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Abstract: Uneven settlement of transmission tower foundations can result in catastrophic events,
such as tower collapse and line failures, disrupting power transmission operations. To address the
challenging repairs caused by uneven foundation settlement of transmission towers, we propose an
adjustable foundation bolt (AFB). This paper provides a detailed theoretical analysis of the AFB’s
stability and load-bearing capacity, including critical buckling force formulas and maximum normal
stress expressions. Finite element simulations confirm the precision of our theoretical formulations.
Additionally, we introduce a method using baffles to enhance its load-bearing capacity, analyzing
the impact of different numbers of baffles through numerical simulations. The experimental results
validate the effectiveness of baffles in enhancing structural load-bearing capacity. The device brings
convenience and efficiency to the maintenance of transmission towers.

Keywords: transmission line; uneven settlement; numerical simulation; adjustable foundation bolts;
experimental model

1. Introduction

In the field of power systems, transmission towers play a pivotal role [1–4]. The relia-
bility of transmission tower structures directly determines the operational integrity of the
entire transmission system, significantly impacting grid security [5–8]. Most transmission
tower foundations are standalone concrete structures connected to the upper structure
of the transmission tower via bolts [9–11]. In areas with complex geological conditions,
such as mine subsidence areas, uneven settlement of foundations is common. As shown
in Figure 1, this phenomenon may result in tower tilting, leading to severe accidents such
as tower collapse and line failures [12–16]. Currently, the methods for dealing with un-
even settlement of transmission tower foundations include the following: 1⃝ realignment
is needed when the foundation experiences significant settlement, making it difficult to
carry out repair work on the existing tower foundation, to bypass the settlement area and
construct a new section of the transmission line [17,18]; 2⃝ live resetting of the foundation
needed in cases where the tower body is balanced and has reliable support; the tower
body is lifted and the foundation is raised using jacks, specialized shims are used to raise
each foundation to the same height, and tower materials that have deformed significantly
and are no longer functioning properly are replaced [19]; 3⃝ Live correction of the tower
body is needed when the tower foundation has experienced uneven settlement and it is
predicted that further settlement will occur, shims can be added to the foundation and
the tower body can be corrected. This method is flexible, fast in construction, requires
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minimal investment, and can be used as a temporary solution during the active settlement
period of the foundation [20]; 4⃝ Replacement of the tower with a combined foundation
is needed when the uneven settlement of the tower foundation is complete and further
settlement is unlikely to occur; a new tower with a combined foundation can be erected
without changing the route of the transmission line. The combined foundation has strong
resistance to uneven settlement, and when the foundation experiences uneven settlement,
the tower and foundation only undergo rigid body displacement without causing structural
damage to the tower. However, this method requires power outage during construction,
has a long construction period, and involves significant investment [21]; 5⃝ Live lifting
and reinforcement of the original foundation can be employed after using the method of
live resetting of the foundation; the split foundation at the same height is transformed
and reinforced to a combined foundation to enhance its ability to resist uneven settlement
of the foundation [22]. However, these methods have certain drawbacks, resulting in
less-than-ideal outcomes after repairs. The identified issues can be summarized as follows:
1⃝ existing methods have limitations in adjustability, high costs, long construction periods,

and low operability, leading to suboptimal technical and economic feasibility that fails to
meet the demands of engineering practices; 2⃝ the uneven settlement of transmission tower
foundations in subsidence areas varies, necessitating individual repair plans for each tower
with a high degree of repetitive work and low efficiency; 3⃝ transmission towers are subject
to continuous behavior, while existing methods are essentially one-time corrections. In the
event of subsequent uneven foundation settlement, device replacement and re-repair are
required, leading to wastage.

