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Abstract: While bamboo’s sustainability and impressive mechanical properties make it suitable for
structural use, its application is hindered by challenges in connection systems. Bamboo’s hollow,
thin-walled nature, dimensional variations, and anisotropic properties complicate connection design.
Despite numerous studies and proposed connection types, a consensus on preferred bamboo connec-
tions remains elusive. Ideal connections for raw bamboo structures should be robust, economical,
practical, simple, and easy to assemble. This paper reviews 62 scientific papers from the Scopus
database published between 2003 and 2024, along with additional relevant references. It identifies
research gaps, recommending further studies on bamboo connections considering factors like species,
harvest age, treatment type, and node location. The analysis of failure modes and long-term be-
havior is essential to anticipate and mitigate risks associated with bamboo connections, ensuring
durability, and minimizing maintenance needs. Lastly, developing universally accepted standards
and codes for bamboo and bamboo connections is crucial for enabling their widespread adoption in
the construction industry.
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1. Introduction

With growing concerns about climate change, designers, engineers, and architects are
increasingly seeking renewable and sustainable resources. A material is deemed sustainable
if it is created, utilized, and disposed of in an environmentally responsible way that satisfies
current needs without endangering the capacity of future generations to satisfy their
own [1]. Bamboo, readily available locally and requiring minimal treatment, stands out as
a renewable and sustainable material [2].

Bamboo is the fastest-growing woody plant in the world, beating most other species in
growth rate, and earning its status as a renewable resource [3,4]. There are some bamboo
species that grow as much as 7.5 to 40 cm a day; one notable record is 1.2 m in a single day
recorded in Japan [5,6]. Some commercially used bamboo species have a relatively quick
maturation period of 4 to 5 years [7]. Bamboo is regarded as a renewable resource since
it can be harvested quickly and continues to grow new stems even after the culm or stem
is removed [6]. Bamboo also has the ability to be carbon-negative since it absorbs carbon
during growth and after harvest [8,9]. Moreover, because it can be grown without the use of
fertilizers or pesticides, bamboo is regarded as a low-impact crop. Therefore, compared to
conventional crops, bamboo farming lowers soil degradation and water pollution, making it
a more ecologically sustainable option [10,11]. Since bamboo’s roots are like those of coconut
trees—albeit bamboo is in the grass class—it can also endure landslides better than other
types of trees. Additionally, these factors may make bamboo a viable substitute for industrial
forests [12]. In terms of its physical and mechanical properties, bamboo is lightweight and
has better compressive strength than concrete and higher tensile strength than steel [12].
Singh et al. [13] investigated the mechanical characteristics of various bamboo species.
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Their findings revealed that Bambusa nutan exhibited the highest compressive strength at
98.24 MPa and bending strength at 7.669 MPa. Additionally, Bambusa tulda displayed the
highest tensile strength at 226.28 MPa, while Dendrocalamus hamiltonii demonstrated the
highest shear strength at 19.5 MPa. Furthermore, bamboo exhibits a modulus of elasticity
approximately 0.84 times higher than wood [14]. Additionally, bamboo density varies
across species; Phylostachys edulis has a density of 796 kg/m3 [14], Bambusa balcoa has a
density of 685 kg/m3 [15], while the density of Bambusa vulgaris ranges from 630 kg/m3

to 680 kg/m3 [16]. With the advancement of technology, bamboo can now be treated to
prevent insect and fungal attacks [17]. Thus, bamboo has drawn a lot of interest as a viable
and eco-friendly construction material.

Raw bamboo, also referred to as full-culm bamboo, original bamboo, round bamboo, or
bamboo culm, exists in its natural state with minimal processing or treatment [18]. Widely
distributed across Asia, Africa, and South America, raw bamboo serves as structural mate-
rial forming the primary framework for small- to medium-sized structures such as truss
structures for roofs and bridge, scaffolds, and houses due to its high strength-to-weight
ratio [19–23].

However, its tension strength perpendicular to the grain is relatively low, given the
longitudinal orientation of the fiber [24]. Additionally, its shear strength is relatively low
due to the thin culm walls, making bamboo susceptible to splitting [25]. Furthermore, irreg-
ularities in its geometry, such as inconsistent straightness and varying diameters, present
challenges in connection design for raw bamboo [23,26]. While numerous studies have
explored innovative connection methods for raw bamboo, limited applicable standards,
design codes, and construction costs hinder the establishment of practical and economical
connection methods for raw bamboo structures. These limitations impede the broader
utilization of bamboo in the construction industry [18,27–30].

This paper aims to review the current connection designs documented in the collected
literature, highlighting the research gaps in raw bamboo connections to guide future studies
and applications.

2. Methodology

The relevant literature was gathered to conduct a comprehensive literature review.
Our methodology adhered to a systematic approach, as illustrated in Figure 1. Our primary
data source was the Scopus database, renowned for its extensive collection of abstracts
and citations across various academic fields [31]. Utilizing Scopus, we employed keyword
searches with Boolean operators such as AND, AND NOT, and OR to refine our search
results [32]. Moreover, Scopus offers advanced search functionalities, citation analysis tools,
and author metrics, enabling in-depth investigations, assessments of prior research impact,
and the identification of influential authors [33].

The first step in the process involved selecting a combination of general and specific
keywords. The general keywords aimed to capture the core theme of the study, which
revolved around the “connection of bamboo culms on building structures”. Alongside these,
specific keywords such as “connections”, “bamboo”, “bamboo culm”, “building”, and
“structures” were chosen. Employing Boolean operators, these keywords were structured
into a search string: connections AND “bamboo culm” OR bamboo AND building OR
structures AND NOT engineered AND NOT scrimber AND NOT laminate AND NOT
glubam AND NOT composite AND NOT glulam AND NOT “bamboo-based”. This
search string yielded 154 pertinent documents. To ensure the selection of only relevant
studies, advanced search filters were implemented. Initially, the publication year range
was limited to 2003 to 2023, resulting in 152 documents. Following this, the search was
focused on specific subject areas including Engineering, Material Science, Agricultural and
Biological Science, Environmental Science, and Chemical Engineering, further refining the results
to 132 documents. Additionally, the document type filter was configured to encompass
articles, conference papers, conference reviews, and review papers, ultimately resulting
in 127 documents.



