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Abstract: Grouting sleeves are widely used in the field of assembled construction. The present study
aims to investigate the reliability of grouting sleeves under large-deformation repeated tension and
compression after high temperature, considering the influences of steel bar diameter, the cooling
method, and the protective layer. Through experimentation on 28 test pieces, we analyzed the
bonding performance of the test pieces at different high temperatures. The results indicate that within
the temperature range of 20–800 ◦C, the bond performance of the test pieces declines by no more than
9.8%. However, upon reaching a temperature of 1000 ◦C, the bond performance of the test pieces
decreases by over 33.7%, with the compressive strength of the grout material reduced to only 27.50%
of that kept at 20 ◦C. Employing larger-diameter steel bars is advantageous for maintaining the bond
performance of the test pieces. Natural cooling shows relatively good bond performance, although
its influence is not significant. Furthermore, the protective layer effectively attenuates the heating
rate of the test pieces, thus safeguarding their bond performance. Scanning electron microscopy
(SEM) analysis reveals that the decomposition of C-H and C-S-H phases is the primary cause of
high-temperature degradation of the grouting material. Finally, a recommendation for the correlation
coefficient (k) between the average bond strength and the compressive strength of the grout material
is proposed, with a suggested value of k ≤ 2.58.

Keywords: grouting sleeve; high temperature; large strain of cyclic loading; prefabricated construction

1. Introduction

A grouting sleeve is a combination of connected steel bars (Figure 1) supporting
grouting materials and a sleeve body, which was invented by Alfred A. Yee [1] in the 1960s
and first used in the Ala Moana Hotel. Grouting sleeves are now widely used as connection
parts in the field of prefabricated buildings due to their strong stability, easy installation and
wide adaptability. Grouting sleeves promote the development of prefabricated buildings,
and so have attracted many researchers’ attention. Einea et al. [2] suggested that the
anchorage length of the reinforcement could be reduced to seven times the diameter of
the steel bars when the grouting materials possessed the required compressive strength.
Ling et al. [3] and Hosseini et al. [4] studied the internal spiral restraint effect on the
bonding stress–slip relationship of grouting sleeves. Alias et al. [5,6] studied the effects
of the anchorage length of the reinforcement, the diameter of the sleeve and the internal
structure of the grouting sleeve on the connection performance of grouting sleeves. Harajli
et al. [7] studied the local bonding stress–slip relationship between steel bars and high-
strength concrete under tensile loads. Haber et al. [8,9] studied the uniaxial tensile behavior
of two kinds of commercial mechanical joints under different loading conditions, which
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further confirmed the reliability of the grouting sleeve. Grouting sleeve test pieces have
also been employed in research on prefabricated deep beams, joint ends, corbels, and other
related areas [10,11]. In 2013, Zheng et al. [12,13] invented a new type of deformed seamless
steel pipe grouting sleeve (GDPS sleeve) and carried out a series of uniaxial tensile and
cyclic load tests. Their results showed that the GDPS sleeve can meet the unidirectional
tensile strength requirements of class I joint specified in JGJ107-2016 [14].
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Fire directly affects the stability of prefabricated building structures. In 2022 in China,
170,000 fires were reported in self-built residential buildings, 17,000 fires were reported
in high-rise buildings, and 18,000 fires were reported in various factories, resulting in a
total of 1185 deaths [15]. Building fire safety is directly related to people’s health and
property safety, so the fire resistance of buildings has always been the research focus
in the field of prefabricated buildings. Zhao et al. [16] and Xiao et al. [17] studied the
connection performance of the grouting sleeve under static and dynamic loads at high
temperatures and found that the temperature mainly affects the peak tensile strength
of the grouting sleeve and the failure mode of the connection. Liu et al. [18,19] studied
the influence of sleeve connection performance, and Zhang et al. [20,21] analyzed the
bonding characteristics of grouting sleeve connections at high temperatures. They both
found that the compressive strength of the grouting material decreases with the increase in
temperature, and the grouting sleeve is still elastic when the temperature is below 600 ◦C.
After the temperature exceeds 600 ◦C, the bonding strength of the grouting sleeve is lower
than the ultimate tensile strength of the connecting steel bars. In order to study the effect of
anchorage length on the tensile properties of the grouting sleeve after high temperature,
Zhu et al. [22] used a semi-grouting sleeve with a diameter of 16 mm HRB400 steel bars to
conduct a uniaxial tensile test at a high temperature, and found that when the temperature
reached 400 ◦C, the optimal reinforcement anchorage length was 110 mm (7 times the steel
bar’s diameter). Zhu et al. [23] and Li [24] conducted tensile performance tests of grouting
sleeves at high temperatures, and the results showed that a protective layer was useful for
improving the ductility and tensile strength of the grouting sleeve in a high-temperature
state. Chen et al. [25] and Zhang [26] conducted tensile tests on the grouting sleeve cooled
with two different methods (natural cooling and water cooling) after high temperature and
found that the naturally cooled grouting sleeve had better tensile performance than the
water-cooled one, but the difference was not remarkable.