Buildings 2024, 14, x FOR PEER REVIEW 2 of 20 
 

ment and it is predicted that further settlement will occur, shims can be added to the foun-
dation and the tower body can be corrected. This method is flexible, fast in construction, 
requires minimal investment, and can be used as a temporary solution during the active 
settlement period of the foundation [20]; ④ Replacement of the tower with a combined 
foundation is needed when the uneven settlement of the tower foundation is complete 
and further settlement is unlikely to occur; a new tower with a combined foundation can 
be erected without changing the route of the transmission line. The combined foundation 
has strong resistance to uneven settlement, and when the foundation experiences uneven 
settlement, the tower and foundation only undergo rigid body displacement without 
causing structural damage to the tower. However, this method requires power outage 
during construction, has a long construction period, and involves significant investment 
[21]; ⑤ Live lifting and reinforcement of the original foundation can be employed after 
using the method of live resetting of the foundation; the split foundation at the same 
height is transformed and reinforced to a combined foundation to enhance its ability to 
resist uneven settlement of the foundation [22]. However, these methods have certain 
drawbacks, resulting in less-than-ideal outcomes after repairs. The identified issues can 
be summarized as follows: ① existing methods have limitations in adjustability, high 
costs, long construction periods, and low operability, leading to suboptimal technical and 
economic feasibility that fails to meet the demands of engineering practices; ② the uneven 
settlement of transmission tower foundations in subsidence areas varies, necessitating in-
dividual repair plans for each tower with a high degree of repetitive work and low effi-
ciency; ③ transmission towers are subject to continuous behavior, while existing methods 
are essentially one-time corrections. In the event of subsequent uneven foundation settle-
ment, device replacement and re-repair are required, leading to wastage. 

This paper proposes the use of an AFB to effectively address the aforementioned is-
sues. The present paper will first introduce the structure and characteristics of the AFB, 
followed by a detailed analysis of its stability and bearing capacity. Subsequently, finite 
element numerical simulations of the AFB before concrete infusion will be conducted to 
verify its alignment with theoretical values. This paper will also analyze the relationship 
between the installation of different numbers of baffles and the structural bearing capacity 
of the AFB. Finally, through the establishment of a 1:1 test model, experimental measure-
ment results will be compared with theoretical analysis results to analyze the sources of 
result errors and confirm the operational mechanism of the AFB. Through these studies, 
we aim to comprehensively explore the performance and applications of an AFB, provid-
ing valuable references for research and practical applications in related fields. 

  

Figure 1. Transmission tower damaged by foundation settlement. 

  

Figure 1. Transmission tower damaged by foundation settlement.

This paper proposes the use of an AFB to effectively address the aforementioned issues.
The present paper will first introduce the structure and characteristics of the AFB, followed
by a detailed analysis of its stability and bearing capacity. Subsequently, finite element
numerical simulations of the AFB before concrete infusion will be conducted to verify its
alignment with theoretical values. This paper will also analyze the relationship between the
installation of different numbers of baffles and the structural bearing capacity of the AFB.
Finally, through the establishment of a 1:1 test model, experimental measurement results
will be compared with theoretical analysis results to analyze the sources of result errors
and confirm the operational mechanism of the AFB. Through these studies, we aim to
comprehensively explore the performance and applications of an AFB, providing valuable
references for research and practical applications in related fields.

2. Theoretical Analysis of AFB
2.1. Structural Composition and Characteristics of AFB

The AFB primarily consists of original tower base bolts, internal threaded connecting
sleeves, elongated screws, base plates, and nuts. Its operational principle involves con-
necting the sleeve and elongated screw to the original base bolt, adjusting the position of
the base plate on the elongated screw to alter the height of each tower leg. This action
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aims to realign all tower legs to the same horizontal height, counteracting the effects of
foundation settlement, straightening the tower body, and eliminating the negative impacts
of foundation settlement.

For transmission towers requiring emergency repairs, the first step is to determine the
necessary height adjustment values for each tower leg. Subsequently, the corresponding
adjustable base bolt scheme should be selected based on the required height adjustment
values for construction. When carrying out repair work, the tower legs and base plate
should be first raised to the desired height. Then, using pre-prepared sleeves, the original
base bolts are connected to extended screws, and the base plate is connected to the extended
screws using nuts. Finally, concrete is poured into the cavities of the extended screws and
the base plate to complete the construction of the adjustable base bolt device. The structural
composition and construction process of the AFB are depicted in Figure 2. In this figure,
sections I, II, and III correspond to three states of a single tower leg during the repair
process: pre-repair, representing the base without the adjusted leg height; during repair,
showcasing the adjusted leg heights without the concrete filling; post-repair completion,
illustrating the adjusted leg heights with the concrete filling to enhance the structural
load-bearing capacity.
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Figure 2. Structure composition of AFB.