Buildings 2024, 14, 1126 3 of 26
Buildings 2024, 14, x FOR PEER REVIEW 3 of 28 
 

 
Figure 1. Methodology flowchart. 

The first step in the process involved selecting a combination of general and specific 
keywords. The general keywords aimed to capture the core theme of the study, which 
revolved around the “connection of bamboo culms on building structures.” Alongside 
these, specific keywords such as “connections”, “bamboo”, “bamboo culm”, “building”, 
and “structures” were chosen. Employing Boolean operators, these keywords were struc-
tured into a search string: connections AND “bamboo culm” OR bamboo AND building 
OR structures AND NOT engineered AND NOT scrimber AND NOT laminate AND NOT 
glubam AND NOT composite AND NOT glulam AND NOT “bamboo-based”. This 
search string yielded 154 pertinent documents. To ensure the selection of only relevant 
studies, advanced search filters were implemented. Initially, the publication year range 
was limited to 2003 to 2023, resulting in 152 documents. Following this, the search was 
focused on specific subject areas including Engineering, Material Science, Agricultural and 
Biological Science, Environmental Science, and Chemical Engineering, further refining the re-
sults to 132 documents. Additionally, the document type filter was configured to encom-
pass articles, conference papers, conference reviews, and review papers, ultimately result-
ing in 127 documents. 

An exploratory search strategy was employed to locate additional pertinent docu-
ments beyond those initially identified through advanced searches. Diverse platforms 
such as Scopus [34], ResearchGate [35], and Google Scholar [36] were utilized for this pur-
pose. The relevant cited studies in the initially selected documents were also included as 
part of the exploratory search conducted here. This yielded an additional 19 relevant doc-
uments, which were subsequently integrated into the research. Following this, a manual 
screening process was conducted to meticulously select documents explicitly addressing 
the connection of bamboo culms in building structures. Documents not discussing the 
connection of raw bamboo were omitted from the list. This meticulous approach resulted 
in the identification of 62 documents deemed suitable for systematic review and analysis, 
ensuring a comprehensive grasp of the subject matter. 

The compiled set of 62 documents was organized using MS Excel and then imported 
into Matlab software (R2023b) for text analysis purposes [37]. Leveraging the Matlab Text 

Figure 1. Methodology flowchart.

An exploratory search strategy was employed to locate additional pertinent docu-
ments beyond those initially identified through advanced searches. Diverse platforms
such as Scopus [34], ResearchGate [35], and Google Scholar [36] were utilized for this
purpose. The relevant cited studies in the initially selected documents were also included
as part of the exploratory search conducted here. This yielded an additional 19 relevant
documents, which were subsequently integrated into the research. Following this, a manual
screening process was conducted to meticulously select documents explicitly addressing
the connection of bamboo culms in building structures. Documents not discussing the
connection of raw bamboo were omitted from the list. This meticulous approach resulted
in the identification of 62 documents deemed suitable for systematic review and analysis,
ensuring a comprehensive grasp of the subject matter.

The compiled set of 62 documents was organized using MS Excel and then imported
into Matlab software (R2023b) for text analysis purposes [37]. Leveraging the Matlab
Text Analytics Toolbox facilitated the extraction of textual data from the documents and
provided insightful visualizations. These visual representations included word clouds,
topic mixtures, and graphical displays illustrating the yearly and country-wise distribution
of published papers [33]. Figure 2 illustrates a word cloud generated from the imported
documents, prominently featuring the term “bamboo”, underscoring its pivotal role as a
sustainable construction material. Furthermore, noteworthy terms such as “connection”,
“material”, “structure”, “structural”, and “design” were prevalent in the word cloud,
indicating a predominant focus on the structural design of connection material in bamboo
structures. This observation is precisely in line with the study’s chosen general keywords.
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In this study, we utilized Latent Dirichlet Allocation (LDA), an algorithm designed for
topic modeling purposes. Topic modeling serves as a technique to represent each document
as a blend of various topics, with each topic comprising a mixture of words [38]. The
primary aim is to uncover the underlying themes embedded within each document. LDA,
functioning as an unsupervised topic model, possesses the capability to autonomously
discern the optimal number of themes or topics [38]. Hence, the process of determining
the most suitable number of themes or topics involved evaluating the goodness-of-fit of
LDA models with different quantities of themes or topics. Initially, we opted for eight
themes or topics. To gauge the effectiveness of the LDA model, we assessed its performance
using perplexity, a metric that gauges how effectively the model describes a collection of
documents [39]. Lower perplexity values signify a superior fit, indicating that models with
lower perplexity are more favorable [32]. Consequently, four (4) themes or topics were
selected in this study, as this demonstrated the lowest perplexity, as depicted in Figure 3.
Figure 4 shows the word clouds corresponding to each topic, while Figure 5 presents
the topic mixtures and probabilities of 62 documents. Additionally, the primary topics
identified from these 62 documents are enumerated and visually depicted in Figure 5. Topic
1 (color blue) centers around the study of connections for bamboo construction through
modeling, while Topic 2 (color red) delves into the study of the structural load capacity of
bamboo joints using a finite element model. Topic 3 (color yellow) investigates the strength
of bolt connections through failure analysis of the bolt material, and Topic 4 (color purple)
concerns the design of buildings or structures made of bamboo. These four primary topics
are discussed qualitatively in this document.

Figure 6 illustrates the distribution of the obtained documents over the years, revealing
a clear upward trajectory in publications concerning this subject matter. This trend suggests
the topic’s timeliness and relevance, possibly indicating a growing interest in sustainable
materials within the construction industry. It reflects a response to mounting concerns about
climate change and the environmental impact of conventional construction materials like
steel and concrete. Figure 7 depicts the distribution of documents by country, highlighting
China as the foremost contributor to publications on this subject. With the most abundant
bamboo resource globally and expansive bamboo plantations [40], it is no surprise that
China leads in bamboo research.
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VOSviewer [41] was utilized to create a network visualization, depicted in Figure 8,
which illustrates the connections among elements within the dataset, composed of con-
solidated literature. In this paper, the elements correspond to keywords, represented as
nodes, while the connections between nodes are depicted as links. In the visualization,
the keyword “bamboo” emerges as prominent, echoing the prominence observed in the
word cloud generated by Matlab. Figure 8 illustrates that “bamboo” is linked to various
keywords such as “sustainable materials”, “bamboo structures”, “connection”, “design”,
“joints”, “buildings”, “building materials”, and “natural materials”. This suggests that
the literature obtained emphasizes bamboo as a natural and sustainable building material
suitable for constructing bamboo structures, with particular emphasis on designing the
joints and connections within these structures.