The seismic performance is an important index to judge the reliability of grouting
sleeves, and the cyclic load test can reflect the seismic performance. Lin et al. [27] tested
grouting sleeves with uniaxial tensile loading, repeated tensile loading, high-stress cyclic
loading and large-strain cyclic loading. Yan et al. [28] studied the seismic performance of
concrete frame beam-column connections and found that the seismic performance of the
grouting sleeve connections was similar to that of the cast-in-place connections. Li et al. [29]
suggested that grouting sleeves containing threads and wedges could improve the anchor-
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ing performance of the sleeves under cyclic load. Zhao et al. [30] conducted a series of
experiments on the connection performance of grouting sleeves under large-strain cyclic
loading, and derived formulas for estimating energy absorption and effective friction coef-
ficients based on cumulative slip distance, grouting length and prestress. Zheng et al. [31]
carried out large-deformation repeated tension and compression tests on a defective grout-
ing sleeve, and found that when the anchorage length of the steel bars was five times the
diameter, the fracture failure of the steel bars occurred. In order to study the connection
performance of grouting sleeves under the combined action of an earthquake and fire,
Liu et al. [32,33] carried out large-deformation repeated tension and compression tests
on grouting sleeves with insufficient grouting materials in both room-temperature and
high-temperature environments.

It can be observed that there is relatively limited research on the tensile performance
of seamless steel pipe grouting sleeves under fire and cyclic loading conditions. Therefore,
this study aims to investigate the influence of temperature and cyclic loading on the bond
mechanical performance of seamless steel pipe grouting sleeves, providing insights for
the design of prefabricated buildings in fire protection and cyclic loading scenarios. Three
key influencing parameters are considered in this study, namely the steel bar diameter, the
presence of a specimen protective layer, and the cooling method, to examine their effects
on the bond performance of test pieces after exposure to high temperatures.

2. Experimental Program
2.1. Test Piece Preparation

Twenty-eight seamless steel pipe grouting sleeve connectors were made. The sleeve
body was made from Q345-type seamless steel pipe material (Figure 2a). As shown in
Figure 3, the outer diameter of the sleeve Dd was 45 mm, the inner diameter D was 37 mm,
the thickness t was 4 mm, the rib width a was 8.0 mm, the rib spacing b was 25 mm, and the
rib depth c was 1.5 mm. L was the length of sleeve. The anchorage length of every test piece
was taken as 7d. The geometric parameters of test pieces with different diameters are shown
in Table 1. Test piece sets were numbered according to the following criteria: “protective
layer thickness—cooling method—connection steel bar diameter—heating temperature”.
As shown in Figure 2b, C0 and C20 represent grouting layer thicknesses of 0 mm and
20 mm. N and W represent natural cooling and water cooling, respectively. d18, d20
and d22 represent diameters of the connecting steel bars of 18 mm, 20 mm and 22 mm.
The grouping of the test pieces and the experimental procedures are shown in Table 2.
Eighteen grouting material blocks with a volume of 40 mm × 40 mm × 160 mm were also
prepared to further understand the effect of grouting materials’ compressive performance
deterioration on the grouting sleeve’s mechanical properties after high temperature.
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Table 1. Test piece set geometrical parameters.

Test Piece Number d (mm) a (mm) La (mm) L (mm)

C20-N-d18 18 1.5 126 312

C0-N-d20
20 1.5 140 340C20-N-d20

C20-W-d20

C20-N-d22 22 1.5 154 368

Table 2. Main parameters of test pieces.

Group Test Piece Number Protective Layer (mm) Cooling Method Temperature (◦C)

1 C0-N-d20–200 ◦C/400 ◦C/600 ◦C/800 ◦C/1000 ◦C 0

Natural cooling 20/200/
400/600/

800/1000 *

2 C20-N-d18–20 ◦C/200 ◦C/400 ◦C/600 ◦C/800 ◦C/1000 ◦C

20
3 C20-N-d20–20 ◦C/200 ◦C/400 ◦C/600 ◦C/800 ◦C/1000 ◦C
4 C20-N-d22–20 ◦C/200 ◦C/400 ◦C/600 ◦C/800 ◦C/1000 ◦C
5 C20-W-d20–200 ◦C/400 ◦C/600 ◦C/800 ◦C/1000 ◦C Water cooling

* Group 1 and group 2 did not undergo 20 ◦C testing.

2.2. Materials

The test pieces are primarily composed of three materials: HRB400 ribbed steel bars,
seamless steel pipes and grouting materials.

HRB400 ribbed steel bars are used for the connecting steel bars, and their actual yield
stress and tensile strength are 485.20 MPa and 671.62 MPa, respectively. The sleeve was
made from Q345 precision seamless steel tubes with a measured ultimate tensile strength
of 490 MPa. All performance parameters met the requirements of the specification JGT
398-2019 [34]. The average compressive strength of the grouting material was measured to
be 102.3 MPa, meeting the requirements of GB/T 17671-2021 [35].