2.2. Stability of Single Foundation Bolt

For the AFB where concrete is not filled between the base plate and the foundation,
the symmetrical nature of the structure ensures that each foundation bolt experiences the
same loading and constraint conditions. Consequently, the stability of the entire structure
is contingent upon the stability of each individual foundation bolt. When examining a
single bolt, its stability can be analogized to that of a compression strut stability problem.
The mechanical model of a single bolt with one end fixed and the other end free is depicted
in Figure 3.
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2.2.1. The Energy Method

Using the Rayleigh–Ritz method within the energy approach to solve for the critical
buckling force [23,24], this method is based on the variational principle, which approx-
imates the vibration modes or instability modes of a structure by selecting appropriate
shape functions, and then uses the principle of minimizing the structural potential energy
or energy function to determine the system’s eigenvalues and eigenvectors, thus obtaining
the vibration frequencies or critical instability forces of the structure.

For a single bolt, when discussing its stability, the portion between its base plate and
the concrete foundation can be simplified as a variable cross-section beam. This beam has n
different moments of inertia, denoted as I1, I2,..., In, with an elastic modulus of E. Assuming
the beam is fixed at the bottom and free at the top, we can hypothesize the deflection curve
equation as

y = v(1 − cos
πx
2l

). (1)

The bending moment at any section of the member is given by

M = −P(v − y) = −Pv cos
πx
2l

. (2)

The deformation energy added to the member due to bending is given by

δU =
∫ l

0

M2

2EI
dx =

∫ l

0

P2v2 (cos πx
2l
)2

2EI
dx =

P2v2

4πE ∑n
i = 1

1
Ii

H(xi−1, xi), (3)

where
H(xi−1, xi) = π(xi − xi−1) +

(
sin

(πxi
l

)
− sin

(πxi−1

l

))
l. (4)

Here, Ii is the moment of inertia of the i-th beam, xi−1 is the initial coordinate of the
i-th beam, and xi is the endpoint coordinate of the i-th beam.

After the axis of the member changes from a straight line to a curve, the displacement
at the upper end should be

λ =
∫ l

0
(d s − dx) =

∫ 1

0

√1 +
(

dy
dx

)2
dx − dx

. (5)

Expanding

√
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(
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)2
into a series and neglecting higher-order terms, we obtain

√
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(
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)2
= 1 +

1
2

(
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)2
. (6)

By substituting (6) into (5), we have

λ =
1
2

∫ l

0

(
dy
dx

)2
dx =

π2v2

16l
. (7)

In the above process of slight bending, the work performed by the pressure P should be

δW = Pλ =
Pπ2v2

16l
. (8)

By substituting δU and δW into the condition to determine the critical pressure
δΠ = δ(U − W) = 0, we can solve for the critical pressure as follows:

Pcr =
π3E

4l∑n
i = 1

H(xi−1,xi)
Ii

. (9)
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2.2.2. Method of Minimum Cross-Section

In the method of minimum cross-section, the variable cross-section compression
member is treated as a constant cross-section compression member, with the moment of
inertia Imin of the minimum cross-section of the variable cross-section member being used
as its moment of inertia. The critical buckling force Pcr is determined by applying Euler’s
formula for a slender compression member with a constant cross-section.

Pcr =
π2EImin

4l2 . (10)

The critical force calculation expression obtained through the method of minimum
cross-section is represented by Equation (10). A comparative analysis between the two
methodologies reveals that while the energy method provides a satisfactory approximate
solution, it involves a more intricate integration process. In contrast, the minimum cross-
section method simplifies calculations by replacing all sections with the minimum cross-
section, resulting in a more conservative estimation of the critical buckling load. In practical
engineering applications, it is recommended to initially assess stability using the method of
minimum cross-section and resort to the energy method for design if the stability criteria
are not met.

2.3. The Stability of the Integral Structure of the AFB

When analyzing the overall structural stability of the AFB without a concrete filling
between the tower base plate and the foundation, it can be approached as a strut stability
problem. The overall stability of this structure can be calculated using the parallel axis
theorem [25,26].

I = 4(Ic + r2 A), r =

√
2

2
a, Ic =

πd4

64
, A =

πd2

4
. (11)

4Pcr =
π2EI
4l2 . (12)

Here, A is the cross-sectional area of a single bolt, a is the spacing between the bolts,
Imin is the moment of inertia of a single bolt, and I is the overall structure’s moment
of inertia.

The results obtained under the ideal condition of short bolt lengths are applicable
for theoretical analysis only. The expression for calculating the actual critical force in
engineering applications should fall between Equations (10) and (12).

2.4. Structural Strength under Unfilled Concrete Conditions

A schematic diagram of the AFB between the tower base plate and the foundation
without being filled with poured concrete is shown in Figure 4.

