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Abstract: Aluminum alloy offers the advantages of being lightweight, high in strength, corrosion-
resistant, and easy to process. It has a promising application prospect in large-span space structures,
with its primary application form being single-layer reticulated shells. In this study, shaking table
tests were conducted on a 1/25 scale aluminum alloy single-layer spherical reticulated shell structure.
A finite element (FE) model of the reticulated shell structure was established in Ansys. Compared
with the experimental results, the deviation in natural frequency, acceleration amplitude, and dis-
placement amplitude was less than 20%, confirming the validity of the model. An extensive analysis
of the various rise–span ratios and connection constraints of a single-layer spherical reticulated shell
structure was carried out using the proposed FE model. The experimental and simulation results
showed that as the rise–span ratio of the aluminum alloy reticulated shell increases, the natural fre-
quency of the reticulated shell structure also increases while the dynamic performance decreases. The
connection of the circumferential members changes from a rigid connection to a hinged connection.
The natural frequency of the reticulated shell structure is reduced by about 40% while the acceleration
and displacement response values are decreased by approximately 15%.

Keywords: aluminum alloys; reticulated structures; shaking table test; numerical analysis

1. Introduction

The reticulated shell is a common spatial structure that combines the mechanical
characteristics of a thin shell structure and a bar system. Reasonable design can help
distribute the bearing capacity of the bar evenly and enable it to withstand a large span.
The entire structure offers the benefits of high rigidity, minimal deformation, excellent
stability, and material conservation [1–3].

Aluminum alloy material offers advantages such as high strength, good corrosion
resistance, low maintenance cost, strong plasticity, and a high recycling rate [4,5]. Therefore,
the aluminum alloy spatial reticulated shell structure is not only used in large public
buildings such as stadiums, international convention and exhibition centers, and museums
but also holds promising application prospects in corrosive environments like storage tanks
for petrochemical products, mountain plateaus, and coastal swimming pools [6–8].

Since the 1940s, researchers have conducted comprehensive studies on the structure
of aluminum alloys. In the past 80 years, scientific research in this field has made signifi-
cant progress, covering material properties, member calculations, joint connections, fire

Buildings 2024, 14, 1354. https://doi.org/10.3390/buildings14051354 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings14051354
https://doi.org/10.3390/buildings14051354
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://doi.org/10.3390/buildings14051354
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings14051354?type=check_update&version=2


Buildings 2024, 14, 1354 2 of 24

protection design, and overall calculation results [9–11]. Ramberg proposed a new con-
stitutive relationship for an aluminum alloy, i.e., the Ramberg–Osgood model [12], while
the European ECCS (European Convention for Constructional Steelwork) determined the
overall stability coefficient of aluminum alloy beams through experiments and theories [13].
Iranian, Japanese, and other researchers have discussed the damping characteristics of
reticulated shell structures, finite element theoretical calculations, and actual analysis meth-
ods in the mode decomposition response spectrum method [14–16]. Based on previous
research, several design standards for aluminum alloy structures have been developed.
The two most commonly used standards are the Eurocode EN 1999-1-1 (EC9) [17] and the
American specification ADM 2020 [18].

The bearing capacity of the reticulated shell structure is typically determined by sta-
bility, with the stability of the aluminum alloy components and connections being crucial
factors that affect the overall stability of the structure [19–21]. Guo et al. conducted numer-
ous axial compression tests on aluminum alloy members. Based on their findings, they
proposed a recommended stability coefficient value for aluminum alloy axial compression
members [22–24]. Guy et al. conducted axial load tests on 30 specimens of 6082-T6 alu-
minum alloy and proposed a cylindrical curve suitable for the axial compression buckling
failure of 6082-T6 aluminum alloy extrusion members [25]. Lin et al. conducted axial
compression tests on H-shaped aluminum alloy members made of 7075-T6 and proposed
a new extramural buckling curve to estimate the flexural buckling-bearing capacity of
high-strength extruded members [26]. Mashrah et al. introduced a novel dovetail joint for
a single-layer reticulated shell structure, demonstrating outstanding performance under
various axial loads and bending moments [27]. Wang et al. investigated the bending
performance test of aluminum alloy composite plate joints. The results indicated that the
joints showed excellent bending stiffness and bending capacity [28].

Due to the low elastic modulus of aluminum alloy, it is susceptible to large deformation.
Therefore, the issue of stability in aluminum alloy reticulated shells must be addressed
seriously [29–32]. Zhe et al. [33,34] conducted an experimental study on the buckling
characteristics of reticulated shells with aluminum alloy plate joints. In order to enhance the
buckling strength of aluminum alloy spherical shells with plate joints, Zhu et al. proposed
a shape optimization method using a genetic algorithm to maximize the nonlinear buckling
load [35]. Li et al. established a finite element analysis model of the full-scale reticulated
shell plus the roof system and analyzed the impact of the roof system on the static stability of
the full-scale reticulated shell [36]. Willem et al. determined the superior type of reticulated
shell in terms of material efficiency by comparing the minimum weights of various dome
types [37]. In the past two decades, researchers have conducted extensive studies on
spatial steel structures. Currently, the seismic behavior of the spatial steel structures is
relatively well understood. These research and design results can provide useful references
for studying aluminum alloy space structures [38,39].