The visualization tools presented thus far offer a convenient way to quickly grasp the
subject matter discussed in the acquired documents. Integrating these interpretations can
help identify knowledge gaps and support assertions about trends, gaps, and the necessity
of conducting this study.
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3. Results and Discussion

The objective of this paper is to review the current connection designs documented in
the collected literature, which encompasses the various bamboo species used by researchers
in studying different bamboo connections, the classification of raw bamboo connections,
and the standards and codes applied in raw bamboo connections. Additionally, this paper
presents the research gaps in raw bamboo connections identified by reviewing the collected
literature, aiming to provide guidance for future studies and applications.

3.1. Bamboo Species

Bamboo is widely utilized due to its versatile applications. In regions such as Asia,
bamboo shoots are highly valued as a food source, while the culm serves various purposes.
Young, flexible culms are crafted into woven items like baskets, trays, and wall cover-
ings, while mature culms are employed in constructing affordable housing, tool handles,
and furniture [42]. Renowned as the world’s fastest-growing woody plant, bamboo out-
paces most other species in growth rate, earning recognition as a renewable resource [3,4].
Consequently, there is growing interest in exploring bamboo as a structural material for
construction, providing an alternative to timber, which requires a longer harvesting period,
and conventional materials like steel and concrete, known contributors to carbon emissions.

Bamboo exhibits a broad geographical distribution, with native habitats spanning
Africa, Asia, and the Americas, thriving in humid tropical and subtropical regions. Remark-
ably adaptable, bamboo species also thrive in colder temperate climates across Europe, Asia,
and North America. There are approximately 1200 to over 1600 bamboo species present in
the world [42]. Traditionally, bamboo species favored for construction possess attributes
such as abundant local growth; robustness, with diameters typically ranging from 50 mm to
200 mm; relatively straight growth patterns; rapid maturation within 3 to 5 years; moderate
resistance to pests and fungi; and reduced susceptibility to splitting [43]. Table 1 presents a
list of bamboo species commonly used as structural construction materials worldwide.

Table 2 displays the various bamboo species utilized by researchers identified in this
study. This paper employed species identification, as depicted in Table 2. In the 62 documents
collected, a total of 15 bamboo species were utilized. As depicted in Figure 8, Moso bamboo
(S-12) emerged as the most frequently utilized bamboo species by researchers. These
researchers were from Colombia, China, Hong Kong, Ireland, and the United Kingdom, as
outlined in Table 3. While there is no explicit mention of bamboo growth in Ireland and
the United Kingdom, it was sourced from a bamboo supplier. Notably, Moso bamboo is
extensively cultivated in China, which represents the primary contributor to publications
on this subject, as depicted in Figure 9.
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Table 1. List of bamboo species commonly used in construction as structural material. Data adapted
from [43].

Scientific Name (Local Name) Areas Found Diameter (mm)

Guadua angustifolia Kunth South America 120–160

Dendrocalamus strictus (Calcutta) Asia 25–80

Bambusa vulgaris Africa, Asia, South America 80–150

Phyllostachys edulis (Moso) Asia 120–180

Dendrocalamus asper (Petung) Asia, South America 80–200

Bambusa blumeana (Spiny/ThornyBamboo) Asia, Asia–Pacific 60–150

Gigantochloa apus Asia 40–100

Table 2. Bamboo species used by researchers identified in this study.

Species ID Scientific Name (Local Name) Reference

S-1 Bambusa blumeana (Spiny/Thorny/Ori bamboo) [44,45]

S-2 Bambusa pervariabilis (Kao Jue) [21,22,29,46–48]

S-3 Bambusa multiplex (Cendani bamboo) [49,50]

S-4 Bambusa ssp [51]

S-5 Bambusa vulgaris [44]

S-6 Dendrocalamus asper (Petung) [44]

S-7 Dendrocalamus merrillianus Elmer [44]

S-8 Gigantochloa atroviolacea (Wulung) [19,26–28,45,52–54]

S-9 Guadua angustifolia Kunth [20,23,55–60]

S-10 Phyllostachys aurea [61–65]

S-11 Phyllostachys bambusoides (Madake) [30]

S-12 Phyllostachys edulis/Phyllostachys pubescens (Moso) [21,56,61,63–73]

S-13 Phyllostachys iridescens (Hong) [74]

S-14 Phyllostachys nigra Boryana [75]

S-15 Phyllostachys vivax (Kara) [76]

Table 3. Distribution of bamboo species across the countries identified in this study.

Country
Species ID

S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9 S-10 S-11 S-12 S-13 S-14 S-15

Australia ✓

Brazil ✓

Colombia ✓ ✓

China ✓ ✓

Hong Kong ✓ ✓

Indonesia ✓ ✓ ✓

India

Iran ✓

Ireland ✓

Mauritius ✓ ✓

Philippines ✓ ✓ ✓ ✓
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Table 3. Cont.

Country
Species ID

S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9 S-10 S-11 S-12 S-13 S-14 S-15

Switzerland ✓

Thailand ✓

United Kingdom ✓ ✓

United States ✓
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3.2. Classification of Raw Bamboo Connections

The emergence of modern bamboo structures is not only attributed to their aesthetic
appeal, but also to bamboo’s exceptional strength-to-weight ratio and natural flexibility,
rendering it suitable for structural applications. However, the overall performance of
bamboo structures is significantly influenced by their connection systems [19]. Joint failure
jeopardizes the safety and stability of the entire bamboo structure and may result in
collapse [70]. Therefore, the design of joints or connections is integral to structural integrity.

The joining or connection of raw bamboo structures has perennially posed a significant
challenge in the advancement of modern bamboo architecture [26,74,77]. Raw bamboo’s
hollow, thin-walled composition, dimensional variations, and anisotropic material proper-
ties exacerbate the complexity of designing bamboo connections [23,74,77]. While studies
have been conducted on raw bamboo connections, and various connection types have
been proposed by researchers, a consensus on the preferred bamboo connection remains
elusive. A suitable connection for raw bamboo structures must be not only robust, but also
economical, practical, simple, and easy to assemble.