For the AFB, it is evident that under the combined action of horizontal and vertical
forces, the critical section of the component is the section at the interface between the
original foundation on the bolt and the top surface of the concrete foundation, where the
maximum normal stress at this section is denoted as

σ =
N
A

+
M
W

. (13)
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For the AFB with four foundation bolts, where N = 1
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Here, fx, fy, and fz represent the forces acting on the tower base plate in the x-axis,
y-axis, and z-axis directions, respectively; d is the diameter of the AFB; l is the total length
of the bolt rod between the tower base plate and the foundation base.

3. Numerical Simulation of AFB

Using the general finite element software ANSYS for the numerical simulation of the
AFB [27–29], full-scale modeling of the tower base plate and the extended part of the foun-
dation bolts is conducted. The finite element foundation prototype is based on the relevant
design from a certain provincial power design institute, selected for a certain transmission
line project tower foundation. Through numerical simulation studies, comparing numerical
solutions with theoretical solutions can validate the accuracy of the theoretical model and
various calculation expressions, providing a basis for the design of the AFB.

3.1. Finite Element Validation of Structural Strength Issues under the Condition of No
Concrete Filling

In the AFB without poured concrete, a single screw’s lower end is fixed in the concrete
foundation, while the upper end is connected to the tower base plate. The dimensions of the
AFB without poured concrete are shown in Figure 5, with the bolt length as l = 300 mm.
For ease of analysis, this bolt section is treated as a uniform cross-section with a diameter
d = 35 mm. The center-to-center distance between adjacent screws is a = 200 mm, and
the material’s elastic modulus is E = 2.1 × 1011 Pa, adopting the 5 mm Solid186 solid
element. The established finite element computational model is depicted in Figure 6. We
constrain all degrees of freedom at the lower end of the base bolt, while the upper end of the
base bolt is connected to the tower base plate using nodal coupling for equivalence [30,31].
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At this point, a combined load is applied at the center of the tower base plate as follows:

fx = 10 KN, fy = 10 KN, fz = 100 KN. (15)

where fz trending downwards is considered positive.
After computation, the following results are obtained (Figure 7).
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Figure 7. A stress contour plot of the screw under the combined load.

Under the combined load, the maximum compressive stress is located at the lower end
of the foundation bolt, with a maximum value of 291 MPa. By substituting the combined
load (15) and the dimensions of the foundation bolt model into the expression for calculating
the compressive stress under the condition of no concrete filling (14), the calculated value
for σ is 278 MPa.

The obtained data are shown in Table 1.

Table 1. The maximum compressive stress at the critical section of the AFB.

Theoretical Value
(σ)

Finite Element Value
(σFEM)

σ − σFEM
σFEM

×100%

Maximum compressive
stress 278 MPa 291 MPa 4.46%

Based on Table 1, it is evident that the maximum compressive stress value at the critical
section of the bolt obtained from the finite element numerical calculations closely aligns
with the theoretical solution. This indicates that the operational mechanism of the AFB
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under unfilled concrete conditions conforms to the theoretical analysis. By utilizing the
expression for calculating the maximum compressive stress, we can accurately determine
the maximum compressive stress at the critical section of the structure.

3.2. The Impact of Adding Baffles on Structural Strength

When using a sleeve to connect the original foundation bolt with an extended rod to
adjust the height of the tower base plate, it is necessary to pour concrete between the tower
base plate and the foundation to enhance the structural load-bearing capacity. However,
before the poured concrete reaches the design strength and becomes effective, the structural
load-bearing capacity is weaker and prone to damage. In such cases, support devices or
other methods are needed to enhance the structural load-bearing capacity. Using a barrier
between the tower base plate and the foundation is a simple, convenient, economical, and
effective method. The improved AFB with baffles is shown in Figure 8.
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The Influence of the Number of Baffles on the Maximum Compressive Stress

The addition of baffles affects the degree of deformation characteristics and stress
conditions of the bolts, which are related to the number of baffles, barrier spacing, and
barrier thickness. Taking a 10 mm thick barrier as an example, the impact of the number of
baffles on the maximum compressive stress at the critical section of the foundation bolts
is discussed.

(1) Without using baffles

Establishing a finite element model of an AFB without adding baffles: The dimen-
sions of the tower base plate are 270 mm × 270 mm × 20 mm, with an elastic modulus of
E = 2.1 × 1011Pa. The length of the foundation bolts between the tower base plate and the
foundation is l = 500 mm, with a diameter of d = 35 mm, and a center distance between
adjacent bolts of a = 200 mm, adopting the 5 mm Solid186 solid element. In the finite
element model, the foundation part is not established, and the effect of the foundation
part on the foundation bolts is simplified to a fixed-end constraint at the lower end of the
foundation bolts.