2.3. Design of Experiments
2.3.1. Heating and Cooling Programs

The heating equipment used in this experiment was a multi-functional experimental
furnace, as shown in Figure 4, and the test pieces were heated according to the standard
curve defined in ISO-834 [36,37]. The heating curve is shown in Figure 5.
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After the test pieces were heated to the preset temperature, the temperature was
kept stable for 60 min, and then the heating was stopped. Then, the naturally cooled test
pieces were placed directly into a 20 ◦C environment, while the water-cooled test pieces
were cooled with running water for 20 min immediately after removal from the furnace.
Then, the concrete protective layer was broken and we removed the test pieces, as shown
in Figure 6.
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2.3.2. Loading Program

The loading test was carried out with a high-speed press testing machine (Figure 7)
with a maximum static test force of 2000 kN, which can be loaded by means of force and
displacement control. In this test, both the forward and the reverse loading were controlled
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by the displacement, and the loading rate was 10 mm/min. The forward and reverse
unloading was controlled by the force, and the unloading rate was 50 MPa/s. According to
JGJ 107-2016 [14], the loading program is illustrated in Figure 8.
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2.3.3. Test Methods

The load–displacement curve, ultimate load, and ultimate displacement of the test
pieces were obtained as follows. Three axial strain gauges, Z1, Z2, and Z3, and three
annular strain gauges, H1, H2, and H3, on the surface of the test pieces were used to
measure the strain change trend of the sleeve surface. The locations of the axial and annular
strain gauges are shown in Figure 9.
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3. Experimental Results Analysis
3.1. Grouting Sleeve Test Results
3.1.1. Failure Modes

Two modes of failure appeared in the test pieces: (a) Break failure of the steel bar.
As shown in Figure 10a, the bond strength of the grouting materials to the steel bar
was greater than the ultimate tensile strength of the steel bar. (b) Pull-out failure. As
shown in Figure 10b, the bond strength of the grouting materials to the steel bar was
less than the ultimate tensile strength of the steel bar, and the steel bar pulled out of the
grouting materials.
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Figure 10. Test piece failure modes.

Table 3 shows the test results and failure modes of the test pieces after high temperature.
After the temperature is between 20 and 600 ◦C, all test pieces are fractured by the breaking
of the steel bars. After the temperature is 800 ◦C, C20-N-d18–800 ◦C, C20-N-d20–800 ◦C,
and C0-N-d22–800 ◦C are broken by the tensile failure of the steel bars. C0-N-d20–800 ◦C
and C20-W-d20–800 ◦C are fractured by the pullout failure of the steel bars. At 1000 ◦C,
due to the significant damage caused to the bond between the grouting materials and the
steel bars, all test pieces are fractured by the pull-out failure of the steel bars.

Table 3. Experimental results of test pieces.

Test Piece Number * Fu (kN) δu (mm) fu (Mpa) Failure Modes

C20-N-d18–20 ◦C 156.55 37.96 615.51 Break
C20-N-d20–20 ◦C 202.42 35.61 644.65 Break
C20-N-d22–20 ◦C 246.96 38.07 650.00 Break

C0-N-d20–200 ◦C 202.41 34.14 644.62 Break
C20-N-d18–200 ◦C 158.40 35.18 622.79 Break
C20-N-d20–200 ◦C 200.29 36.75 644.24 Break
C20-N-d22–200 ◦C 247.93 39.33 652.55 Break
C20-W-d20–200 ◦C 195.33 37.28 622.07 Break

C0-N-d20–400 ◦C 202.84 44.19 645.99 Break
C20-N-d18–400 ◦C 160.76 32.45 632.07 Break
C20-N-d20–400 ◦C 202.42 33.79 644.65 Break
C20-N-d22–400 ◦C 240.71 42.25 633.55 Break
C20-W-d20–400 ◦C 202.91 34.53 646.21 Break
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Table 3. Cont.

Test Piece Number * Fu (kN) δu (mm) fu (Mpa) Failure Modes

C0-N-d20–600 ◦C 200.75 43.11 639.33 Break
C20-N-d18–600 ◦C 159.01 32.55 625.19 Break
C20-N-d20–600 ◦C 196.50 32.52 625.80 Break
C20-N-d22–600 ◦C 246.44 38.50 648.63 Break
C20-W-d20–600 ◦C 197.08 41.07 627.64 Break

C0-N-d20–800 ◦C 190.08 30.12 605.35 Pull-out
C20-N-d18–800 ◦C 161.47 32.71 634.86 Break
C20-N-d20–800 ◦C 205.20 36.22 653.50 Break
C20-N-d22–800 ◦C 249.57 35.15 656.87 Break
C20-W-d20–800 ◦C 203.47 35.49 647.99 Pull-out

C0-N-d20–1000 ◦C 121.87 3.10 388.12 Pull-out
C20-N-d18–1000 ◦C 107.82 9.03 423.92 Pull-out
C20-N-d20–1000 ◦C 139.75 8.89 445.06 Pull-out
C20-N-d22–1000 ◦C 164.76 10.15 433.65 Pull-out
C20-W-d20–1000 ◦C 137.55 8.80 438.05 Pull-out

* C0-N-d20–20 ◦C and C20-W-d20–20 ◦C both use the same data as the experimental results of C20-N-d20–20 ◦C.