Due to the heat-affected zone of the aluminum alloy, welding will significantly reduce
the strength and plasticity of the aluminum alloy. In most cases, the plate mechanical con-
nection node will be used. With advancements in the welding process, utilizing aluminum
alloy welded connections can significantly enhance manufacturing quality and decrease
production costs. Therefore, in this study, shaking table tests were conducted on a 1/25
scale aluminum alloy single-layer spherical reticulated shell with fully welded connections.
A finite element (FE) model of the reticulated shell structure was established in Ansys,
and its validity was verified against experimental results. An extensive analysis of the
various rise–span ratios and connection constraints of a single-layer spherical reticulated
shell structure was carried out using the proposed FE model.

2. The Shaking Table Test Program
2.1. The Design of the Shaking Table Test Structure Model

A left-sided single-inclined-rod Schwedler-type single-layer spherical reticulated shell
was selected as the prototype structure. The span, height, and rise–span ratio of the
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prototype structure were 35.2 m, 14.2 m, and 0.4, respectively. 6061-T6 aluminum alloy
was used in the prototype structure. Considering the conditions of the shaking table
test, the similarity ratio of length was determined as 1:25, the similarity ratio of elastic
modulus was determined as 1:1, the similarity ratio of acceleration was determined as
4:1, and the similarity ratio of mass was determined as 1:625. The simplified single-layer
reticulated shell structure contained 73 joints and 204 components. According to the
principle of stiffness equivalence of components, the cross-sectional dimensions of the
radial, circumferential, and oblique aluminum alloy members of the scaled aluminum alloy
reticulated shell model were □8 × 8 × 1 mm. In order to ensure the connection quality
between components, the MIG (Melt inert-gas welding) butt welding process was used
for aluminum alloy components. The dimensions of the scaled model and the fabricated
model are shown in Figure 1.
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2.2. Material Properties

According to the Chinese standards (GB/T 228.1-2010 and GB 50429-2007) [40,41], if
the material test sample is a square tube with a small outer diameter, the tubular sample can
be directly used for a mechanical tensile test. The tensile testing of 6061-T6 aluminum alloy
tubular profiles with a thickness of 1 mm was conducted to determine the properties of the
aluminum alloy in this study. The tensile test was conducted using the DNS300 electro-
hydraulic servo universal testing machine. The force sensor measured the tension while the
extensometer measured the longitudinal strain of the coupons. The loading rate for the test
was 2 mm/min, and the testing device and the fracture surfaces of 6 broken specimens are
depicted in Figure 2. It can be found from Figure 2b that the necking phenomenon appeared
at the fracture of the coupons, indicating that the aluminum alloy tubular profile exhibited
a certain level of plasticity. The stress–strain curves of the 6 tensile coupons are displayed
in Figure 3. The average values of yield strength, ultimate strength, and elongation of the
6 tensile coupons were 224.16 MPa, 237.43 MPa, and 6.33%, respectively. The test results
show that the strength of the 6061-T6 aluminum alloy meets the test requirements, and the
results can be used in FE model.
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2.3. Test Setup and Measurement

In this study, a 20T electric shaking table was used. The technical parameters of the
shaking table are shown in Table 1, and the shaking table test equipment is depicted in
Figure 4. In order to measure the responses of dynamic characteristics including accelera-
tion, displacement response, and strain changes of the model structure under earthquake
action, various sensors were arranged in the area where the model structure was obviously
deformed and the stiffness changed significantly. Accelerometers and cable displacement
transducers were installed in the 1/12 area of the scale model of the reticulated shell,
and strain gauges were installed in the 1/6 area of the scale model. The displacement
transducers, strain gauges, and accelerometers were arranged as shown in Figure 5.
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Table 1. Technical parameters of shaking table.

Technical
Parameter Table Size Maximum

Displacement
Maximum
Velocity

Maximum
Acceleration

Working
Frequency

Degree of
Freedom

in Control

Index value 1500 × 1500 mm 100 mm 1.8 m/s 750 m/s2 1~2600 Hz
3-dimensional
with 6 degrees

of freedom
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The scale model of the test used the method of underweight counterweight to achieve
dynamic similarity. The actual mass of the scale model was 3.88 kg, and the counterweight
needed to be increased to 15.06 kg. The counterweight was increased by attaching sandbags
at the joints, with 0.251 kg of sandbags attached at each joint from joint 1 to joint 60. The
total station was used to measure the actual joint coordinates of the scale model. The
measurement results indicate that the maximum difference between the spatial geometric
position of the welded joints and the theoretical value was 3.9 mm. This suggests that the
quality and accuracy of the welding process were exceptionally high, reducing the error
caused by the initial defect of the reticulated-shell scale model.
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2.4. Input Ground Motion and Working Conditions