We apply the following load combination at the center of the surface of the tower
base plate:

fx = 3 KN, fy = 3 KN, fz = 36 KN. (16)

After computation, the following results are obtained (Figures 9 and 10).
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The finite element calculation results in a maximum compressive stress of 394 MPa.
Substituting the load combination (16) into (14), we obtain

σ =
fz

πd2 +
8l
√

f 2
x + f 2

y

πd3 = 410 MPa. (17)

The results are very close, once again demonstrating the accuracy of the expression
for calculating the maximum compressive stress at the critical section of the AFB in the
absence of poured concrete and baffles.

(2) Using one baffle

On the basis of the finite element model without baffles, we add one baffle with
dimensions 240 mm × 240 mm × 10 mm and an elastic modulus E = 2.1 × 1011 Pa. The
distance from the bottom surface of the baffle to the bottom surface of the tower base plate
is 300 mm, adopting the 5 mm Solid186 solid element. The finite element calculation model
and the stress distribution obtained from the calculation are shown in Figure 11.
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After adding one baffle, the maximum normal stress at the critical section is −261 MPa.
Relative to the maximum normal stress without a baffle, denoted as −394 MPa, the maxi-
mum normal stress at the critical section after adding one baffle is decreased by 33.7%.

The results obtained with different numbers of baffles are listed in Table 2.

Table 2. A comparison of the maximum normal stress at the critical section with different numbers
of baffles.

Number of Baffles Maximum Normal Stress
σmax (MPa) Reduce (%)

0 −394 -
1 −261 33.7%
2 −212 46.2%
3 −189 52.0%
4 −163 58.6%

Based on Table 2 and Figure 12, it is evident that adding baffles can effectively reduce
the maximum normal stress at the critical section of the bolts.
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4. Experimental Measurement and Analysis of AFB
4.1. Experimental Objectives

This experiment utilized the base section of a transmission tower designed by a specific
power engineering institute as the prototype model. A simulation was conducted using
a design scheme for the AFB with a maximum adjustability of 500 mm, and a 1:1 scale
experimental model was created.

The objectives of the experiment are as follows:

(1) To determine the strain and stress distribution at the critical section of the AFB,
compare the theoretical analysis results with the experimental results, and validate
the theoretical model.

(2) To validate the effectiveness of the AFB and investigate the impact of adding baffles
on the load-bearing capacity of the device.

(3) By analyzing the experimental data, to provide a basis for proposing the applicable
conditions, design methods, and construction considerations for the AFB.

4.2. Experimental Setup and Data Collection

The structure and configuration of the AFB test device are illustrated in Figure 13.
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Figure 13. Front view of AFB test device.

For transmission towers, the forces from the upper structure are transmitted through
the tower legs to the tower base plate and further into the foundation. In the experiment,
the pressure from a jack is used to simulate the forces from the upper structure on the
foundation. These forces can be simplified into two types of directional loads: vertical
loads and horizontal loads. Both of these loads pass through the center of the tower base
plate, and the magnitude of the loads is measured by pressure sensors located beneath the
cross-beam, as shown in Figure 14.
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When conducting the experiment, each foundation bolt is first labeled, and four strain
gauges are mounted on each foundation bolt, as shown in Figure 15.
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4.3. Analysis of Experimental Results
4.3.1. AFB without Baffle

The setup for condition 1 is an AFB without the addition of baffles, as depicted in
Figure 16.
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Applying loads fx = 3 KN and fz = 36 KN along the x and z axes, respectively,
the strain values of each strain gauge measured after distributing the loading are listed in
Table 3.
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Table 3. The strain values of each strain gauge in condition 1.

