 < 1.

Table 7. Comprehensive weight allocation.

Evaluation Indicators Hazard Sensitivity Vulnerability Disaster Prevention and
Mitigation Capability

Subjective
Comprehensive Weight

Rainfall 0.8000 – – – 0.3389
Water system distance 0.2000 – – – 0.0847

Elevation – 0.2392 – – 0.0543
Terrain relief – 0.1079 – – 0.0245

Slope – 0.1079 – – 0.0245
River network density – 0.1801 – – 0.0409

vegetation coverage – 0.3649 – – 0.0829
Population density – – 0.6144 – 0.1395

GDP – – 0.2684 – 0.0609
Land type – – 0.1172 – 0.0266

Medical rescue capability – – – 0.2254 0.0276
Per capita GDP – – – 0.5023 0.0614

Local fiscal revenue – – – 0.0942 0.0115
Road density – – – 0.1781 0.0218

2.6. Objective Weight Calculation

From an objective weight calculation using the entropy method, the results obtained
show strong objective factors [42,43]. Through analyzing the differences in raster values
of flood disaster indicators, it can be inferred that the greater the data difference under
the same indicator, the higher the information entropy, thus increasing the comparative
importance of the indicator in risk assessment and leading to a higher weight value. In this
paper, after preprocessing the multi-source data of flood indicators and using normalization
calculation methods based on the classification characteristics of positive and negative
indicators, the objective weight values of flood indicators at all levels are finally obtained.
Please refer to Table 8 for details.

Table 8. Objective weight allocation.

Evaluation Indicators Hazard Sensitivity Vulnerability Disaster Prevention and Mitigation Capability

Rainfall 0.0339 – – –
Water system distance 0.0111 – – –

Elevation – 0.0007 – –
Terrain relief – 0.0010 – –

Slope – 0.0017 – –
River network density – 0.1615 – –
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Table 8. Cont.

Evaluation Indicators Hazard Sensitivity Vulnerability Disaster Prevention and Mitigation Capability

Vegetation coverage – 0.0502 – –
Population density – – 0.4090 –

GDP – – 0.2655 –
Land type – – 0.0368 –

Medical rescue
capability – – – 0.0004

Per capita GDP – – – 0.0085
Local fiscal revenue – – – 0.0186

Road density – – – 0.0012

2.7. Combination Weighting Calculation

We determined the subjective and objective weights of each evaluation indicator
using Analytic Hierarchy Process (AHP) and entropy method, respectively, and calculated
the comprehensive weight based on the differences between the two weighting methods
for each indicator. Finally, we obtained the comprehensive weight through the distance
function of both methods.

The distance function expression between subjective weights and objective weights is
given by [44]:

d(Wai, Wsi) =

[
1
2∑m

i=1(Wai − Wsi)
2
] 1

2
, (1)

The difference betweenα andβ represents the difference between allocation coefficients:

D = |α − β|, (2)

According to the previous text, the constructed equation for calculating the compre-
hensive weight is: { 1

2 ∑m
i=1 (Wai − Wsi)

2 = (α − β)2

(α + β) = 1
, (3)

The expression for the combination weight is given by:

Wi = αWai + βWsi, (4)

Wai is the subjective weight, Wsi is the objective weigh, α, β are the allocation coeffi-
cients for the weights.

The final calculation yields the combination weights of flood risk assessment indicators.
The combination weighting results are shown in Table 9.

Table 9. Combined weighting.

Evaluation Indicators Hazard Sensitivity Vulnerability Disaster Prevention and Mitigation Capability

Rainfall 0.1864 – – –
Water system distance 0.0479 – – –

Elevation – 0.0275 – –
Terrain relief – 0.0127 – –

Slope – 0.0131 – –
River network density – 0.1012 – –
Vegetation coverage – 0.0666 – –
Population density – – 0.2742 –

GDP – – 0.1632 –
Land type – – 0.0317 –

Medical rescue
capability – – – 0.0140
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Table 9. Cont.