3.1.2. Maximum Tensile Force

Figure 11 depicts the relationship between the ultimate tensile strength of the test
piece and the temperature, compiled from the data in Table 3. After the temperature ranges
from 20 to 600 ◦C, the group 2 test pieces show the lowest ultimate tensile strength at
each temperature interval. The other four groups of test pieces did not show significant
differences. After 800 ◦C, the test pieces belonging to group 1 and group 2 had a lower
ultimate tensile strength compared to the other three groups due to steel bar pull-out failure.
It is worth noting that, based on the observations at 20–800 ◦C, the ultimate tensile strength
of all test pieces exceeded 600 MPa. At 1000 ◦C, all test pieces experienced steel bar pull-out
failure, and compared to the 20 ◦C environment, the bonding performance decreased by
33.7~42.2%.
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Figure 11. Relationship between the tensile strength and temperature.

It can be concluded that the test pieces with a diameter of 18 mm (group 2) showed
poorer tensile performance after high temperature. There were no significant differences
observed among test pieces subjected to different cooling methods at various tempera-
tures. However, test pieces without protective layers showed inferior tensile performance
compared to those with protective layers at temperatures above 800 ◦C.
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3.1.3. Load–Displacement Curves

Figure 12 shows the load–displacement curves of the test pieces under different
temperature conditions. In Figure 12a–f, it is visually evident that test pieces with larger
diameters show a higher ultimate tensile strength under high temperatures. To provide a
clear comparison of the effects of cooling methods and protective layers on the test pieces,
only the group 1, group 3, and group 5 test pieces will be discussed.
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Figure 12. Load–displacement curves of test pieces.
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After 200 ◦C (Figure 12b), compared to those subjected to natural cooling (C20-N-d20–
200 ◦C), the water-cooled test pieces (C20-W-d20–200 ◦C) showed larger displacements
under the same tensile force and reached the load limit earlier. The curves of C20-N-d20–
200 ◦C and C0-N-d20–200 ◦C overlap almost entirely, indicating that the protective layer
has minimal influence on the mechanical behavior of the test pieces at 200 ◦C.

After 400 ◦C (Figure 12c), there is little difference in the ultimate tensile strength
between test pieces subjected to different cooling methods. However, the water-cooled test
pieces reached the load limit earlier and showed less deformation capacity. Comparing the
curves of C20-N-d20–400 ◦C and C0-N-d20–400 ◦C, it is evident that test pieces without
protective layers experience significantly larger displacements.

After 600 ◦C (Figure 12d), the displacement of C20-W-d20–600 ◦C during the ulti-
mate tensile stage is 26.29% greater than that of C20-N-d20–600 ◦C. This indicates that at
600 ◦C, compared to natural cooling, test pieces cooled by water show more significant
deformation under the same load. Test pieces without protective layers also experience
larger displacements.

After 800 ◦C (Figure 12e), C0-N-d20–800 ◦C and C20-W-d20–800 ◦C experience a
sudden decrease in tension at points A and B during the ultimate tensile stage, indicating
a rupture of the bond between the grout material and the connecting steel bars under
tension. This results in steel bar pull-out failure. Compared to C20-N-d20–800 ◦C, C0-
N-d20–800 ◦C shows larger displacement under the same tension. The ultimate tensile
strength of C20-N-d20–800 ◦C is 205.2 kN, which is 0.85% higher than that of C20-W-
d20–800 ◦C and 7.95% higher than that of C0-N-d20–800 ◦C. This indicates that at this
temperature, the bond performance of test pieces subjected to natural cooling is higher
than that of test pieces subjected to water cooling, and test pieces with protective layers
show better bond performance.

After the temperature reaches 1000 ◦C (Figure 12f), all test pieces undergo significant
deformation during the cyclic loading stage, indicating that the bond strength between
the grouting material and the connecting steel bars sharply decreases, leading to steel bar
pull-out failure in the test piece. A comparison of test pieces with different diameters of
the connecting steel bars reveals that the ultimate tensile force of C20-N-d22–1000 ◦C is
17.83% greater than that of C20-N-d20–1000 ◦C and 52.73% greater than that of C20-N-d18–
1000 ◦C, indicating that test pieces with larger connecting steel bar diameters show better
bonding strength. Test pieces subjected to natural cooling show a tensile strength during
the tensile stage that is 24.9% higher than those subjected to water cooling. Due to the test
piece not having a protective layer, C0-N-d20–1000 ◦C experiences nonlinear changes in
its load–displacement curve during the cyclic loading stage. Moreover, as the number of
cycles increases, damage accumulates in the grout under the compression of the connecting
steel bar ribs, eventually leading to steel bar pull-out failure in this test piece.