Load
Steps

fz
(kN)

fx
(kN)

Strain Gauge

A (1×10−6) B (1×10−6)
1 2 3 4 1 2 3 4

1 3.40 0.31 45.54 −4.54 −84.12 −7.22 30.52 −19.15 −63.55 −18.42
2 7.11 0.58 82.59 −13.83 −130.80 −19.25 67.41 −30.99 −107.73 −26.31
3 10.67 0.91 114.40 −30.59 −173.31 −28.81 103.55 −42.45 −151.71 −35.19
4 14.15 1.18 144.90 −34.44 −200.29 −30.28 134.17 −56.21 −192.88 −49.48
5 18.11 1.49 168.02 −40.91 −253.52 −38.66 167.77 −67.27 −250.77 −58.12
6 21.62 1.80 191.13 −53.48 −303.85 −46.07 204.08 −79.86 −303.73 −67.12
7 25.35 2.09 219.84 −63.38 −352.96 −54.32 233.05 −90.58 −365.25 −75.98
8 28.70 2.38 253.69 −73.26 −395.90 −60.08 272.52 −101.56 −428.54 −83.04
9 32.32 2.68 295.08 −88.28 −447.51 −69.40 320.66 −110.16 −503.32 −91.17
10 35.58 2.98 339.18 −97.74 −509.68 −84.26 372.29 −112.61 −568.06 −92.98

Load
Steps

fz
(kN)

fx
(kN)

Strain Gauge

C (1×10−6) D (1×10−6)
1 2 3 4 1 2 3 4

1 3.40 0.31 25.86 −14.01 −66.50 −18.13 20.45 −6.34 −57.59 −1.46
2 7.11 0.58 61.07 −19.69 −128.76 −21.72 60.25 −14.81 −102.37 −8.70
3 10.67 0.91 85.51 −30.67 −190.08 −29.71 98.11 −27.63 −146.01 −22.10
4 14.15 1.18 118.09 −46.49 −248.87 −44.40 130.07 −39.61 −183.58 −31.48
5 18.11 1.49 156.93 −62.97 −302.69 −62.81 202.78 −57.02 −277.49 −30.49
6 21.62 1.80 198.84 −65.32 −358.94 −72.54 237.30 −68.46 −341.89 −44.56
7 25.35 2.09 246.80 −74.80 −403.99 −81.68 248.49 −74.64 −371.78 −52.28
8 28.70 2.38 275.23 −81.07 −451.28 −89.80 284.80 −85.56 −433.64 −56.95
9 32.32 2.68 312.09 −95.97 −504.21 −99.68 301.32 −88.33 −461.70 −67.34
10 35.58 2.98 362.49 −107.63 −556.13 −111.09 345.31 −97.86 −527.29 −75.91

We calculate the axial strain of each bolt using the average strain values of strain
gauges 1 to 4, as listed in Table 3. We then determine the axial force and record the results
in Table 4.

Table 4. Axial forces in each bolt in condition 1.

Load Steps fz (kN) NA (kN) NB (kN) NC (kN) ND (kN) ∑Ni (kN) |∑Ni|
fz

×100%

1 3.40 −1.17 −1.64 −1.69 −1.05 −5.56 163.31%
2 7.11 −1.89 −2.27 −2.54 −1.53 −8.24 115.79%
3 10.67 −2.76 −2.93 −3.84 −2.27 −11.80 110.62%
4 14.15 −2.80 −3.83 −5.16 −2.90 −14.69 103.79%
5 18.11 −3.84 −4.85 −6.32 −3.78 −18.80 103.81%
6 21.62 −4.94 −5.74 −6.94 −5.07 −22.69 104.95%
7 25.35 −5.84 −6.96 −7.30 −5.83 −25.93 102.27%
8 28.70 −6.42 −7.93 −8.08 −6.78 −29.21 101.78%
9 32.32 −7.22 −8.94 −9.03 −7.36 −32.55 100.73%

10 35.58 −8.21 −9.35 −9.60 −8.28 −35.44 99.62%

From an analysis of Table 4, it is evident that initially, due to factors like the non-
compacted gaps in the setup, the axial forces calculated from the strain back-calculation,
denoted as ∑ Ni, differ significantly from the applied external load fz. Additionally, the dis-
tribution of axial forces among the bolts is also uneven. However, as the load increases, ∑ Ni
gradually approaches fz, and the axial forces in each bolt tend to become more uniform.

4.3.2. AFB with Baffles

The setup for condition 2 is an AFB with two added baffles, as shown in Figure 17.
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We calculate the axial strain of each bolt using the average strain values of strain 
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Figure 17. A loading diagram of the setup for condition 2.

Applying loads fx = 4.2 KN and fz = 36 KN along the x and z axes, respectively,
the strain values of each strain gauge measured after distributing the loading are listed in
Table 5.

Table 5. The strain values of each strain gauge in condition 2.