The shaking table test is an irreversible damage accumulation test. It can effectively
stimulate the structure and measure the dynamic response, which is essential for making a
reasonable assessment of the seismic performance of the structure. Therefore, the seismic
wave should be selected scientifically and rationally. By observing the degree of fit of the
main periodic points on the seismic wave response spectrum, the appropriate waveform is
selected. According to the specification requirements [42], the El-Centro natural seismic
wave, Taft natural seismic wave, and the Wenchuan artificial seismic wave were selected
for loading in the shaking table test. The amplitude of each wave was adjusted to the target
value (70 gal), and then, the response spectrum analysis with a damping value of 5.0% was
performed to generate the response spectrum curve. The comparison of the seismic wave
response spectrum and the Chinese standard response spectrum is shown in Figure 6.
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The peak acceleration value was adjusted based on the reaction acceleration, and the
time interval was adjusted as per the integral step size. According to the test similarity
constant, the reaction acceleration was amplified by four times, and then, the test was
conducted with seven different peak accelerations. Before loading the seismic wave,
the model structure was scanned with 50 cm/s2 sine white noise to record the dynamic
characteristics of the model structure. The working conditions of the shaking table test are
presented in Table 2.

Table 2. Working conditions.

Number Seismic Intensity Seismic
Wave

Designed Acceleration
Value (cm/s2) Testing Item

1 The first white noise scanning - 50 Natural frequency and damping

2 Small earthquake of 7◦ Wenchuan 50 × 4 = 200 Acceleration and strain

3 Small earthquake of 7◦ Taft 50 × 4 = 200 Acceleration and strain

4 Small earthquake of 7◦ EI-Centro 50 × 4 = 200 Acceleration and strain

5 The second white noise scanning - 50 Natural frequency and damping
6 Middle earthquake of 7◦ Wenchuan 100 × 4 = 400 Acceleration and strain
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Table 2. Cont.

Number Seismic Intensity Seismic
Wave

Designed Acceleration
Value (cm/s2) Testing Item

7 Middle earthquake of 7◦ Taft 100 × 4 = 400 Acceleration and strain

8 Middle earthquake of 7◦ EI-Centro 100 × 4 = 400 Acceleration and strain

9 The third white noise scanning - 50 Natural frequency and damping
10 Small earthquake of 8◦ Wenchuan 150 × 4 = 600 Acceleration and strain

11 Small earthquake of 8◦ Taft 150 × 4 = 600 Acceleration and strain

12 Small earthquake of 8◦ EI-Centro 150 × 4 = 600 Acceleration and strain

13 The fourth white noise scanning - 50 Natural frequency and damping
14 Middle earthquake of 8◦ Wenchuan 200 × 4 = 800 Acceleration and strain

15 Middle earthquake of 8◦ Taft 200 × 4 = 800 Acceleration and strain

16 Middle earthquake of 8◦ EI-Centro 200 × 4 = 800 Acceleration and strain

17 The fifth white noise scanning - 50 Natural frequency and damping
18 Large earthquake of 8◦ Wenchuan 300 × 4 = 1200 Acceleration and strain

19 Large earthquake of 8◦ Taft 300 × 4 = 1200 Acceleration and strain

20 Large earthquake of 8◦ EI-Centro 300 × 4 = 1200 Acceleration and strain

21 The sixth white noise scanning - 50 Natural frequency and damping
22 Middle earthquake of 9◦ Wenchuan 400 × 4 = 1600 Acceleration and strain

23 Middle earthquake of 9◦ Taft 400 × 4 = 1600 Acceleration and strain

24 Middle earthquake of 9◦ EI-Centro 400 × 4 = 1600 Acceleration and strain

25 The seventh white noise scanning - 50 Natural frequency and damping
26 Middle earthquake of 10◦ Wenchuan 620 × 4 = 2480 Acceleration and strain

27 Middle earthquake of 10◦ Taft 620 × 4 = 2480 Acceleration and strain

28 Middle earthquake of 10◦ EI-Centro 620 × 4 = 2480 Acceleration and strain

29 The eighth white noise scanning - 50 Natural frequency and damping

3. Shaking Table Test Results
3.1. Loading Process and Failure Modes

Figure 7 shows the damage state of the specimen after the last excitation was completed.
When the specimen was subjected to working conditions 2~4 (200 gal), the table shaking was
mild, with slight variations noted in the accelerometer and displacement meter readings, as
well as in the strain gauge measurements. The calculated natural frequencies of the model
showed no significant change, indicating that the components of the structure were in an
elastic state. When the specimen was subjected to working conditions 18~20 (1200 gal), the
displacement response and vibration amplitude of the scale model increased significantly,
leading to strong shaking in the structural joints and members. Through the white noise
frequency sweep, it was observed that the natural frequency of the scale model significantly
decreased compared to the previous working condition. This suggests that certain members
had reached the plastic state, leading to partial damage in the overall reticulated-shell scale
model. When the specimen was subjected to working conditions 22~24 (1600 gal), the
displacement response and vibration amplitude of the scale model increased significantly.
The counterweight sandbags exhibited severe shaking and the members strongly vibrated.
The members near the joints numbered 7, 15, 37, and 44 had slight yielding, and the outer
ring inclined member near the bottom had the largest deformation. This shows that the
plastic deformation of the structure increases with the amplitude of the seismic wave. The
natural frequency of the reticulated-shell scale model had been significantly reduced, and
the degradation of structural stiffness was more pronounced. When the specimen was
subjected to working conditions 26~28 (2480 gal), the vibration of the scale model and the
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counterweight sandbag was very intense. After loading, the deformation of the oblique bar
at the bottom of the reticulated-shell scale model had further increased, and some joints
were also deformed.
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Figure 7. The failure mode of the scaled model.