Evaluation Indicators Hazard Sensitivity Vulnerability Disaster Prevention and Mitigation Capability

Per capita GDP – – – 0.0350
Local fiscal revenue – – – 0.0150

Road density – – – 0.0115

2.8. Constructing the Membership Function

The membership function essentially reflects the objective research object, and the
degree of membership, as the foundation, can describe the fuzziness of factors [45]. Through
the membership function, fuzzy evaluation methods can be applied to solve practical
problems [46,47]. In this paper, fuzzy distribution combination is mainly used to construct
the membership function to evaluate flood risk in Wuhan City. The construction method is
as follows: first, the evaluation indicator data is divided into different levels, and the most
commonly used ascending and descending trapezoidal functions and triangular functions
are selected. The descending trapezoidal function is used for the low-value area, while the
ascending trapezoidal function is used for the high-value part. The middle value part is
represented by a triangular function. This construction of membership functions is more in
line with actual situations, as shown in Figure 9.
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Figure 9. Membership function for risk assessment.

The results of flood risk assessment are intricately linked to the classification of raster
data for each evaluation indicator [48]. Based on the different research data, this paper
adopts the principle of maximum membership degree to determine the membership de-
gree of each raster cell. Through map algebra functions, the membership degree values
corresponding to five levels for each raster cell of individual indicators in the study area
can be obtained. Then, based on the determined combination weights, the layers of hazard,
sensitivity, vulnerability, Disaster Prevention and Mitigation Capability, and comprehen-
sive evaluation are calculated. Finally, the risk index is determined by the principle of
maximum membership degree to obtain the risk level of each raster cell. The classification
of indicator data in this paper is shown in Table 10.

Table 10. Table of indicator data classification.

Evaluation Indicators A1 A2 A3 A4 A5

Rainfall (mm) 1291 1317 1342 1372 1406
Water system distance (m) 205 505 900 1501 3479

Elevation (m) 38 91 195 358 785
Terrain relief (m) 3 9 19 32 91

Slope (◦) 2 5 11 19 50
River network density (m/km2) 108 294 492 780 1531

Vegetation coverage 0.2 0.37 0.54 0.68 0.96
Population density (Person/km2) 43 156 334 653 1811
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Table 10. Cont.

Evaluation Indicators A1 A2 A3 A4 A5

GDP (Ten thousand yuan/km2) 31,075 91,336 173,510 348,815 699,424
Medical rescue capability 0.09 0.62 3.82 23.2 140.26

Road density (m/km2) 487 1577 3163 5936 12,408
Per capita GDP (yuan/Person) 75,792 122,748 169,704 216,660 316,454

Local fiscal revenue (billion yuan) 48.97 71.40 93.84 116.27 123.18

3. Results
3.1. Fuzzy Comprehensive Evaluation of Flood Risk in Wuhan City

According to the calculation results of the combination weights, the disaster indicator
weights are combined with the raster cell data to obtain the disaster risk assessment results
for Wuhan City. The formula for the flood risk assessment model is as follows [49]:

DRI = W1 × H + W2 × E + W3 × V + W4 × R, (5)

DRI is the risk degree; W1, W2, W3, W4 are the combination weights of hazard H,
sensitivity E, vulnerability V, and resilience R, respectively.

Low risk, slightly less risk, medium risk, slightly higher risk, and high risk corre-
spond with risk index ranges as follows: DRI < 0.35, 0.35 < DRI < 0.45, 0.45 < DRI < 0.60,
0.60 < DRI < 0.70, DRI > 0.70.

3.2. Hazard Assessment

As one of the four criteria layers, hazard severity has a significant impact on the
assessment of flood risk. According to the flood risk assessment model, the hazard severity
of flooding in Wuhan is illustrated in Figure 10.

From the figure, it can be observed that the central and southern regions of Wuhan
have higher hazard severity, while areas of lower severity are mainly distributed in the
northern low hills. There is a gradient increase in hazard severity from north to south.
Specifically, large portions of Jiangxia District exhibit high hazard severity, as well as
some areas in Hongshan District, Hannan District, and Caidian District. These areas
have numerous water systems and lakes, and they typically experience abundant rainfall
throughout the year. Similarly, central urban districts such as Wuchang, Hankou, Jianghan,
Jiang’an, and Qiaokou also demonstrate relatively high hazard severity due to their high
level of urbanization. The Huangpi District has the lowest hazard severity.

Utilizing ArcGIS, the areas and percentages of different levels of flood hazard severity
in Wuhan were calculated. As shown in Table 11, the proportion of high hazard severity
areas is the largest at 29.24%, while low hazard severity areas comprise the smallest
proportion at 7.44%.

Table 11. Areas and percentages of different risk levels.