Based on the gathered documents, researchers have categorized raw bamboo connections
primarily based on the connector material and the method of connection. Table 4 illustrates
the classification of raw bamboo connections, revealing two main categories: traditional
and modern connections. Bamboo, being a traditional building material, was historically
employed in ancient structures, typically utilizing ropes or mortise-and-tenon joints as
connectors, akin to those utilized in timber structures. However, with the advent of
modern bamboo construction, there has been a notable shift towards the integration of
engineering hardware.
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Table 4. Classification of raw bamboo connections according to researchers identified in this study.

Reference Classification of Raw Bamboo Connections

[24]

1. Traditional Bamboo Connections
1.1. Friction-tight Lashing
1.2. Notched and Pierced Connections

2. Modern Bamboo Connections
2.1. Pierced with Metal Connections
2.2. Concrete-filled Connections
2.3. Capped Connections

3. Emerging Technologies

[77]

1. Traditional Connection Joints
1.1. Lashing Joints
1.2. Mortise–tenon Joints

2. Modern Connection Joints
2.1. Bolted Joints
2.2. Steel Member and Steel Plate Joints
2.3. Filler-Reinforced Joints

3. Other Types of Joints

[78]

1. Traditional Bamboo Connections
1.1. Friction-tight Lashing
1.2. Mortise–tenon Joints
1.3. Other Traditional Bamboo Joints

2. Modern Bamboo Connections
2.1. Bolt Joints
2.2. Clamp Joints
2.3. Other Modern Bamboo Joints

[79]

1. Use of Metal Connections
1.1. Bolted Joints
1.2. Steel Member Connections and Steel Plate Connections
1.3. Reinforced Connections with Fillers

2. Parameterized Connections
3. Connections with the use of Wooden Dowels

In this paper, the authors proposed a slight modification to existing classifications.
Bamboo connections are presently categorized into three types: traditional, modern, and
hybrid connections. Each of these classifications will be further elucidated in the subsequent
section. One addition made by the authors is the introduction of hybrid connections. The
recently proposed raw bamboo connections combine elements from traditional and mod-
ern connections [57], integrate multiple modern connections [20,23,26,50,80–82], or blend
modern connections with supplementary connection components [29,46–48,50,55,68–71,74].
Hence, they are termed hybrid connections. Supplementary connection components, such
as sleeves, gussets, and fillers, are components incorporated into modern connections to
overcome limitations and bolster overall structural integrity. Referred to as supplementary
connections, they cannot function independently as connectors; instead, they must be
paired with modern or even with traditional connections, although such partnerships have
not been explicitly documented.

Figure 10 delineates the classification of raw bamboo connections according to the
authors’ framework, while Table 5 provides a description of these connections based on
the reviewed literature. Each raw bamboo connection (RBC) is assigned an identification
code (RBC ID), with letters denoting its classification: TC for traditional connections, MC
for modern connections, and HC for hybrid connections. The numerical component of
the RBC ID signifies the specific type of connection within its designated classification, as
outlined in Table 6. Table 5 also includes information about the type of structure in which
the connection was employed. Additionally, it indicates whether the connector can join
two or more culms.
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Table 5. Description of raw bamboo connections.

RBC ID Description Structure
Number of

Culms Connected Reference
Only 2 2 or More

TC-1.1
Bamboo culms, polyester ropes, and
bio-composite rings termed Hinged
Flexible Connections (HFCs)

Pantographic bamboo
space structure,
self-supporting bamboo
structure

✓ [61,62,83]

TC-1.2 Bamboo culms and flexible hinged lashed
joints with textile-based techniques (HFC)

Pantographic hybrid
amphitheater structure ✓ [64]

TC-1.3 Bamboo culms and textile moorings Mobile self-stabilizing
structure ✓ [63,65]

MC-1.1 Bamboo culms and steel bolts * * * [27,30]

MC-1.2 Bamboo culms and metal pins * * * [56,84]

MC-1.3 Bamboo culms and bolts * ✓ [54]

MC-1.4 Bamboo culms and dowels * * * [60]

MC-2.1 Bamboo culms and steel hose-clamps Temporary bamboo
structure * * [76]

MC-2.2 Bamboo culms and steel hose-clamps
(termed clamp-culm) Bamboo truss ✓ [23]

MC-2.3 Bamboo culms and steel clamps Beam–column ✓ [20,58,59]

MC-2.4 Bamboo culms, steel hoops, steel bolts,
and NBR pads * * * [82]



Buildings 2024, 14, 1126 12 of 26

Table 5. Cont.

RBC ID Description Structure
Number of

Culms Connected Reference
Only 2 2 or More

MC-3.1
Bamboo culms and 3D-printed
biocomposite removable connection
system

Temporary bamboo
structure, furniture ✓ [75]

HC-1.1 Bamboo culms, fish-mounts, and steel
bolts Hypar roof ✓ [57]

HC-2.1 Bamboo culms, steel bolts, and GFRP * * * [80]

HC-2.2 Bamboo culms, steel bolts and nuts, and
steel caps Frame–ground ✓ [50]

HC-2.3 Bamboo culms, steel hose-clamps (termed
clamp-culm), and screws Bamboo truss ✓ [23]

HC-2.4 Bamboo culms, steel hose-clamps (termed
clamp-culm), and steel through-bolts Bamboo truss ✓ [23]

HC-2.5 Bamboo culms, steel clamps, and drywall
screws Beam–column ✓ [20]

HC-2.6 Bambo culms, steel clamps, and steel
through-bolts Beam–column ✓ [20]

HC-2.7 Bamboo culms, steel bolts, and FRP * ✓ [26]

HC-2.8 Bamboo culms, steel bolts, and natural
fiber (ijuk) * ✓ [26]

HC-2.9 Bamboo culms, steel bolts, and steel
hose-clamps * * * [81]

HC-2.10 Bamboo culms, steel bolts, and GFRP * * * [81]

HC-3.1 Bamboo culms, bamboo sleeves, steel
bolts, and nails Column ✓ [57]

HC-3.2 Bamboo culms, steel sleeves, steel bolts,
screws, and mortar Slab–wall ✓ [69]

HC-3.3 Bamboo culms, steel bolts, and mortar Footbridge ✓ [55]