3.2. Analysis of Structure’s Dynamic Characteristics

In order to test the dynamic characteristics of the structure, the white noise of the sine
wave was used to sweep the frequency. By analyzing the structural feedback signal, the
variation trend of the natural frequency f of the reticulated-shell scale model under various
working conditions was derived and is shown in Figure 8. When the acceleration amplitude
of the input seismic wave gradually increases, the natural frequency of the reticulated-shell
scale model will show a decreasing trend, the period will also become longer, and the
damage of the model will gradually increase. When the acceleration amplitude is 2480 gal,
the frequency in the X direction of the model is reduced by 2.96% compared with the
initial frequency. Under the acceleration amplitude, the stiffness of the scale model of the
reticulated shell is obviously weakened so that some of the model members are in the state
of plastic work.
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The damping ratio (ξ) indicates the structure’s ability to gradually reduce vibration
after being excited by oscillation. It also serves as an index to describe the rate of energy
dissipation of the structure during loading. In this paper, the damping ratio of the scaled
structure is calculated using the half-power method. This method involves determining the
value from the frequency range extending from the peak amplitude to 1/

√
2 of the peak

amplitude. The calculation of the damping ratio is illustrated in Formula (1).

ξ =
f2 − f1

f2 + f1
(1)

Here, f 1 and f 2 represent the two frequencies of the intersection of the horizontal line of the
amplitude peak divided by

√
2 and the response curve.
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It can be seen from Figure 8 that as the earthquake intensity increases, the damping
ratio of the model will gradually increase. In the range of small acceleration amplitudes, the
damping ratio will not change significantly. This indicates that during the loading process
of each working condition, the members of the reticulated-shell scale model will gradually
buckle and deform, leading to a further reduction in stiffness. As the damage to the model
increases, its damping ratio will also increase, leading to higher energy consumption in the
internal structure.

When the mass of the model remains unchanged, the structural stiffness k is propor-
tional to the square of the natural frequency f, and the natural frequency of the model will
change with the change in structural stiffness. The stiffness degradation rate η is used
to measure the specific degree of this change, and the calculation formula is shown in
Formula (2).

η =
k−k0

k0
=

f 2 − f0
2

f0
2 (2)

Here, k represents the stiffness of the model after loading, k0 represents the initial stiffness,
f represents the natural frequency of the model after loading, and f 0 represents the initial
natural frequency.

According to Formula (2), the stiffness degradation curve of the reticulated-shell scale
model is obtained as shown in Figure 8. In the first seven white noise sweeps, the rate of
decline in the overall stiffness of the model decreases rapidly after the earthquake. The
maximum decrease in the X direction is 5.84%, indicating a slight decrease in the overall
stiffness of the reticulated-shell scale model after the earthquake.

3.3. Seismic Acceleration Response of Scale Structure

In this shaking table test, the acceleration response of the reticulated-shell scale model
under the action of the El-Centro seismic wave was larger compared to the other two
selected seismic waves. Therefore, this paper discusses the acceleration response of the
reticulated-shell scale model under the action of the El-Centro seismic wave. Under the
action of middle earthquakes of 7◦ and 9◦ in the X direction, the acceleration response time
history curves of joints No. 0, 13, 37, and 61 of the scaled model are illustrated in Figure 9.
The acceleration response amplitude under the acceleration amplitude of the seismic wave
is shown in Figure 10.
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It can be concluded from Figure 9 that the acceleration response time history curve of
the node of the reticulated-shell scale model does not change significantly under the action
of a middle earthquake of 7◦ to 9◦. The analysis indicates that the stiffness of the reticulated-
shell scale model is not significantly affected and the members of the scale model remain in
an elastic state. The acceleration response value of the joint in the reticulated-shell scale
model is independent of the joint elevation. The acceleration response of the intermediate
displacement joint in the reticulated shell model is greater and decreases towards both
sides of the structure. It can be concluded from Figure 10 that the El-Centro seismic wave
elicits the strongest acceleration response in the reticulated-shell scale model, followed by
the Taft seismic wave, with the Wenchuan seismic wave showing the weakest response.