Risk Levels Area (km2) Percentage of Total City Area

High risk 2511.17 29.24%
Slightly higher risk 2349.83 27.38%

Medium risk 1972.06 22.98%
Slightly less risk 1112.18 12.96%

Low risk 638.20 7.44%
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3.3. Sensitivity Assessment

The flood hazard reflects the sensitivity of the study area to high-intensity rainfall
events, considering factors such as topography, vegetation, and river networks. In this
study, the sensitivity of Wuhan City to flooding was assessed based on the analysis of ele-
vation, terrain undulation, slope gradient, river network density, and vegetation coverage,
as shown in Figure 11.

From the distribution in the figure, it is evident that there is a strong correlation
between sensitivity and the actual development of the city. Areas with high sensitivity are
mostly concentrated in the central part of the city, particularly along the western bank of
the Yangtze River. The main reason for this is that these areas are located in the plains,
with relatively gentle terrain and low vegetation coverage. The high concentration of
buildings and high level of urbanization increase the risk of urban flooding. Examples
include districts such as Hanyang, Jianghan, Hankou, Jiang’an, Qiaokou, Hannan, and
Dongxihu. Additionally, certain areas in Wuchang and Hongshan districts also exhibit high
sensitivity to flooding.

Furthermore, some parts of the Huangpi and Xinzhou Districts show elevated sensitiv-
ity, forming bands of high-risk areas. This is attributed to the presence of rivers traversing
the area, leading to a higher river network density and increased flood sensitivity. In con-
trast, Jiangxia and Caidian districts exhibit the lowest sensitivity. These areas have higher
vegetation coverage and are situated in hilly terrain, resulting in some surface undulation
and slope gradient. This facilitates rapid runoff and infiltration of precipitation, thereby
reducing the sensitivity to flooding risks.

Based on the raster data, the statistical calculation of the proportion of different levels
of flood sensitivity areas in Wuhan City is presented in Table 12, showing the areas and
their corresponding percentages. The proportions of low sensitivity and relatively low
sensitivity represent the extremes, accounting for 38.81% and 4.55%, respectively.
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Table 12. Areas and percentages of different sensitivity levels.

Sensitivity Levels Area (km2) Percentage of Total City Area

High sensitivity 1641.37 19.16%
Slightly higher sensitivity 2085.39 24.35%

Medium sensitivity 1124.05 13.12%
Slightly less sensitivity 389.87 4.55%

Low sensitivity 3324.04 38.81%
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3.4. Vulnerability Assessment

The vulnerability assessment of flood hazards in Wuhan City focuses on population
density, per capita GDP, and land use type data. By integrating these indicators with their
respective composite weights, the vulnerability to flood hazards in Wuhan is evaluated.
The results are depicted in Figure 12.
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Overall, the distribution of vulnerability to urban flood hazards in Wuhan City exhibits
a gradual decrease from the city center to the surrounding areas. High vulnerability areas
are mostly concentrated in districts such as Wuchang, Qiaokou, Jianghan, and Jiang’an.
These areas have higher population density, predominantly urban land use, with agricul-
tural land as secondary, and superior socioeconomic conditions compared to the rest of the
city. Consequently, these areas exhibit the highest vulnerability to similar levels of disaster.
Additionally, districts like Hankou, Hongshan, and Qingshan also show relatively high
vulnerability due to their relatively advanced socioeconomic status, despite not having as
concentrated a population as the main urban areas. However, as the population density,
economic development level, and urbanization gradually decrease from the city center to
the outskirts, areas with moderate, lower, and low vulnerability are formed. Both the north-
ern and southern parts of the city exhibit lower vulnerability and less land development,
such as in Huangpi, Xinzhou, and most areas of Jiangxia belonging to low vulnerability
zones. According to grid data, the statistical analysis of vulnerability risk level areas and
their proportions in Wuhan City are shown in Table 13. Overall, most areas of Wuhan City
have low vulnerability, with higher vulnerability proportions mainly concentrated in the
central urban areas.

Table 13. Areas and percentages of different vulnerability levels.

Vulnerability Levels Area (km2) Percentage of Total City Area

High vulnerability 136.14 1.59%
Slightly higher vulnerability 328.43 3.83%

Medium vulnerability 1396.60 16.28%
Slightly less vulnerability 5083.82 59.25%

Low vulnerability 1635.93 19.06%

3.5. Disaster Prevention and Reduction Capabilities Assessment

The Disaster Prevention and Mitigation Capabilities reflect both societal and individ-
ual resilience in facing the onslaught of heavy rain and flood disasters. Strong Disaster
Prevention and Mitigation Capabilities are associated with lower risk coefficients of flood
disasters. Key data include medical rescue capabilities, local financial revenue, per capita
GDP, and road density. By spatializing these indicator data, computing fuzzy membership
degrees, and integrating the combination weights of each indicator, an assessment of the
Disaster Prevention and mitigation Capabilities is conducted using the raster calculation
function in ArcGIS, as shown in Figure 13.