It can be concluded that test pieces with larger steel bar diameters show better tensile
performance at different high temperatures. Cooling methods have a minimal impact on
the bond performance of test pieces at temperatures below 600 ◦C, but at 800–1000 ◦C, test
pieces subjected to natural cooling show better bond performance. Test pieces with pro-
tective layers experience smaller ultimate displacements under large-strain cyclic loading,
while those without protective layers show greater deformation.

3.1.4. Load–Strain Curves

The performance of the load–strain curves of test pieces under different temperature
conditions can be observed in Figures 13–17. When subjected to tension, the axial strains
Z1, Z2, and Z3 on the outer wall of the sleeve are greater than 0, while the circumferential
strains H1, H2, and H3 are less than 0, indicating that the sleeve is under axial tension
and circumferential compression. The maximum tensile strain and maximum compressive
strain for each test piece both occur at measurement points Z2 and H2. The maximum
circumferential strain and axial strain measured during the experiment are −468.98 × 10−6

and 1298.23 × 10−6, respectively. During the large-deformation repeated tension and
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compression period, the “coincidence” of the load–strain curves under compression force
is better than that under tension force, because the compressive strength of the grouting
materials is greater than its tensile strength.
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Figure 13. Load–strain curves of group 1 test pieces.
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Figure 14. Load–strain curves of group 2 test pieces.
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Figure 15. Load–strain curves of group 3 test pieces.
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Figure 16. Load–strain curves of group 4 test pieces.
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Figure 17. Load–strain curves of group 5 test pieces.

Comparing the strain variations of the test pieces at different temperatures, taking the
first group of test pieces as an example, it is observed that as the temperature increases,
the “overlap” of the curves gradually decreases. Moreover, the overlap at the central
measurement points Z2 and H2 is higher than at other points, indicating significant defor-
mation damage in the ribbed section. In Figure 13a–e, it is visually apparent that after high
temperatures of 800 ◦C and 1000 ◦C, the load–strain curves of all test pieces do not overlap
significantly, indicating significant damage to the test pieces’ elastic deformation performance.

Comparing test pieces with different diameters, in group 2 (Figure 14), the paths of the
Z1 and Z3 curves show a high degree of similarity. However, in the group 3 (Figure 15) and
group 4 (Figure 16) test pieces groups, Z1 and Z3 show significant misalignment, indicating
that the deformations of the test pieces with connecting steel bars belonging to group 2
are more uniform under high temperatures. In group 4 test pieces, as the temperature
increases, the increment of strain values at measurement points Z1, Z3, H1, and H3 in the
second cycle is greater than that in the first cycle, leading to an increase in residual strain.
This suggests that in test pieces with larger steel bar diameters at high temperatures, the
bond between the steel bars and the grout surface at the ribs is severely damaged.

Comparing test pieces subjected to different cooling methods, belonging to group 3
and group 5 (Figure 17), after temperatures ranging from 20 to 600 ◦C, test pieces subjected
to different cooling methods did not show significant differences. However, at temperatures
of 800 ◦C and 1000 ◦C, the alignment of the Z1, Z2, and Z3 curves in the group 3 test pieces
was better than that in the group 5 test pieces. This indicates that after experiencing
temperatures higher than 800 ◦C, test pieces subjected to natural cooling demonstrate better
elasticity under cyclic loading.

Comparing test pieces with and without protective layers, belonging to group 1
(Figure 13) and group 3, test pieces with protective layers show better curve alignment
at high temperatures compared to test pieces without protective layers, indicating that
a protective layer provides better preservation of the test pieces’ elasticity under high-
temperature conditions.

In summary, as the temperature rises, the magnitude of deformation damage to the
outer wall of the sleeve increases, especially in the ribbed section. Test pieces with larger
steel bar diameters show more severe damage to the ribs. Regarding the effects of cooling
methods and protective layers, adopting natural cooling or having protective layers is
beneficial in reducing deformation damage to the test pieces.
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3.2. Grouting Materials’ Performance Deterioration Analysis
3.2.1. High Temperature Effects

This article conducted compressive strength tests on 18 grouting material blocks.
Figure 18 illustrates the relationship between the compressive strength of these grouting
material blocks and temperature. After 600 ◦C, the compressive strength is 83.1 MPa,
15.98% lower than that at 20 ◦C. However, after the temperature reaches 600–1000 ◦C, the
loss of compressive strength becomes larger. When the temperature reaches 1000 ◦C, the
compressive strength of the grouting materials is only 27.50% of that at 20 ◦C, and the
compressive performance is essentially lost.
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3.2.2. Apparent Deterioration of Grouting Materials