HC-3.4 Bamboo culms, steel bolts, steel gusset
plates, and steel hose-clamps

Truss structure for
footbridge ✓ [22,46,48]

HC-3.5 Bamboo culms, steel bolts, and steel
sleeves Frame ✓ [50]

HC-3.6 Bamboo culms, bamboo sleeves, steel
bolts, and nails Beams ✓ [74]

HC-3.7 Bamboo culms, steel plates as sleeves,
steel bolts, and mortar * ✓ [70]

HC-3.8 Bamboo culms, steel bolts, and steel plates * * * [71]

HC-3.9 Bamboo culms, steel bolts, and mortar * ✓ [85]

HC-3.10 Bamboo culms, steel bolts, and steel
gusset plates * ✓ [22]

HC-3.11 Bamboo culms, steel bolts, steel gusset
plates, and steel hose-clamps * ✓ [47]

HC-3.12 Bamboo culms, steel bolts, steel gusset
plates, steel hose-clamps, and mortar * ✓ [47]

HC-3.13 Bamboo culms, steel bolts, and mortar * ✓ [49]

HC-3.14 Bamboo culms, Cendani bamboo bolts (as
shear connectors), and mortar * ✓ [49]

HC-3.15 Bamboo culms, steel bolts, nuts, washers,
and steel gusset plates Footbridge ✓ [29]

HC-3.16 Bamboo culms, steel bolts, wooden
clamps, and wooden gussets * * * [19,28,52,53]

HC-3.17 Bamboo culms, steel sleeves, and
riveted joints * ✓ [51]
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Table 5. Cont.

RBC ID Description Structure
Number of

Culms Connected Reference
Only 2 2 or More

HC-3.18 Bamboo culms, steel sleeves, and
self-drilling metal screws * ✓ [51]

HC-3.19 Bamboo culms, Ori bamboo bolts (as
connector), and mortar * ✓ [45]

HC-3.20 Bamboo culms, screws, and steel plates * * * [66]

HC-3.21 Bamboo culms, wood pegs (sleeves), and
steel hose-clamps One-storey frame structure ✓ [72]

HC-3.22 Bamboo culms, steel sleeves, mortar, and
steel rings * ✓ [73]

HC-3.23 Bamboo culms, steel bolts,
and steel sleeves * ✓ [73]

HC-3.24 Bamboo culms, steel bolts, and steel plates
(as sleeves) * ✓ [73]

* Not indicated.

Table 6. Description of RBC ID.

RBC ID Classification of Raw Bamboo Connection Description

TC-1 Traditional Lashing connection

TC-2 Traditional Mortise–tenon joint

MC-1 Modern Dowelled connection

MC-2 Modern Clamped and capped connection

MC-3 Modern Emerging technologies

HC-1 Hybrid Combination of traditional and
modern connections

HC-2 Hybrid Combination of multiple modern connections

HC-3 Hybrid Combination of modern connections
and supports

3.2.1. Traditional Connections
Lashing Connections

Lashing stands as one of the earliest methods employed for connecting bamboo, pre-
dominantly observed in traditional residential constructions of the past [24,77]. As the
term suggests, it involves binding bamboo culms together utilizing an array of materials,
including jute, hemp, rattan, dried bamboo pith or strips, palm rope, sisal, and coconut,
and has evolved to include wires, metal straps, textile polyester rope, and bio-composite
bandages [24,77,78]. This technique facilitates the connection of two or more bamboo culms,
regardless of whether they possess nodes at their ends, without piercing the culm, which
could lead to splitting or weakening. Numerous lashing knots have been practiced over
time, although the effectiveness of this connection largely depends on the tensile strength
of the lashing material and the friction between the ropes and bamboo [24,78]. However,
due to bamboo’s natural properties, such as expansion and contraction in response to vary-
ing humidity and temperature, as well as the potential loosening of natural fiber lashing
materials under these conditions, joints may become slackened over time. Additionally,
prolonged exposure to natural elements can cause natural fiber lashing materials to be-
come brittle, necessitating timely replacement to ensure proper functionality. To enhance
joint performance, ropes are often treated with oil immersion before use to increase their
toughness and strength, while repeated lashing can also improve joint strength [77,78]. To
enhance the contact area between bamboo culms, they are cut in a fish-mouth shape and
then tied together, giving rise to the term “fish-mouth support”. Alternatively, the notched
and pierced method was devised to bolster joint stability by minimizing slippage [24].
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This technique employs pegs as anchor points for lashing or utilizes punctured openings
through which lashing material is threaded, as depicted in Figure 11.
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Figure 11. Lashing joints: (a) notched and pierced with lashing [24]; (b) lashing joint using palm
rope [77].

While this concept has ancient roots, it remains relevant today. The development of
a flexible joint known as a Hinged Flexible Connection (HFC) was aimed at lightweight
structures, enabling deployable motion at the joint’s center, and facilitating mobile assem-
bly procedures [83]. In this connection system, polyester rope is wrapped around the
circumference of bamboo culms and secured by bio-composite rings affixed to the outer
wall. This approach avoids the use of steel as the primary material for the joint, suggesting
sustainable alternatives. However, the long-term performance of lashed joints requires
further consideration and examination [83].

Mortise–Tenon Joints

This joint mirrors the ancient connections prevalent in timber structures, where struc-
tural elements are bound without the use of nails or bolts. In a bamboo structure, one end of
a bamboo culm is carved into a tenon, which is then inserted into a notch on another bam-
boo column created by drilling a hole, as shown in Figure 12. Bamboo, being an anisotropic
material, exhibits relatively low tensile strength perpendicular to the grain. Additionally,
due to its hollow nature, drilling into bamboo to create a mortise can adversely affect its
structural performance, potentially leading to splitting and cracking [77,78]. Therefore, in-
tegrating mortise–tenon joints with supplementary connection components such as lashing
is a viable solution.
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3.2.2. Modern Connections

Modern bamboo structures are adopting modern bamboo connections with growing
preference for engineering hardware [24]. These modern connections are essential for meet-
ing the higher demands of modern bamboo structures [77]. Unlike traditional joints, which
directly transmit force through overlapping bamboo, modern connections utilize metal and
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other joint materials to effectively address issues such as poor durability and slippage [77].
By integrating these, designers and researchers have enhanced joint stiffness [78], leading to
a range of modern raw bamboo connections, including dowelled connections, clamped and
capped connections, and some emerging technologies used in raw bamboo connections,
which will be discussed in later sections.