Load
Steps

fz
(kN)

fx
(kN)

Strain Gauge

A (1×10−6) B (1×10−6)
1 2 3 4 1 2 3 4

1 3.03 0.46 30.96 −1.12 −51.61 −1.00 44.99 −1.60 −45.28 −1.04
2 7.44 0.78 57.00 −6.89 −87.00 −6.75 67.98 −12.40 −81.09 −7.31
3 10.25 1.27 85.14 −14.56 −121.88 −13.69 92.55 −19.25 −115.44 −14.73
4 14.28 1.63 100.68 −23.50 −146.60 −23.41 106.79 −28.55 −146.38 −25.90
5 17.63 2.11 122.95 −29.72 −176.00 −27.56 135.96 −39.11 −185.63 −34.03
6 21.85 2.47 141.10 −36.39 −194.51 −33.66 158.93 −45.42 −223.43 −43.86
7 25.80 2.89 163.81 −42.09 −221.74 −39.94 181.25 −54.83 −264.52 −51.46
8 29.15 3.30 187.87 −49.75 −261.22 −45.60 203.17 −63.43 −302.31 −56.97
9 32.21 3.75 209.78 −53.68 −328.02 −51.25 219.11 −70.66 −339.69 −63.67
10 35.66 4.16 231.76 −59.34 −366.06 −56.99 252.53 −76.02 −390.46 −69.97

Load
Steps

fz
(kN)

fx
(kN)

Strain Gauge

C (1×10−6) D (1×10−6)
1 2 3 4 1 2 3 4

1 3.03 0.46 22.62 −6.09 −66.01 −14.42 16.20 −11.89 −60.09 −18.30
2 7.44 0.78 44.23 −22.65 −118.43 −27.00 33.01 −23.79 −102.18 −29.19
3 10.25 1.27 69.93 −32.86 −168.32 −43.30 51.23 −31.14 −148.05 −39.77
4 14.28 1.63 87.87 −45.12 −213.75 −57.48 73.88 −40.93 −190.51 −48.38
5 17.63 2.11 107.19 −57.94 −266.63 −67.96 95.57 −50.76 −247.69 −58.02
6 21.85 2.47 124.13 −68.87 −315.06 −83.67 118.28 −63.82 −295.45 −71.61
7 25.80 2.89 146.33 −83.22 −362.52 −95.84 143.27 −73.65 −345.65 −88.65
8 29.15 3.30 172.32 −96.75 −405.90 −105.20 169.16 −86.15 −391.01 −101.32
9 32.21 3.75 197.43 −105.37 −442.95 −113.18 200.47 −105.59 −446.13 −115.76
10 35.66 4.16 240.32 −117.52 −491.50 −122.52 228.50 −116.61 −481.12 −131.59

We calculate the axial strain of each bolt using the average strain values of strain
gauges 1 to 4, as listed in Table 5. We then determine the axial force and record the results
in Table 6.
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Table 6. Axial forces in each bolt in condition 2.

Load Steps fz (kN) NA (kN) NB (kN) NC (kN) ND (kN) ∑Ni (kN) |∑Ni|
fz

×100%

1 3.40 −0.53 −0.07 −1.49 −1.72 −3.81 125.87%
2 7.11 −1.02 −0.76 −2.88 −2.84 −7.51 100.97%
3 10.67 −1.51 −1.32 −4.06 −3.91 −10.81 105.43%
4 14.15 −2.16 −2.19 −5.32 −4.80 −14.47 101.35%
5 18.11 −2.57 −2.86 −6.64 −6.08 −18.15 102.96%
6 21.62 −2.88 −3.58 −8.00 −7.28 −21.73 99.46%
7 25.35 −3.26 −4.41 −9.20 −8.49 −25.37 98.34%
8 28.70 −3.93 −5.11 −10.14 −9.53 −28.71 98.50%
9 32.32 −5.20 −5.94 −10.81 −10.87 −32.81 101.87%

10 35.58 −5.84 −6.61 −11.44 −11.66 −35.55 99.69%

An analysis of Table 6 shows that for the AFB with added baffles, at the beginning
of loading, due to reasons such as the device gaps not being compacted, the axial forces
calculated through strain back-calculations differ significantly from the applied load fz.
The proportion of axial forces between the bolts also shows weak regularity, with bolt B not
even sharing any axial force. As the load increases, ∑ Ni gradually approaches fz, and each
bolt begins to proportionally share the vertical load.