To further investigate the effect of temperature on the grouting materials of the sleeve,
C0-N-d20–600 ◦C and C0-N-d20–800 ◦C test pieces were subjected to cut analysis (Figure 19).
The observations reveal that grout cracks are mainly concentrated near the ribs, with
significant lateral cracks in this area accompanied by a small amount of debris. This
indicates that under cyclic loading, the ribs restrict the cyclic sliding of the grouting
materials, leading to extrusion of the grout. At the end of the sleeve, as shown in region
A of Figure 19, there are more cracks and greater fragmentation of the grouting materials.
Additionally, due to the lack of rib constraints, the grouting materials are pulled out along
with the steel bars.
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Figure 20 shows the local force model of the grouting materials in the grouting sleeve
when it is under tension. The grouting materials are in a state of compression due to the
constraints of the sleeve ring rib and the ribbed connecting steel bars during the cyclic load
of the grouting sleeve.
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3.2.3. Microscopic Analysis of Grouting Materials’ Deterioration

The test pieces belonging to group 2 were sampled, and the internal structure of
the grouting materials was magnified by 5000 times with SEM. The results are shown in
Figure 21. After 20 ◦C (Figure 21a), calcium hydroxide (C-H) and calcium silicate hydrate
(C-S-H) show good adhesion to the aggregate surface, forming a continuous phase through
the mutual bonding of hydration products, resulting in fewer voids.
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After 200 ◦C, the test pieces display the evaporation of capillary water and gel water.
Microscopically, small pores can be observed (Figure 21b), but the overall structure remains
largely unchanged compared to that at 20 ◦C ambient conditions. The grouting materials
structure appears relatively dense, with good bonding of C-H crystals.

After 400 ◦C, as shown in Figure 21c, in addition to the evaporation of capillary water
and gel water within the grouting materials, some crystalline hydrates begin to lose water
molecules. The decomposition of C-H crystals becomes apparent, accompanied by the
emergence of noticeable pores on the surface. Consequently, cracks further propagate, and
the density of hydration products significantly decreases.

After reaching 600 ◦C (Figure 21d), further decomposition of C-H occurs, resulting
in the appearance of unevenly sized crystalline particles and increased porosity. Cracks
become more prominent, but there is no apparent complete penetration of cracks. The
degradation of mechanical properties is relatively minor.

After the temperature reaches 800 ◦C (Figure 21e), C-S-H begins to decompose, with
severe dehydration of structural water. Dispersed particles appear inside the grouting
materials, and numerous interconnected microcracks emerge on the aggregate surface.
Continuous or large pieces of hydrated cementitious gel are no longer present within the
concrete. The overall structure of the grouting materials becomes loose and crumbly.

After exposure to a temperature of 1000 ◦C (Figure 21f), C-S-H is essentially com-
pletely decomposed, and CaCO3 begins to decompose under high-temperature conditions.
Structural water undergoes extensive dehydration, resulting in a significant increase in
internal pores. Large gaps and cracks appear between the aggregates, exacerbating the
looseness of the grouting materials. Macroscopically, there is a sharp decline in mechanical
performance. Comparing the SEM scanning results of the grouting materials after sub-
jecting them to different temperatures, it can be seen that the deterioration degree of the
grouting materials’ microstructure changes significantly from 600 ◦C to 800 ◦C and then
1000 ◦C, which corresponds to the compressive strength curve of the grouting materials
after different high temperatures (Figure 18).

4. Grouting Sleeve Performance Analysis
4.1. Joint Grade

According to the provisions of JGJ 107-2016 [14], Table 4 lists the residual deformation
grades of the test pieces. The ultimate tensile strength of steel joints is divided into three
classes: class I, class II and class III. As Table 3 shows, the ultimate tensile strength of all test
pieces is greater than 1.10 fstk = 594 MPa between temperatures of 20 and 600 ◦C, meeting
the standards of class I joints. After exposure to a temperature of 800 ◦C, for C0-N-d20–
800 ◦C and C20-W-d20–800 ◦C, despite the failure of steel bar pull-out, their ultimate tensile
strength is still greater than 1.10 fstk, meeting the standards of class I joints. That is, after
800 ◦C, all test pieces still meet the class I joint standards. After the temperature reaches
1000 ◦C, the standard tensile strength of all test pieces is lower than 1.25 fyk = 500 MPa,
which means that all test pieces cannot meet the requirements of class III joint standards.

Table 4. Performance grade of the test pieces.

Class of Test Pieces I II III

Ultimate tensile strength f 0
mst ≥ fstk Bar breaking,

or f 0
mst ≥ 1.10 fstk Pull-out failure f 0

mst ≥ 1.10 fstk f 0
mst ≥ 1.25 fyk

large strain of cyclic loading u4 ≤ 0.3 and u8 ≤ 0.6 u4 ≤ 0.6

4.2. Residual Deformation

Residual deformation is one of the most important indicators used to evaluate the
recoverability of grouting sleeves under cyclic loading. According to the specification of
JGJ107-2016 [14], the requirements for large-deformation repeated tension and compression
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stipulate that u4 ≤ 0.3 mm and u8 ≤ 0.6 mm. The calculations of u4 and u8 are defined
in Equations (1) and Equation (2) [14] and are shown in Figure 22.
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u4 =
δ1 + δ2

2
(1)

u8 =
δ3 + δ4

2
(2)

Table 3 shows the residual deformation performance of test pieces. According to
Table 5, when the temperature is below 600 ◦C, all test pieces meet the requirements of
residual deformation under repeated loads. When the temperature reaches 800 ◦C, for
group 1, its u4 = 0.32 > 0.3 and u8 = 0.86 > 0.6, meaning that it does not meet the
deformation performance standards of class III joints. and for group 5, its u4 = 0.31 > 0.3
and u8 = 0.46 < 0.6, meaning that it meets the deformation performance standards of class
III joints, but does not meet the deformation performance standards of class I joints. When
the temperature reaches 1000 ◦C, all test pieces do not meet the deformation performance
standards of class III joints.