Dowelled Connections

Dowelled connections encompass a variety of fasteners, including dowels, bolts,
screws, nails, and similar hardware mainly made of metal, but occasionally, bamboo
or timber, as defined by Malkowska et al. [66]. These connections are favored for their
ease of construction, yet they pose challenges such as insufficient joint strength and the
risk of splitting or cracking when punching into bamboo culms [78,79]. Consequently,
researchers have conducted experimental and theoretical studies to enhance the perfor-
mance and widespread adoption of dowelled connections [27,30,54,60,66,84]. For instance,
Masdar et al. [27] established the minimum distance between bolts and the end of bamboo
culms without nodes, crucial for designing bolted connections under real-world conditions.
Oka et al. [54] investigated factors affecting lateral strength in bolted bamboo connections,
while Trujillo and Malkowska [60] developed bamboo-specific design approaches using
various metal fasteners. Their work yielded predictive equations for connection properties,
highlighting the inadequacy of Eurocode 5 [86] equations for bamboo. Ramful [30] ana-
lyzed failure modes in bamboo bolt connections under tension, identifying shear-out failure
as dominant due to bamboo’s high axial strength but weak radial and tangential strength.
Additionally, Malkowska et al. [84] derived equations to predict splitting capacity and
provided insights into the mechanics of laterally loaded dowelled connections in bamboo,
offering valuable guidance for designers [56]. This study aimed to enhance designers’
confidence to implement dowelled bamboo connections in practice. Figure 13 illustrates a
bolted bamboo structure.
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Clamped and Capped Connections

Due to the limitations posed by dowelled connections, such as weakening the bam-
boo through drilling or cutting, clamped connections were developed as an alternative.
Clamped connections involve joining two or more bamboo culms using two semi-circular
steel hoops fastened with high-strength bolts. The sliding friction is controlled by the
interfacial pressure, which is adjustable by tightening the bolts [82]. The tightening of bolts
is carried out periodically to accommodate any changes in the bamboo’s dimensions due
to natural factors such as shrinkage. Unlike dowelled connections, clamped connections
do not require drilling into the bamboo culms, making them easy to install and disassem-
ble. They are also suitable for use in spatial bamboo structures, as shown in Figure 14.
Capped connections, also typically made of steel, involve attaching metal caps to the end
of bamboo culms with bolts or adhesives, enhancing joint performance by integrating the
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components of bamboo structures. However, a challenge with capped connections arises
from the fixed size of the metal caps or hubs, requiring the raw bamboo to be cut to match
their inner diameter.
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Ref. [20]; copyright 2019 Elsevier.); (b) prefabricated steel connector attached at the end of bamboo
culm (capped connection) [50]; (c) spatial structure of raw bamboo connected by BHC [82]; (d) bamboo
connected by steel hoops [82].

Garcia et al. [59] explored the use of two thin steel semi-rings for connecting bamboo
culms. Due to their thinness, they can conform to the diameter size irregularities of
bamboo culm when tightened. While their study confirmed the feasibility of this clamped
connection, issues such as the connection system’s behavior after adjustments over time
need further investigation [59].

Moran and Garcia [20] confirmed in their study that steel clamps capable of trans-
mitting moment can effectively improve the structural performance and versatility of
bamboo structures. Their study concluded that steel clamps can provide sufficient confine-
ment to prevent premature splitting failures, thus establishing them as a viable option for
bamboo connections.

Villegas et al. [23] utilized steel clamps as connectors for constructing trusses support-
ing floors and roofs in low-cost, prefabricated housing projects, though further experimental
studies are needed to validate their use under construction codes. Their study also revealed
that providing two drywall screws, one on each semi-ring, can enhance joint redundancy.

Hu et al. [82] introduced the term BHC, standing for bamboo connections using hoops,
and investigated the frictional properties of the composite interface between raw bamboo
and steel hoops to establish proper methods for calculating sliding friction force and
provide design details for BHC.
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Emerging Technologies

Emerging technologies in bamboo connections encompass innovative techniques,
materials, and design methods that are driving advancements in bamboo construction.
These advancements include, but are not limited to, the use of parametric software to create
connectors suitable for varying the diameters of bamboo culms, employing 3D printing for
connector fabrication, and integrating fiber-reinforced plastic (FRP) sheets.

Awaludin and Andriani [26] experimented with FRP sheets and natural fiber “ijuk” to
wrap bolted bamboo connections, aiming to delay bamboo splitting failure. Their findings
demonstrated a notable increase in both the joint slip modulus and lateral load capacity of
bolted bamboo connections when wrapped with FRP sheets.

Meng et al. [81] utilized glass-fiber-reinforced polymer (GFRP) to enhance the defor-
mation and bearing capacity of bolted bamboo connections. Shear tests were conducted to
examine the impact of GFRP reinforcement on failure mode, bearing capacity, and defor-
mation performance. Prior to the shear test, a laser 3D scanner was employed to accurately
capture the point cloud data of bamboo node parameters, such as loaded area, height, and
wall thickness—a novel approach in the field.

Li et al. [80] also employed GFRP to wrap bolted bamboo connections, aiming to
boost the shear capacity and prevent brittle splitting failure. Their approach was validated
through numerical simulations using finite element models.

A notable innovation in bamboo connections is the introduction of a 3D-printed
bio-composite removable connection system for bamboo space structures, as depicted in
Figure 15 [75]. van Wassenhove et al. [75] utilized parametric design and 3D printing, al-
lowing for customized design and production processes adaptable to varying bamboo culm
dimensions while maintaining standardization. Experimental validation has confirmed the
efficiency of this innovative connection system.
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3.2.3. Hybrid Connections

Hybrid connections involve blending features from various types of connections to
leverage their respective strengths, resulting in robust and adaptable connections tailored
to bamboo’s distinctive properties. They are categorized into three main types: the com-
bination of traditional and modern connections, the combination of multiple modern
connections, and the combination of modern connections with supplementary connection
(SC) components. The identification codes for each type of supplementary connection
component are as follows: SC-1.1 for a bamboo sleeve, SC-1.2 for a sleeve made of timber
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or wood, SC-1.3 for a steel sleeve, SC-2.1 for a steel gusset, SC-2.2 for a wooden gusset, and
SC-3.1 for bamboo filler made of mortar. These classifications will be elaborated upon in
the subsequent section. Details of the combinations of different connection types utilized
by the researchers identified in this study are provided in Table 7.