3.4. Seismic Displacement Response of Scale Structure

The displacement response of the scale model of the reticulated shell can be obtained
using cable displacement transducers. The displacement of the joint is relative to the
displacement of the horizontal sliding table. The displacement responses of joints No. 0, 13,
37, and 61 in the scaled model are depicted in Figure 11. Under the action of three types
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of seismic waves, Figure 12 illustrates the variation in the displacement amplitudes of the
joints with respect to the seismic wave’s amplitude.
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It can be concluded from Figure 11 that the displacement response time history curve of
the joint of the reticulated-shell scale model does not change significantly. The model does
not exhibit plastic deformation after experiencing a middle earthquake of 9◦. According to
Figure 12, the responses of the reticulated-shell scale model to seismic waves of different
amplitudes are essentially the same. The displacement amplitude of the model increases
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with the acceleration amplitude of the seismic wave, and the relative displacement of each
joint shows a positive growth trend.

3.5. Strain Analysis of Structure

To more accurately represent the strain at the measuring point of the model, the
average value of the strain gauge data on each component is used for analysis. Typical
strain gauge readings of the key structural components are shown in Figure 13 under the
action of middle earthquakes of 7◦ and 9◦. It can be seen from Figure 13 that when the
acceleration of three types of seismic waves is subjected to a middle earthquake of 7◦, the
strain value of each component is less than 80. Among them, the average strain value of the
bar under the El-Centro seismic wave is the highest, followed by those of the Taft wave and
the Wenchuan wave. When the acceleration amplitude of the seismic wave reaches 1600 gal,
the strain values of each component increase by approximately four times. By analyzing the
strain values of each component, it can be determined that the strain response value of the
outermost ring member of the reticulated-shell scale model is the highest. As the height of
the reticulated shell increases, the strain value gradually decreases, and the strain response
at the vertex is the smallest. During the entire earthquake action in our experiments, only a
few aluminum alloy members experienced plastic deformation buckling while all members
did not reach the crack deformation stage.
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4. Numerical Simulation
4.1. Numerical Modelling

In this study, the seismic performance of an aluminum alloy single-layer spherical
reticulated shell structure was numerically modeled and validated using Ansys. The
bilinear model was used to replace the actual constitutive model of the material. The
modulus of elasticity of the aluminum alloy is 6.78 × 1010 N/m2, the yield strength is
2.24 × 108 N/m2, and the Poisson’s ratio is 0.33. The solid164 three-dimensional solid
element was used for finite element modeling and analysis. The element was composed
of eight nodes, each of which had nine degrees of freedom in each direction, including
displacement, velocity, and acceleration in X, Y, and Z directions. When the surface load
was applied to the model, it was applied to the element as a normal line. The model utilizes
the MultiZone method in the Modal module to partition the mesh and divides the geometry
into multiple regions to create a straightforward flow surface mesh. The specific model
and mesh division are shown in Figure 14. To better simulate the actual situation, the test
model used bolts to secure the bottom plate and the table of the reticulated shell together.
Therefore, when the boundary requirements were set by the finite element software, the
12 nodes of the outermost ring in the finite element model were fixed to restrict their
rotational and translational degrees of freedom. The structural damping ratios of the model
structure under the action of a fortification earthquake and a rare earthquake were 0.02 and
0.03, respectively.
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4.2. Verification of Numerical Model
4.2.1. Comparison of Modal Analysis Results

The first six vibration modes of the scale model are shown in Figure 15. It can be seen
from Figure 15 that the instability mode of the single-layer spherical reticulated shell is the
symmetrical depression of the central circumferential members. This results in irreversible
large deformation, causing the structure to lose its ability to continue bearing loads. A
comparison of natural frequencies between the experimental and FE aspects of the scale
model is presented in Table 3. All results were compared, and the predictive errors yielded
by the numerical model were all within 7%, demonstrating the validity of the FE model
and parameter analysis.



Buildings 2024, 14, 1354 14 of 24

Buildings 2024, 14, x FOR PEER REVIEW 14 of 24 
 

the scale model is presented in Table 3. All results were compared, and the predictive er-

rors yielded by the numerical model were all within 7%, demonstrating the validity of the 

FE model and parameter analysis. 

   
(a) First-order vibration mode (b) Second-order vibration mode (c) Third-order vibration mode 

   
(d) Fourth-order vibration mode (e) Fifth-order vibration mode (f) Sixth-order vibration mode 

Figure 15. The first six modes of the scale model. 

Table 3. Comparison of natural frequencies between experiment and FE model. 

Vibration Mode 
Natural Frequency (Hz) 

Deviation (%) 
Experiment FE 

First-order mode 87.45 92.42 5.68 

Second-order mode 87.51 92.46 5.66 

Third-order mode 124.92 132.21 5.84 

Fourth-order mode 125.34 132.22 5.49 

Fifth-order mode 133.76 138.49 3.54 

Sixth-order mode 154.19 163.89 6.29 

4.2.2. Comparison of Acceleration Time History Curves 

The transient structural operation analysis was conducted using the FE software AN-

SYS 2021. The acceleration amplitude of the El-Centro seismic wave was adjusted to 400 

gal and 1600 gal, and the acceleration time history response of the scale model was ob-

tained by inputting along the X direction of the bottom plate. The time history curves of 

acceleration under the El-Centro wave are illustrated in Figure 16. The comparison of peak 

acceleration values under the middle earthquakes of 7° and 9° is presented in Table 4.  