Table 5. Residual deformation performance of test pieces.

Test Piece Number u4 (mm) u8 (mm)

C20-N-d18–20 ◦C 0.14 0.21
C20-N-d20–20 ◦C 0.15 0.27
C20-N-d22–20 ◦C 0.18 0.26

C0-N-d20–200 ◦C 0.18 0.26
C20-N-d18–200 ◦C 0.22 0.26
C20-N-d20–200 ◦C 0.15 0.26
C20-N-d22–200 ◦C 0.17 0.25
C20-W-d20–200 ◦C 0.18 0.25

C0-N-d20–400 ◦C 0.18 0.31
C20-N-d18–400 ◦C 0.14 0.17
C20-N-d20–400 ◦C 0.19 0.43
C20-N-d22–400 ◦C 0.16 0.26
C20-W-d20–400 ◦C 0.25 0.26

C0-N-d20–600 ◦C 0.29 0.56
C20-N-d18–600 ◦C 0.19 0.21
C20-N-d20–600 ◦C 0.24 0.27
C20-N-d22–600 ◦C 0.19 0.31
C20-W-d20–600 ◦C 0.27 0.26
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Table 5. Cont.

Test Piece Number u4 (mm) u8 (mm)

C0-N-d20–800 ◦C 0.32 0.86
C20-N-d18–800 ◦C 0.18 0.29
C20-N-d20–800 ◦C 0.21 0.3
C20-N-d22–800 ◦C 0.28 0.39
C20-W-d20–800 ◦C 0.31 0.46

C0-N-d20–1000 ◦C 1.07 - *
C20-N-d18–1000 ◦C 0.57 1.01
C20-N-d20–1000 ◦C 0.44 1.01
C20-N-d22–1000 ◦C 0.62 1.12
C20-W-d20–1000 ◦C 0.42 1.35

* “-” No data, the test piece does not withstand 8 cycles of large-strain cyclic loading.

Figure 23 shows the variation trend of u4 and u8 of each test piece under large-strain
cyclic loading. With the increase in temperature, the values of u4 and u8 have an overall
upward trend, and as the temperature rises from 800 ◦C to 1000 ◦C, the slope of the curve
increases sharply, indicating that large-deformation repeated tension and compression of
the test piece occur. As shown in Figure 23a, between 400 ◦C and 1000 ◦C, both the value
and the slope of group 1 are significantly larger than those of group 3. That reveals that the
residual deformation u4 of the test pieces without a protective layer is more obvious, so
the protective layer can effectively reduce the mechanical loss of the grouting sleeve after
exposure to a high temperature. In Figure 23b, the difference in the u8 between group 3
and group 5 is 0.16 after 800 ◦C, but after 1000 ◦C, this value becomes 0.34, an increase of
112.50%. In other words, group 5 has a larger residual deformation at a higher temperature,
which indicates that with the increase in the number of cycles, the grouting materials of the
water-cooled test pieces are more seriously damaged after 1000 ◦C.
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Figure 23. The residual deformation of test pieces under large-deformation repeated tension
and compression.

Figure 24 shows the difference between u8 and u4 (i.e., D-value), and also displays the
second half of the residual deformation of the test pieces under large-strain cyclic loading.
After the temperature is 800 ◦C, C0-N-d20–800 ◦C experiences steel bar pull-out failure,
and its D-value is 0.54. When the temperature is 1000 ◦C, all the test pieces experience steel
bars pull-out failure, and the D-value of C20-N-d18–1000 ◦C is the lowest, at 0.44. Based on
the data above, to avoid steel bar pull-out failure, a safety D-value of 0.27 is recommended
when fire and seismic design is performed for seamless steel pipe grouting sleeves.
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Figure 24. The difference between the u8 and u4 of test pieces under large-deformation repeated
tension and compression.