Areas with moderate to high Disaster Prevention and Mitigation Capabilities in Wuhan
are concentrated in regions such as Hannan District, Dongxihu District, Jiang’an District,
and Wuchang District. These areas have experienced rapid economic development, high
per capita GDP, advanced medical standards, and dense road networks. Residents and
local governments are capable of conducting emergency rescue operations promptly, thus
exhibiting relatively high capabilities in preventing and responding to heavy rain and flood
disasters. Conversely, areas with lower Disaster Prevention and Mitigation Capabilities
include Huangpi District, Xinzhou District, Jiangxia District, Qingshan District, Hongshan
District, and Caidian District. This is mainly influenced by local economic development
and medical standards. Based on raster data calculations, the final distribution of areas
and their respective proportions are summarized in Table 14. Overall, Wuhan’s Disaster
Prevention and Mitigation Capabilities against flood disasters are generally low, indicating
a need for strengthening efforts to resist and prevent disasters.
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Table 14. Area and percentage of different levels of disaster prevention and mitigation capabilities.

Disaster Prevention and Reduction
Capabilities Levels Area (km2) Percentage of Total City Area

High 275.09 3.20%
Slightly higher 2.89 0.03%

Medium 680.87 7.93%
Slightly less 3694.39 43.04%

Low 3930.24 45.79%
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4. Discussion

When the risk factors of flood disasters, including their hazards, environmental sen-
sitivity to disaster occurrence, and vulnerability of exposed populations, are higher, the
flood risk in that area is greater. Conversely, stronger Disaster Prevention and Mitigation
Capabilities in a region lead to lower flood risk. By assigning comprehensive weights and
conducting flood risk assessment calculations, the final evaluation results are obtained, as
shown in Figure 14.

From the graph, it can be observed that the high-risk areas for flood disasters in Wuhan
mainly concentrate in the central urban area, particularly on the west bank of the Yangtze
River, where the situation is quite severe. Specifically, Jianghan District, Qiaokou District,
Jiang’an District, and Wuchang District are most affected. Additionally, parts of Dongxihu
District, Qingshan District, Hongshan District, and Hankou District belong to areas with
relatively high flood risks, resulting in an overall moderate-to-moderately-high flood risk
level. Huangpi District, Xinzhou District, and Caidian District generally have lower flood
risks, but there are still some areas within them with medium-to-high risks. Areas around
Hannan and Jiangxia are mostly low-risk zones.

Looking at the distribution, Wuhan’s flood risk presents a pattern of high risk in
the central areas and low risk at the periphery. In the central urban area, due to the flat
terrain, low elevation, proximity to water bodies, low vegetation coverage, and a high
proportion of impermeable surfaces, flood risks are elevated. Additionally, the dense
population in these areas would lead to incalculable losses in the event of flood disasters.
Huangpi District and Xinzhou District have abundant vegetation and higher elevations,



Buildings 2024, 14, 1370 17 of 20

categorizing them as areas with lower-to-moderate flood risks. However, flood risks in
the central part of the Hongshan District are relatively dispersed, with many scattered
areas of medium-to-high flood risks, especially in areas adjacent to Wuchang, where urban
development is significant, population density is high, vegetation is sparse, and large
impermeable surface areas exist, resulting in elevated flood risks. The Dongxihu District
generally falls into the moderate flood risk category, despite its dense river network, due to
a lower urban population density, higher per capita GDP, higher local fiscal revenue, and
greater road density compared to the central urban area, leading to slightly lower flood
risks. Low-risk areas are mainly distributed in Jiangxia District and Hannan District. Some
areas in Jiangxia have higher elevations and good vegetation coverage, coupled with a
lower urban population density and a larger proportion of water bodies, leading to lower
potential disaster losses. Hannan is still in the process of development and construction,
hence currently poses the lowest risk among these two regions.
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By conducting area statistics calculations, the proportions of different flood risk levels
in Wuhan are shown in Table 15. The area proportion of low-risk zones is the highest,
accounting for 49.63%, followed by moderately low-risk zones at 34.76%. High-risk areas
have the lowest area proportion, merely 1.28%, while moderate- and moderately-high-risk
zones account for 11.62% and 2.71%, respectively.