Figure 15. The first six modes of the scale model.

Table 3. Comparison of natural frequencies between experiment and FE model.

Vibration Mode
Natural Frequency (Hz)

Deviation (%)
Experiment FE

First-order mode 87.45 92.42 5.68

Second-order mode 87.51 92.46 5.66

Third-order mode 124.92 132.21 5.84

Fourth-order mode 125.34 132.22 5.49

Fifth-order mode 133.76 138.49 3.54

Sixth-order mode 154.19 163.89 6.29

4.2.2. Comparison of Acceleration Time History Curves

The transient structural operation analysis was conducted using the FE software
ANSYS 2021. The acceleration amplitude of the El-Centro seismic wave was adjusted to
400 gal and 1600 gal, and the acceleration time history response of the scale model was
obtained by inputting along the X direction of the bottom plate. The time history curves of
acceleration under the El-Centro wave are illustrated in Figure 16. The comparison of peak
acceleration values under the middle earthquakes of 7◦ and 9◦ is presented in Table 4.

According to the acceleration time history curve of the test and numerical analysis
in Figure 16, under the action of a middle earthquake of 7◦, the change trends of the time
history response curve of the numerical simulation and the test are essentially the same.
Under the influence of a middle earthquake of 9◦, there is a significant deviation in the
trend, but the magnitudes of the observed peak point and the times of the response peak
point are similar. In general, the curve trend and the peak time of the acceleration time
history response of the model obtained via the FE method are similar to the experimental
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acceleration response characteristics. This indicates that the FE method can effectively
simulate the vibration response of the actual structure during an earthquake.
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Centro wave.

Table 4. The comparison of peak acceleration of the scale model under El-Centro wave (unit: gal).

Measuring
Point Position

The Action of Middle Earthquake of 7◦ (400 gal) The Action of Middle Earthquake of 9◦ (1600 gal)

Experiment FE Deviation (%) Experiment FE Deviation (%)

No. 0 507.33 452.69 10.77 1986.51 1794.24 9.68

No. 13 549.64 488.75 11.08 2282.48 2023.74 11.34

No. 37 476.13 430.81 9.52 1897.38 1692.16 10.80

According to Table 4, under the action of a middle earthquake of 7◦ and middle
earthquake of 9◦, the peak deviations of the acceleration response between the FE value
and the experimental value are approximately 11.08% and 11.34%, respectively. Compared
to the response values of the shaking table test, the FE calculation values are relatively
small. The primary reason is that the connections set in the boundary of the FE model are
completely rigid, with no relative rotation between the rods, and the material is an ideal
elastic–plastic body. However, in the actual test, the connection may be affected by factors
such as the bolt fixation of the bottom plate and the welding quality, which can result in
deviations in the shaking table test results.

4.2.3. Comparison of Displacement Time History Curves

Under the action of X-direction El-Centro seismic waves with a middle earthquake
of 7◦ (400 gal) and middle earthquake of 9◦ (1600 gal), the displacement responses of the
No. 0, 13, and 37 joints of an aluminum alloy single-layer spherical reticulated-shell scale
model were compared, drawing from the shaking table test and numerical analysis. The
time history curves of displacement are illustrated in Figure 17. The comparison of peak
displacement values is presented in Table 5.



Buildings 2024, 14, 1354 16 of 24

Buildings 2024, 14, x FOR PEER REVIEW 16 of 24 
 

time history curves of displacement are illustrated in Figure 17. The comparison of peak 

displacement values is presented in Table 5. 

 

Figure 17. The comparison of displacement time history curves of the scale model under El-Centro 

wave. 

Table 5. The comparison of peak displacement of the scale model under El-Centro wave (unit: mm). 

Measuring Point Position 

The Action of Middle Earthquake of 7° 

(400 gal) 

The Action of Middle Earthquake of 9° (1600 

gal) 

Experiment FE Deviation (%) Experiment FE Deviation (%) 

No.0 2.11 2.39 13.27 13.15 15.43 17.34 

No.13 2.56 2.95 15.23 15.28 18.27 19.57 

No.37 1.72 1.97 14.53 10.94 12.61 15.27 

It can be concluded from Figure 17 and Table 5 that under the action of the middle 

earthquake of 7° and middle earthquake of 9°, the maximum displacement errors between 

the FE calculation value and the shaking table test value were approximately 15.23% and 

19.57%, respectively. The shaking table test value was slightly larger than the theoretical 

value obtained from the FE calculation. The reasons for the error may include the material 

selection, structural dynamic characteristics, joint welding quality, and bearing connec-

tion mode. In short, the error was reasonable and within an acceptable range, so it is fea-

sible to use finite element software to replicate the shaking table test. Through the FE 

modeling of the reticulated-shell scale model test, the dynamic response values obtained 

corresponded to the data collected in the shaking table test. This indicates that the FE 

model can effectively reflect the stress and deformation of the reticulated-shell scale model 

under earthquake conditions during tests. 