It is also observed that there is a significant difference in axial forces between bolts A
and B compared to bolts C and D. This is because under the action of the baffles, the upper
extended bolts undergo partial deformation coordination. Under horizontal forces, bolts A
and B are under tension on one side, while bolts C and D are under compression on the
other side. Furthermore, a comparison of the results between condition 1 and condition
2 is conducted. From Tables 4 and 6, the strain values of all strain gauges on each bolt
corresponding to the 10th load step are extracted and listed in Table 7.

Table 7. Comparison of strain values for each strain gauge in condition 1 and condition 2.

Experimental
Number

fz
(kN)

fx
(kN)

Strain Gauge

A (1×10−6) B (1×10−6)
1 2 3 4 1 2 3 4

Condition 1 35.58 2.98 339.18 −97.74 −509.68 −84.26 372.29 −112.61 −568.06 −92.98
Condition 2 35.66 4.16 231.76 −59.34 −366.06 −56.99 252.53 −76.02 −390.46 −69.97

Load Steps fz
(kN)

fx
(kN)

Strain Gauge

C (1×10−6) D (1×10−6)
1 2 3 4 1 2 3 4

Condition 1 35.58 2.98 362.49 −107.63 −556.13 −111.09 345.31 −97.86 −527.29 −75.91
Condition 2 35.66 4.16 240.32 −117.52 −491.50 −122.52 228.50 −116.61 −481.12 −131.59

It is important to note that the loads applied in the 10th load step for condition 1 and
condition 2 are different, so a qualitative discussion is conducted here. Under the same
vertical compression force fz ≈ 35 kN, condition 1 applies a horizontal force fx ≈ 3 kN,
while condition 2 applies a horizontal force fx ≈ 4.2 kN. Therefore, the horizontal load
in condition 2 is greater than that in condition 1. Despite this, the maximum microstrain
in each strain gauge in condition 2 is still less than the maximum microstrain in each
strain gauge in condition 1. This indicates that adding baffles can significantly reduce the
stress values on the critical sections of the foundation bolts, thereby enhancing the load-
bearing capacity of the components. Therefore, it is recommended to install baffles during
emergency repairs to improve the stress distribution at the critical sections of the bolts.
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5. Conclusions

This study delved into the structural composition and operational principles of the
AFB, employing a combination of theoretical analysis, numerical simulation, and experi-
mental measurements, leading to the following conclusions:

(1) The AFB primarily comprises components such as the original foundation bolt, internal
threaded connecting sleeve, extension screw, tower base plate, and nut. Compared to
conventional methods, the utilization of this equipment offers advantages including
structural simplicity, low construction complexity, high versatility, and expedited repairs.

(2) Concerning the stability of the AFB, expressions for the critical buckling force of
individual foundation bolts were derived using energy and minimum section methods.
Addressing its strength concerns, an expression for the maximum normal stress at the
critical section of the AFB before concrete filling was provided.

(3) Finite element numerical simulations were conducted for the AFB, revealing a mere
4.46% deviation between the finite element value and the theoretical value of the
maximum normal stress at the foundation bolt’s critical section, validating the accu-
racy of the expression for maximum stress at the critical section of the foundation
bolt. Additionally, by incorporating varying numbers of baffles into the finite element
model, it was observed that the addition of baffles effectively reduces stress at the
critical section, significantly enhancing the structural load-bearing capacity.

(4) By establishing a 1:1 experimental model, stress and strain distribution characteristics of
different configurations of the AFB under combined loads were obtained. A compara-
tive analysis of the experimental measurements with theoretical predictions identified
sources of error, revealing slight deviations attributed to bolt positioning discrepancies
and clearances between the sleeve and screw, potentially hindering the proportional
distribution of loads among the bolts through the tower base plate. However, the intro-
duction of baffles not only substantially enhances the structural load-bearing capacity
but also mitigates the impact of these factors on force transmission.

Recommendations and Future Perspectives:
Currently, there are various methods to address the issue of uneven settlement in

the foundations of transmission line towers, but the results have not been entirely satis-
factory. While this paper proposes an adjustable foundation bolt as a solution and has
achieved some success, there are still some shortcomings in the research process. Areas that
require further investigation include the following: 1⃝ The need to expand the applicability
conditions of the adjustable foundation bolt device to allow for more diverse distribution
forms of foundation bolts on a single support and to make the device usable in a wider
range of scenarios. 2⃝ The need for further research on methods to enhance the structural
load-bearing capacity. 3⃝ The need to take appropriate measures to mitigate or avoid stress
concentration problems, ensuring the safety and reliability of the structure.
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