Table 15. Area and percentage of flood risk at different levels in Wuhan.

Risk Levels Area (km2) Percentage of Total City Area

High risk 109.60 1.28%
Slightly higher risk 232.28 2.71%

Medium risk 995.15 11.62%
Slightly less risky 2976.75 34.76%

Low risk 4250.94 49.63%

In order to ensure the credibility and accuracy of disaster data, the flood risk data
from the updated 2020 version of the inundation risk map released by the Wuhan Water
Affairs Bureau were utilized. Each vulnerable point in the map corresponds to a specific
coordinate system. Using ArcGIS spatial processing, the data were overlaid onto the flood
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risk assessment map of Wuhan City for disaster inspection. The results are shown in
Figure 15.

Buildings 2024, 14, 1370 18 of 21 
 

By conducting area statistics calculations, the proportions of different flood risk lev-
els in Wuhan are shown in Table 15. The area proportion of low-risk zones is the highest, 
accounting for 49.63%, followed by moderately low-risk zones at 34.76%. High-risk areas 
have the lowest area proportion, merely 1.28%, while moderate- and moderately-high-
risk zones account for 11.62% and 2.71%, respectively. 

Table 15. Area and percentage of flood risk at different levels in Wuhan. 

Risk Levels Area (km2) Percentage of Total City Area 
High risk 109.60 1.28% 

Slightly higher risk 232.28 2.71% 
Medium risk 995.15 11.62% 

Slightly less risky 2976.75 34.76% 
Low risk 4250.94 49.63% 

In order to ensure the credibility and accuracy of disaster data, the flood risk data 
from the updated 2020 version of the inundation risk map released by the Wuhan Water 
Affairs Bureau were utilized. Each vulnerable point in the map corresponds to a specific 
coordinate system. Using ArcGIS spatial processing, the data were overlaid onto the flood 
risk assessment map of Wuhan City for disaster inspection. The results are shown in Fig-
ure 15. 

 
Figure 15. Comparison and verification map of waterlogging prone points and risk zoning results 
in Wuhan. 

Analysis of the results from the graph reveals that the distribution of vulnerable 
points aligns closely with the final distribution of disaster risk depicted in the map. Vul-
nerable points are predominantly concentrated in the central urban areas, such as around 
the Jianghan District, Qiaokou District, Jiang’an District, and Wuchang District. By com-
paring the inundation-prone points within Wuhan with the final results of disaster risk 
distribution, although the sample size for disaster validation is limited, it can be con-
cluded that the flood risk assessment results obtained in this study are generally con-
sistent with historical disaster situations, indicating a relatively high level of accuracy. 

  

Figure 15. Comparison and verification map of waterlogging prone points and risk zoning results
in Wuhan.

Analysis of the results from the graph reveals that the distribution of vulnerable points
aligns closely with the final distribution of disaster risk depicted in the map. Vulnerable
points are predominantly concentrated in the central urban areas, such as around the
Jianghan District, Qiaokou District, Jiang’an District, and Wuchang District. By comparing
the inundation-prone points within Wuhan with the final results of disaster risk distribution,
although the sample size for disaster validation is limited, it can be concluded that the
flood risk assessment results obtained in this study are generally consistent with historical
disaster situations, indicating a relatively high level of accuracy.

5. Conclusions

1. Using the Random Forest algorithm, it was determined that, among the factors con-
tributing to flood risk and vulnerability to disaster in the city, the annual average
rainfall index had the highest importance, accounting for 41.8%. Following this, vege-
tation coverage, elevation, and river network density were identified as significant
factors, accounting for 16.1%, 12.1%, and 12.0%, respectively. Slope, terrain rugged-
ness, and distance to water bodies were found to have the lowest importance in urban
flood disaster impact, accounting for 7.7%, 5.4%, and 4.9%, respectively.

2. Based on the results obtained from the Random Forest algorithm, the final weights
were calculated using a combination weighting method. Among these weights,
the highest weight was assigned to the annual average rainfall, which was 0.1864.
Conversely, the lowest weight was assigned to road density, with a value of 0.0115.

3. The concentration of inundation-prone points in Wuhan City is primarily in the
areas around the Jianghan District, Jiangan, and Wuchang Districts. The high degree
of alignment between the flood risk assessment map of Wuhan City and the 2020
updated inundation risk map indicates a high level of accuracy in the urban flood
disaster risk assessment model constructed in this study.
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