  

Figure 17. The comparison of displacement time history curves of the scale model under El-
Centro wave.

Table 5. The comparison of peak displacement of the scale model under El-Centro wave (unit: mm).

Measuring
Point Position

The Action of Middle Earthquake of 7◦ (400 gal) The Action of Middle Earthquake of 9◦ (1600 gal)

Experiment FE Deviation (%) Experiment FE Deviation (%)

No.0 2.11 2.39 13.27 13.15 15.43 17.34

No.13 2.56 2.95 15.23 15.28 18.27 19.57

No.37 1.72 1.97 14.53 10.94 12.61 15.27

It can be concluded from Figure 17 and Table 5 that under the action of the middle
earthquake of 7◦ and middle earthquake of 9◦, the maximum displacement errors between
the FE calculation value and the shaking table test value were approximately 15.23% and
19.57%, respectively. The shaking table test value was slightly larger than the theoretical
value obtained from the FE calculation. The reasons for the error may include the material
selection, structural dynamic characteristics, joint welding quality, and bearing connection
mode. In short, the error was reasonable and within an acceptable range, so it is feasible to
use finite element software to replicate the shaking table test. Through the FE modeling of
the reticulated-shell scale model test, the dynamic response values obtained corresponded
to the data collected in the shaking table test. This indicates that the FE model can effectively
reflect the stress and deformation of the reticulated-shell scale model under earthquake
conditions during tests.

5. Parametric Studies
5.1. Dynamic Response of Reticulated Shell Structure under Different Rise–Span Ratios
5.1.1. General

Based on the test results, the numerical simulation method was employed to conduct
a comprehensive FE analysis of the aluminum alloy reticulated shell’s structure. This
section further analyzes the influence of different rise–span ratios on the spatial effect of
the structure under the influence of a middle earthquake of 9◦ based on the FE modeling in
Section 4.1. The models of four different rise–span ratios are shown in Figure 18.
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5.1.2. Comparison of Natural Frequency

The first six natural frequencies of the reticulated shell structure with four different
rise–span ratios are presented in Table 6. It can be seen from Table 6 that the first two
natural frequencies of MSJ-2, MSJ-3, and MSJ-4 are very close. Compared with MSJ-2, the
first-order frequency of MSJ-1 is reduced by 26.26%. From the third order, as the rise–span
ratio increases, the natural frequency of the model gradually increases, indicating that the
rise–span ratio has a significant influence on the stiffness of the reticulated shell model.

Table 6. Comparison of natural frequencies of four different brace arrangements (unit: Hz).

VIBRATION MODE MSJ-1 (mm) MSJ-2 MSJ-3 (mm) MSJ-4

First-order mode 73.61 92.94 92.42 92.28

Second-order mode 73.61 92.94 92.46 92.28

Third-order mode 76.99 109.45 132.21 146.16

Fourth-order mode 101.51 111.51 132.22 146.16

Fifth-order mode 101.51 111.51 138.49 153.5

Sixth-order mode 105.21 133.83 163.89 176.03

5.1.3. Comparison of Acceleration Time History Curves

In order to compare the seismic performance of four different rise–span ratios in a
reticulated shell structure, the acceleration time history curves of the four specimens under
a middle earthquake of 9◦ are shown in Figure 19. The comparison of peak acceleration
values is shown in Figure 20.
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According to Figures 19 and 20, under the action of a middle earthquake of 9◦, the
acceleration amplitude of MSJ-4 is 22.19%, 24.39%, and 23.72% higher than that of MSJ-1 at
joints 0, 13, and 37, respectively. With the increase in the rise–span ratio of the reticulated
shell structure, the acceleration amplitude of the corresponding joints also increases, and
the increase is significant. The acceleration amplitude of different joints in the reticulated
shell structure follows the same trend as that of MSJ-3.

5.1.4. Comparison of Displacement Time History Curves

In order to compare the seismic performance of four different rise–span ratios in a
reticulated shell structure, the displacement time history curves of the four specimens under
a middle earthquake of 9◦ are shown in Figure 21. The comparison of peak displacements
is shown in Figure 22.

According to Figures 21 and 22, the displacement amplitude of MSJ-4 is 25.53%, 25.28%,
and 25.32% larger than that of MSJ-1 at joints 0, 13, and 37, respectively. With the gradual
increase in the rise–span ratio of the reticulated shell structure, the displacement amplitude
of the corresponding joint also increases, and the increase is relatively significant. The
displacement amplitude of various joints in the reticulated shell structure follows a similar
trend to that of MSJ-3, and its dynamic performance is relatively similar.
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5.2. Dynamic Response of Reticulated Shell Structure under Different Connection Constraints
5.2.1. General

According to the FE model in Section 4.1, MSJ-5 modifies the connection of the
reticulated-shell scale model based on MSJ-3. It changes the circumferential members
of joints No. 1-60 from rigid connections to hinged connections. Other members still
maintain the original connection and do not change any other parameter settings. Un-
der the action of a middle earthquake of 9◦, the X-direction EI-Centro seismic wave is
utilized to analyze the dynamic performance of the aluminum alloy single-layer spherical
reticulated shell.