5. Bond Stress Analysis

Regarding the bond strength between steel bars and grouting materials, Einea et al. [2]
posited a correlation between the bond strength and the compressive strength of grouting
materials. They defined the coefficient k as the correlation coefficient. The formulas for
bond force fc and bond strength U are as follows [2]:

U =
Fu

πdLa
(3)

U = k
√

fc (4)

Combining Equations (3) and (4), k is defined as

k =
Fu

πdLa
√

fc
(5)

Figure 25 show the values of k for each test piece at different temperatures and their
respective trends with temperature variation. In the range of 20–800 ◦C, the k value
increases with increasing temperature. At 800 ◦C, the test pieces showing steel bar pull-
out failure show a minimum k value of 3.03 (C20-N-d18–800 ◦C), while at 1000 ◦C, the
minimum k value of 2.66 (C0-N-d20–1000 ◦C). Therefore, it is recommended in test piece
design that the k value should not exceed 2.66.
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Additionally, when designing test pieces, it is common practice to consider the con-
nection steel bar’s ultimate standard value as the design basis, according to the conversion
formula between tensile strength (P) and tensile force (Fu):

P =
4Fu

πd2 (6)

When P is the standard value of ultimate tensile strength of steel bar fstk = 540 MPa [38],
combining Equations (5) and (6), the reference k for test piece design can be obtained:

k =
fstkd

4La
√

fc
(7)

Table 6 presents the calculated results of k at different temperatures. It is evident
that the value of k increases with the rise in temperature, and after 800 ◦C, the calculated
k = 2.58. In the consideration of fire safety design, adjusting the anchor length La can
influence the stability and fire resistance performance of the structure. It is recommended
that practitioners control the parameter k ≤ 2.58.

Table 6. The calculated values of k at different temperatures.

Temperature 20 ◦C 200 ◦C 400 ◦C 600 ◦C 800 ◦C 1000 ◦C

k 1.91 1.98 2.03 2.12 2.58 3.70

6. Conclusions

This study investigates the bond performance of grouting sleeves for seamless steel
pipes under the effects of large-deformation repeated tension and compression after high
temperature, considering the influence of steel bar diameter, cooling methods, and protec-
tive layers. Twenty-eight test pieces were designed, and the following main conclusions
were drawn:

(1) Within the temperature range of 20–800 ◦C, the ultimate bearing capacity of test pieces
is less than 9.87% of the ultimate bearing capacity of the steel bars, with no significant
decrease in bond performance. After 1000 ◦C, all test pieces experienced steel bar
pull-out failure, with bond performance decreasing by 33.7% to 42.2%, indicating
severe damage to the bond strength between the grout and steel bars.

(2) Test pieces with a 22 mm bar diameter show a higher ultimate tensile strength after
exposure to high temperatures compared to those with 20 mm and 18 mm diameters,
with increases of 21.6% and 54.4%, respectively. Larger bar diameters result in better
connection performance.

(3) The influence of different cooling methods on the ultimate bearing capacity of test
pieces is not significant at various temperatures, with a maximum difference of only
4.96 kN.

(4) Test pieces with protective layers show smaller deformations within the temperature
range of 20–600 ◦C, and their bond performance improves when temperatures exceed
800 ◦C.

(5) The maximum circumferential strain and maximum axial strain of the test pieces are
−468.98 × 10−6 and 1298.23 × 10−6, respectively, both indicating elastic deformation.
However, with increasing temperature, the elastic deformation capacity of the test
pieces gradually decreases.

(6) The compressive strength of grout test pieces decreases slowly within the temper-
ature range of 20–600 ◦C, but the rate of strength loss increases after exceeding 600 ◦C.
After reaching 1000 ◦C, the compressive strength of grout test pieces is only 27.5% of
that at 20 ◦C.
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(7) Scanning electron microscopy (SEM) analysis reveals that the decomposition of C-H
and C-S-H at high temperatures is the main reason for the decrease in the compressive
strength of the grout.

(8) A correlation coefficient k between the average bond strength of the grout and its
compressive strength is proposed, with a recommendation that k ≤ 2.58 is maintained
in test piece design.

These conclusions provide an important reference basis for the fire resistance perfor-
mance of prefabricated buildings under fire conditions.
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Notations
d Diameter of connecting steel bar
La Anchorage length of connecting steel bar
Fu Maximum tensile force at the test piece failure
δu Displacement of the test piece under ultimate tensile strength
fu The maximum tensile force at specimen failure

fstk Standard value of the ultimate tensile strength of the steel bar
f 0
mst Ultimate tensile strength measured from the test piece

εyk The strain corresponding to the yield strength standard value of the steel bar
fyk Standard value of the yield strength of the steel bar
fc Compressive strength of the grout

u4
Residual deformation after 4 cycles of large-deformation repeated tension
and compression

u8
Residual deformation after 8 cycles of large-deformation repeated tension
and compression

F Force on the steel bar
δ Deformation of the steel bar under the force

As Theoretical cross-sectional area of the steel bar
L1 Measuring distance

δ1

The deformation value represented by the distance between the parallel line and the
abscissa at the loading force of 2 fyk As and reverse unloading force of −0.25 fyk As after
repeated loading 2εykL1 for 4 cycles.

δ2
The deformation value at the unloading force of 2 fyk As and reverse loading force of
−0.25 fyk As under the same situation.

δ3, δ4
The deformation values obtained by the same method after repeating load of 5εykL1 for
4 cycles.

U Bond strength between steel bars and grouting materials
k The correlation coefficient between U and

√
fc
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