Table 7. Matrix for Hybrid raw bamboo connections.

RBC ID
Combinations of Raw Bamboo Connections

TC-1 TC-2 MC-1 MC-2 MC-3 SC-1.1 SC-1.2 SC-1.3 SC-2.1 SC-2.2 SC-3.1

HC-1.1 ✓ ✓

HC-2.1 ✓ ✓

HC-2.2 ✓ ✓

HC-2.3 ✓ ✓

HC-2.4 ✓ ✓

HC-2.5 ✓ ✓

HC-2.6 ✓ ✓

HC-2.7 ✓ ✓

HC-2.8 ✓ ✓

HC-2.9 ✓ ✓

HC-2.10 ✓ ✓

HC-3.1 ✓ ✓

HC-3.2 ✓ ✓ ✓

HC-3.3 ✓ ✓

HC-3.4 ✓ ✓ ✓

HC-3.5 ✓ ✓

HC-3.6 ✓ ✓

HC-3.7 ✓ ✓ ✓

HC-3.8 ✓ ✓

HC-3.9 ✓ ✓

HC-3.10 ✓ ✓

HC-3.11 ✓ ✓ ✓

HC-3.12 ✓ ✓ ✓ ✓

HC-3.13 ✓ ✓

HC-3.14 ✓ ✓

HC-3.15 ✓ ✓

HC-3.16 ✓ ✓ ✓

HC-3.17 ✓ ✓

HC-3.18 ✓ ✓

HC-3.19 ✓ ✓

HC-3.20 ✓ ✓

HC-3.21 ✓ ✓

HC-3.22 ✓ ✓ ✓

HC-3.23 ✓ ✓

HC-3.24 ✓ ✓
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Combination of Traditional and Modern Connections

Michiels et al. [57] integrated traditional and modern connection methods by adapting
the fish-mouth connection, historically paired with lashing, to incorporate bolted connec-
tions instead. This modified connection was utilized in hyperbolic paraboloid bamboo
grid roofs and subjected to laboratory testing. Their results indicated that the joint re-
action within the fish-mouth joints did not surpass the joint’s ultimate load capacity in
compression or tension.

Combination of Multiple Modern Connections

As mentioned in the section Emerging Technologies, FRP sheets are employed together
with bolted bamboo connections, as shown in Figure 16, to boost shear capacity and
prevent brittle splitting failure [26,80,81]. This connection is a combination of two modern
connections used to leverage the strength of both connection types.
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Moran and Garcia [20] investigated the performance of steel hoops combined with
through screws and drywall screws for beam–column bamboo connections. The results
show that these connections have better average stiffness and moment strength compared
with the corresponding values reported for traditional bolted and mortar-injected connections.

Rittironk [50] introduced prefabricated steel connectors, depicted in Figure 14b, which
combine elements of capped and bolted connections. These steel connectors were designed
to enhance the efficiency of raw bamboo connections and shorten the construction time.
Through real-world simulations, this research investigated whether the prefabricated steel
connector could effectively reduce construction time for building raw bamboo frames. The
findings of their study confirmed a notable reduction in construction duration.

Combination of Modern Connections with Supplementary Connection Components

Supplementary connection components include sleeves, gussets, and fillers, each
serving distinct purposes in reinforcing bamboo joints. Sleeves, which can be made from
smaller-diameter bamboo, timber, or steel, act as splices between two bamboo culms.
Gussets, or gusset plates, typically made of metal or wood, are bolted to bamboo culms to
augment support and rigidity at the joint. Fillers, on the other hand, are materials used
to occupy the internode or hollow section of bamboo culms such as mortar. Fillers are
strategically placed within the internode where bolts penetrate to bolster joint strength and
prevent splitting. Incorporating mortar filler adds weight to the structures, which can pose
challenges as the materials may not effectively accommodate each other due to the varying
shrinkage-swelling rates between cement mortar and bamboo. Consequently, this disparity
can result in the development of cracks within the structure. [55]. Figure 17 depicts various
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connections integrating modern techniques with supplementary components for improved
structural integrity.
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Figure 17. Combination of modern connections with supplementary connection components: (a) par-
allel bolted mortar infill connection [55]; (b) bamboo culms connected by wooden block (sleeve) and
steel hose-clamp (reproduced with permission from Ref. [72]; copyright 2019 Elsevier.); (c) bamboo
connected by wooden clamp, wooden gusset plate, and steel bolts [19]; (d) bamboo connected by
bamboo sleeve and nails [74].

Zhou et al. [74] introduced a sleeve-nailed bamboo connection method involving three
bamboo culms. This technique joins two bamboo culms of similar diameter longitudinally by
inserting a shorter bamboo culm with a smaller diameter, which is then secured with nails.

Lefevre et al. [72] devised a custom-machined wooden block with cylindrical pegs
that match the inner diameter of the bamboo culm. Metal hose-clamps are used to se-
cure the pegs after insertion into the bamboo culm, making the connection relatively
lightweight and suitable for use in developing countries due to its simplicity and the
accessibility of materials.

Fu et al. [73] developed a novel sleeve–cement bamboo joint configuration, utilizing
steel sleeves, rings, and mortar for adhesive purposes. They also investigated the per-
formance of sleeve–bolt and groove–plate connections, finding that these joints exhibit
brittleness under axial load, with the failure mode being governed by shearing-split. In
contrast, the sleeve–cement joint demonstrated good ductility with relative slip between
the bamboo and cement mortar.

Masdar et al. [52] studied the elastic behavior of a connection system consisting of
wood clamps, wooden gusset plates, and steel bolts. The design of the wooden clamps was
customized to match the shape and dimensions of the raw bamboo. Their experimental
findings demonstrated that incorporating wooden clamps boosted the load-bearing capacity
of the joints by approximately 40% compared to joints lacking such clamps.

Noverma et al. [49] compared the strength of steel bolts and Cendani bamboo as shear
connectors, finding that bolted connections with mortar infill in the internode were stronger
than those using Cendani bamboo alone.