5.2.2. Comparison of Natural Frequency

The first six vibration modes of MSJ-5 are shown in Figure 23. It can be seen from
Figure 23 that the change in vibration mode is relatively consistent compared to MSJ-3,
with no significant variation. A comparison of the natural frequencies of reticulated shell
models under different connections is presented in Table 7. It can be concluded from Table 7
that the first six natural frequencies of the hinged model structure are lower than those of
the rigid model, and the maximum decrease is 50.95% for the sixth order. This indicates
that the connection mode of the circumferential members in the model has been altered
from rigid connection to hinged connection. This change significantly impacts the overall
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stiffness of the structure, reducing the natural frequency. However, the vibration mode
remains largely unchanged.
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Table 7. Comparison of natural frequencies of reticulated shell models under different connections.

Vibration Mode
Natural Frequency (Hz)

Deviation (%)
MSJ-3 (Rigid Connection) MSJ-5 (Hinged Connection)

First-order mode 92.42 57.94 37.31

Second-order mode 92.46 58.71 36.5

Third-order mode 132.21 70.17 47.05

Fourth-order mode 132.22 71.32 46.06

Fifth-order mode 138.49 80.00 42.23

Sixth-order mode 163.89 80.38 50.95

5.2.3. Comparison of Acceleration Time History Curves

In order to compare the seismic performance of reticulated shell structures with two
different connections, the acceleration time history curves of the two specimens under a
middle earthquake of 9◦ are shown in Figure 24. The comparison of peak acceleration values
is presented in Table 8. According to Figure 24 and Table 8, changing the connection of the
circumferential component to hinged results in an increase in the acceleration amplitude
of the corresponding joint. The acceleration amplitudes at joints 0, 13, and 37 are 16.72%,
10.15%, and 10.59% larger, respectively.
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Table 8. The comparison of peak accelerations of the reticulated shell structures with differ-
ent connections.

Measuring Point Position
Specimens

Deviation (%)
MSJ-3 (Rigid Connection) MSJ-5 (Hinged Connection)

No. 0 1794.24 2094.32 16.72

No. 13 2023.74 2229.12 10.15

No. 37 1692.16 1871.38 10.59

5.2.4. Comparison of Displacement Time History Curves

The displacement time history curves of the specimens with two different connec-
tions under a middle earthquake of 9◦ are shown in Figure 25. The comparison of peak
displacement values is presented in Table 9. When the ring component is changed to a
hinged connection, the displacement amplitude of the corresponding joint increases. The
displacement amplitudes at joints 0, 13, and 37 are increased by 17.17%, 16.37%, and 17.53%,
respectively. This shows that the dynamic performance of the reticulated shell structure
will be reduced after the connection is changed to a hinge.
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Table 9. The comparison of peak displacements of the reticulated shell structures with differ-
ent connections.

Measuring Point Position
Specimens

Deviation (%)
MSJ-3 (Rigid Connection) MSJ-5 (Hinged Connection)

No. 0 15.43 18.08 17.17

No. 13 18.27 21.26 16.37

No. 37 12.61 14.82 17.53

6. Conclusions

In this study, shaking table tests were conducted on a 1/25 scaled fully welded
single-layer spherical reticulated shell structure. An FE model of the single-layer spherical
reticulated shell structure was created in Ansys, and its accuracy was confirmed through
comparison with experimental results. Compared with experiments, an extended param-
eter analysis of the various rise–span ratios and connection constraints of a single-layer
spherical reticulated shell structure was conducted using the proposed FE model. The main
conclusions of this study and the outlook on the use of aluminum alloys in structures are
summarized as follows:

(1) As the seismic wave acceleration amplitude increases, the damage to reticulated
shell structures gradually accumulates. This leads to a decrease in natural frequency and
stiffness while the damping ratio and energy consumption increase.

(2) Under the action of an earthquake, the displacement and acceleration responses at
the top of the reticulated shell structure are greater in the following two cycles. The strain
on the platform increases as the height of the reticulated shell increases, reaching a peak
before gradually decreasing.

(3) With the increase in the rise–span ratio of the aluminum alloy reticulated shell, the
natural frequency of the structure increases while the dynamic performance decreases.

(4) The connection of the circumferential components changes from a rigid connection
to a hinged connection. The natural frequency of the reticulated shell structure is reduced
by about 40%. Additionally, the acceleration and displacement response values decrease by
approximately 15%, leading to a reduction in dynamic performance.

(5) Based on the review and summary of previous studies, there is a greater research
and application value in utilizing 3D printing technology for constructing innovative
aluminum alloy structures and employing fiber-reinforced polymer (FRP) for strengthening
existing aluminum alloy structures in the future.
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