Correal et al. [85] developed an analytical method to estimate the strength of bolted
mortar infill (BMI) bamboo connections based on a modified European yield model (EYM)
theory, showing promise for design applications.

Quintero et al. [55] analyzed the structural behavior of a bamboo bridge connected
by bolted mortar infill (BMI), where the bamboo internode is filled with mortar to provide
stiffness and then connected by bolts, as shown in Figure 17a.



Buildings 2024, 14, 1126 21 of 26

Nie et al. [70] investigated the failure modes of bolted bamboo connections with
embedded steel plates and grouting materials, finding that the diameter of the bolt signifi-
cantly influences connector bearing capacity, and that filling with grouting material can
enhance joint strength.

3.3. Codes and Standards for Bamboo

While bamboo boasts sustainability and impressive mechanical properties, making
it viable for structural use, its application remains constrained. This limitation is largely
attributed to the difficulties posed by its connection systems, worsened by the limited
widely applicable standards and codes to aid in the design of structural elements. Con-
sequently, bamboo’s utilization as a structural material heavily depends on established
practical methods [87].

In this study, we found that researchers utilized International Standards for bamboo,
as outlined in Table 8. These include ISO 19624:2018 [88], ISO 22156:2021 [89], and ISO
22157-2019 [90]. It is worth mentioning that while other International Standards and
many of the Standard Test Methods listed in Table 8 pertain to timber or wood, they were
adapted for use with bamboo due to the limited, if not absence of, International Standards
specifically tailored for bamboo. Furthermore, it is essential to mention that although
bamboo shares some similarities with wood, it differs significantly in terms of both its
physical and mechanical properties.

Table 8. Bamboo codes and standards used by researchers identified in this study.

Codes and Standards Related Material Subject International National Country Reference

JG/T 199-2007 [91] Bamboo Material testing ✓ China [69–71,80,82]

GB/T 3098.1-2010 [92] Fasteners Material testing ✓ China [71]

GB 50005-2017 [93] Timber structures Design ✓ China [70,71]

EN 1993 [94] Steel joints Design ✓ Europe [20,21,48,58]

EN 1995 [95] Timber structures Design ✓ Europe [21,48,60,80]

EN 383:2007 [96] Timber fasteners Material testing ✓ Europe [60]

EN 1382:2016 [97] Timber fasteners Material testing ✓ Europe [60]

EN 12512:2005 [98] Timber fasteners Material testing ✓ Europe [29]

EN 14358-2016 [99] Timber structures Material testing ✓ Europe [60]

BIS 15912:2012 [100] Bamboo Design ✓ India [47]

AWC-TR12 [101] Dowels Design ✓ United States [29,48]

ASTM A240/A240M-12 [102] Steel plates, sheets,
and strips Design ✓ [29]

ASTM D1761 [103] Fasteners in wood Material testing ✓ [85]

ASTM D5652 [104] Bolt connections in
wood Material testing ✓ [71]

ASTM D5764-97a [105] Wood Material testing ✓ [27,28,48,53,60,66,85]

ASTM F1575-03 [106] Nails Material testing ✓ [29,45,48,54,66,85]

ISO 527-1:2019 [107] Plastics Material testing ✓ [75]

ISO 527-4:2023 [108] Plastics Material testing ✓ [75]

ISO 10984-2:2009 [109] Timber fasteners Material testing ✓ [60]

ISO 12122-1:2014 [110] Timber structures Material testing ✓ [66]

ISO 16670:2003 [111] Timber fasteners Material testing ✓ [20,22,26]

ISO 19624:2018 [88] Bamboo Material testing ✓ [48,66]

ISO/TR 21141:2022 [112] Timber
connections Material testing ✓ [66]

ISO 22156:2021 [89] Bamboo Design ✓ [20,46,47,60,66,68,84,85]

ISO 22157:2019 [90] Bamboo Material testing ✓ [19,21–23,27–29,46,48,
49,53,60,66,68,69,74,76]

AC 162 [113] Bamboo Design ✓ [21]
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As indicated in Table 8, certain countries, such as China, India, and Colombia, have
developed their own codes and standards for bamboo. However, these codes primarily
focus on determining the physical and mechanical properties of bamboo and do not address
the design of raw bamboo connections. Consequently, there is a pressing need to develop
comprehensive widely applicable standards for bamboo design and construction, including
codes of practice for both bamboo and bamboo connections, to foster the wider adoption of
bamboo in the construction industry.

4. Conclusions

While there have been studies conducted on bamboo connections, it is important to
note that these studies examine various factors. The literature reviewed involves different
bamboo species and considers factors such as the age at which specimens were harvested,
type of bamboo treatment, diameter and wall thickness, and distance of nodes from the
bamboo culm’s end, among others. Therefore, it would be premature to conclude that the
existing studies are comprehensive. Further research considering all relevant variables is
necessary to enhance our understanding of bamboo connections.

Numerous bamboo connection methods have been proposed based on the obtained
literature. While some exhibit promising performance, there should be criteria for selecting
the most suitable type of bamboo connection. For instance, the promotion of raw bamboo
structures is driven by their environmentally friendly, renewable, and sustainable nature.
However, using mortar as filler and steel as connectors may contradict these objectives.
Additionally, in developing countries where bamboo is abundant, promoting connectors
that are readily available, affordable, and easy to install is crucial. Proposing connectors
that are satisfactory but expensive would hinder the widespread adoption of raw bamboo
structures in the construction industry.

The failure modes of the bamboo connections discussed in the literature obtained
were examined. Failure modes should be further analyzed. Understanding how various
bamboo connections fail assists designers and engineers in anticipating and mitigating
the risks associated with bamboo connections, thereby enhancing the resilience of raw
bamboo structures. Additionally, the long-term behavior of bamboo connections should be
investigated to verify their durability. This analysis also helps determine the frequency of
maintenance and, consequently, quantify the cost-effectiveness of bamboo connections.

Codes and standards play a crucial role in bamboo construction, particularly in en-
suring the safety, quality, and resiliency of bamboo structures. They are also essential in
boosting the confidence of designers and engineers in adopting raw bamboo as structural
materials in the construction industry. The lack of International Standards for bamboo
connections is considered to be a research gap. There is a need to develop a comprehensive
widely practical code and standards for bamboo and bamboo connections.
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